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Abstract: Phosphodiesterases (PDEs) form a superfamily of enzymes that catalyze the hydrolysis
of cyclic nucleotides adenosine 3′5′-cyclic monophosphate (cAMP) and guanosine 3′5′-cyclic
monophosphate (cGMP) to their inactive 5′ monophosphates. cAMP plays a critical role as a second
messenger in endocrine tissues, and activation of cAMP signaling has been reported in endocrine
tumors. Germline variants in PDEs have been associated with benign cortisol-secreting adrenocortical
adenomas and testicular germ cell cancer but not adrenocortical carcinoma. We performed whole
genome sequencing (WGS) and whole exome sequencing (WES) of paired blood and tumor samples
from 37 pediatric adrenocortical tumors (ACTs). Germline inactivating variants in PDEs were observed
in 9 of 37 (24%) patients. Tumor DNA analysis revealed loss of heterozygosity, with maintenance of
the mutated allele in all cases. Our results suggest that germline variants in PDEs and other regulators
of the cAMP-signaling pathway may contribute to pediatric adrenocortical tumorigenesis, perhaps by
cooperating with germline hypomorphic mutant TP53 alleles and uniparental disomy of chromosome
11p15 (Beckwith–Wiedemann syndrome).
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1. Introduction

Cyclic nucleotide phosphodiesterases (PDEs) are members of a superfamily of enzymes involved
in regulating the intracellular levels of the second messengers cyclic nucleotide AMP (cAMP) and
guanosine 3′5′-cyclic monophosphate (cGMP) [1]. Intracellular cyclic nucleotide levels increase in
response to extracellular stimulation by hormones, neurotransmitters, or growth factors and are
downregulated through hydrolysis catalyzed by phosphodiesterases (PDEs) [2,3]. Thus, PDEs regulate
a myriad of physiological processes and are implicated in genetic diseases, as well as associated
with pathophysiology of the nervous and cardiovascular system, fertility, autoimmune diseases, and
cancer [1–4].

Human PDEs are derived from 21 genes separated into 11 families (PDE1 to PDE11) and classified
by amino acid sequences, regulatory properties, and catalytic characteristics, which are grouped by
the homology of their conserved C-terminal catalytic domains [1–3]. The N-terminal portion of PDE
molecules defines the specific properties of each member and variant of the PDE gene family [1–3].
Transcription from different initiation sites and differential splicing of their mRNAs results in multiple
isoforms that are distinguished primarily by their substrate selectivity (cAMP versus cGMP) and modes
of regulation. Each isoform is distinct due to its unique expression pattern at the level of the tissue or
organ, cell type and subcellular compartment, and susceptibility to pharmacological inhibition, which
has provided many possibilities for identifying increasingly selective therapeutic targets [3,4].

Cancer is driven by genetic and epigenetic changes, which lead to altered signaling pathways that
control cell division, cell death, and cell motility, thereby fueling wider signaling networks that favor
cancer progression. Regulation of cyclic nucleotide signaling is considered one of several components
involved in biological processes, such as cell proliferation and energy homeostasis. Indeed, various
alterations leading to activation or inactivation of key components of cAMP and cGMP signaling
pathways occur in several pathophysiological conditions, including tumorigenesis [1]. Several studies
have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms:
Induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of
cyclic nucleotide receptors is sufficient to inhibit proliferation and activate apoptosis in many types of
cancer cells [5].

Many carcinomas and hematological malignancies have been associated with reduced levels
of cAMP and/or cGMP secondary to an elevation in PDE activity [6–10]. Chronic lymphocytic
leukemia cells exhibit increased PDE7B expression [11]; PDE5 is strongly expressed in glioblastoma
multiforme [12] and colon cancer [13], and glioma cells overexpress one or more isoforms of PDE4 [14].
Furthermore, several PDE isoforms are present in granulosa cells as well as in oocytes in preovulatory
follicles of the mammalian ovary regulating the meiotic cell cycle [15]. Additionally, many PDEs are
expressed in cells of the spermatogenic pathway where they may regulate sperm motility [16], and
PDE5 is expressed in the contractile tissues of the male excurrent duct and accessory glands where its
increased activity contributes to erectile dysfunction [16].

Various cellular and molecular alterations of the cAMP-signaling pathway have been observed
in endocrine diseases. Studies show that PDE2A, PDE8A, PDE8B, and PDE11A are the major PDEs
expressed in the adrenal cortex and play a role in adrenal physiology [17]. Aberrant cAMP signaling has
been linked to genetic forms of cortisol excess which can lead to Cushing’s syndrome and related adrenal
hyperplasia [17]. Variants in PDE8B predispose to primary pigmented nodular adrenocortical disease
(PPNAD), a bilateral form of micronodular adrenal hyperplasia that causes ACTH (adrenocorticotropic
hormone)-independent Cushing’s syndrome [18]. A higher frequency of missense variants of PDE11A
has been found in adult patients with macronodular adrenocortical hyperplasia and adrenocortical
tumors (ACTs) than in control patients [19].

The role of inactivating variants in PDEs in pediatric ACTs has not been investigated
thoroughly—unlike in adrenocortical hyperplasia and in such tumors in adults. In the present
investigation, we examined the frequency of germline and acquired PDEs variants in a cohort
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of pediatric patients. Our findings suggest the potential involvement of PDEs in pediatric
adrenocortical tumorigenesis.

2. Results

2.1. Discovery Cohort of Pediatric ACT Patients Harboring PDE Variants

Whole genome sequencing (WGS) and whole exome sequencing (WES) data of 37 children with
ACTs (“discovery cohort”) were retrieved for analyzing germline and acquired variants in PDE family
genes (Figure 1) and other cAMP/cAMP-dependent kinase (PKA)-signaling pathway genes (PDE4DIP,
CREB, GNAS and PRKACA). Demographics and clinical data for these patients are shown in Table 1.
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Figure 1. Schematic representation of human phosphodiesterase genes. Phosphodiesterases (PDEs) are
organized into 11 families with specific adenosine 3′5′-cyclic monophosphate (cAMP) and/or guanosine
3′5′-cyclic monophosphate (cGMP) substrates (identified on the right). CaM, calmodulin-binding
domain; GAF, cGMP-binding PDEs Anabaena sp. adenylyl cyclase and Escherichia coli. FhlA; TM,
transmembrane domain; REC, signal receiver domain; PAS, Per-Arnt-Sim domain; UCR, upstream
conserved region.
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Table 1. Clinical data of pediatric adrenocortical tumor (ACT) patients with germline and acquired PDE and cAMP-signaling genes variants.

Case c-AMP Pathway/
Germline

c-AMP Pathway/
Somatic TP53 status Gender Clinical

Presentation Histology
Age at

diagnosis
(months)

Tumor
weight (g) Stage Survival

Status

1 p.Q860*-PDE5A WT F V ACA 59.8 20.5 I Alive
2 p.Q860*-PDE5A p.R337H F V ACC 38.0 6 I Alive

3 p.R307*-PDE11A p.S977I-PDE4DIP/
p.R201H-GNAS WT/UPD F A Und 140.6 388 III Alive

4 p.K20*-PDE11A p.T125T M V ACC 103.0 500 III Alive
5 p.R783*-PDE3B WT F V Und 26.2 69 I Alive
6 p.W1396*-PDE4DIP p.R337H M V ACC 21.0 Unk I Unk
7 p.Q1968*-PDE4DIP p.R337H M V+C ACC 24.4 Unk I Died
8 p.H341Qfs*23-PDE6B p.R337H F V ACC 35.0 30 I Alive
9 c.1953-4A>G -PDE8A WT/UPD F C ACA 17.0 120 III Alive
10 PDE4-ERRB4 p.R273C F NF ACC 24.0 Unk IV Died
11 p.R201C-GNAS WT F V Und 83.0 255.7 II Alive

ACA, adrenocortical adenoma; ACC, adrenocortical carcinoma; Und, Undetermined, WT, wild-type; F, Female; M, Male; V, virilization; A, aldosterone producing tumor; C, Cushing; NF,
non-functional; R, right; L, left; Unk, Unknown.
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2.2. PDE Variants Identified in the Discovery Cohort

Sequencing analysis of genomic DNA from 37 pediatric ACT patients revealed the presence
of germline-inactivating variants in PDEs and related genes in 9 (24%) patients (Figures 2 and 3
and Table 1). Inactivating germline nonsense variants were documented in PDE3B (OMIM 602047,
NM_000922.4) (p.R783*, c.2347C > T, rs150090666, gnomAD frequency, 0.06%), PDE5A (OMIM-603310,
NM_001083.4) (2x p.Q860*, c.2578C > T, rs140289122, 0.17%) and PDE11A (OMIM-604961, NM_016953.4)
(p.K20*, c.58A > T rs148183964, 0.06% and p.R307*, c.919C > T, rs76308115, 0.29%). Additional
structural germline variants were observed in PDE6B (OMIM-180072, NM_000283.3 (p.H341Qfs*23)
and PDE8A (OMIM-602972, NM_002605.3) (c.1953-4A > G splice region) (Figure 2). Excluding
the p.K20* variant for PDE11A and p.H341Qfs*23 for PDE6B, all other variants were found in the
PDE catalytic domain (Figure 2). Additional germline nonsense variants were verified in PDE4DIP
(OMIM-608117, NM_001198834.3) (p.W1396*, c.4187G > A, rs782516582, 0.008% and p.Q1968*, c.5902C
> T, new variant) (Figure 3). Notably, analysis of tumor DNA revealed loss of heterozygosity (LOH),
with retention of the mutant allele in all cases. Additional rare germline variants maintained in tumor
samples due to LOH and not reported in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) were also
observed and included in Table S1. Acquired alterations in PDEs and other cAMP/PKA signaling
pathway genes were observed in three cases. The GNAS (OMIM-139320, NM_000516.6) (p.R201H,
c.602G > A) pathogenic variant in addition to the PDE4DIP p.S977I missense variant was observed in
the tumor sample from patient #3. The GNAS p.R201C, c.601C > T variant was observed in the tumor
sample of patient #11, and a gene fusion [chr5:58476419(-)::chr2:212615429(-)] showing PDE4D exon 5
fused to ERBB4 exon 5 was observed in the ACT from patient #10 (Table 1). No pathogenic or likely
pathogenic variants were identified in CREB or PRKACA in this cohort.
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Analysis of the TCGA whole exome sequence database representing 92 paired germline and adult
ACC cases [20] revealed rare germline PDE variants that were retained in the tumor due to LOH and
lacked representation of pathogenicity in Clinvar (Table S2). Of note, four somatic inactivating PDE
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variants (PDE2A, p.C935*; PE3A, p.E319*; PDE8A, c.1735-3C > A; and PDE8A, p.S386Hfs*4) were
identified in this cohort. An acquired variant in PDE4C (p.A291G; COSV53206356) was also reported
in an adrenocortical carcinoma among 41 adult cases analyzed by WES [21].
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2.3. Transcriptome Profiling of PDEs in the Discovery Cohort

Transcriptome profiling of pediatric ACTs (n = 16) and normal adrenal cortex samples (n = 6)
revealed that PDE2A, PDE6D, PDE8A, and PDE9A are highly expressed in both normal and adrenal
tumor tissue, compared to other PDE family members. No significant differences in expression were
observed when comparing tumor tissue and normal adrenal for most PDE genes. However, significant
overexpression of PDE4B and PDE8B and downregulation of PDE2A, PDE5A, and PDE8A were
observed in pediatric ACTs compared to normal adrenal (Figure 4).
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PDE5A, and PDE8A were observed in adrenocortical tissues. (* p < 0.05; Bonferroni test—GraphPad
Prism, v6, (GraphPad, San Diego, CA, USA)).

2.4. Germline PDE Variants Identified in Pediatric ACTs Associated with the Founder TP53 p.R337H Variant

Whole exome analysis of germline DNA from an independent cohort of 18 pediatric ACT patients
harboring the TP53 p.R337H allele revealed additional inactivating variants in PDE6A (p.K827del) and
PDE11A (p.K119Sfs*2). Nonsense variants were also observed in PDE4DIP (p.E515*, c.1543G > T, new
variant / p.E1745*, c.5233G > T, new variant). Additional rare germline variants with no representation
of clinical significance in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) observed in this cohort are
included in Table S3.

3. Discussion

In this study, we identified nine germline inactivating variants in phosphodiesterases and related
genes in a discovery cohort of 37 pediatric patients with ACT (24%). Inactivating variants were
observed in PDE3B, PDE5A, PDE6B, PDE8A, and PDE11, and the phosphodiesterase interacting
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protein PDE4DIP. All observed variants, except for two, were in the catalytic domain, which suggests
a loss of function of PDE [22]. Of these, only PDE11A p.R307* has been previously found in association
with Cushing’s syndrome due to micronodular adrenocortical hyperplasia in a female carrier [19,23].
In our study, the female patient harboring the PDE11A p.R307* variant (Patient #3) developed an
aldosterone-producing tumor at the age of 12 years. In addition to the germline PDE11A nonsense
variant, the tumor acquired a pathogenic variant in GNAS. These findings agree with the role of PDE11A
in genetic predisposition to the development of adrenal tumors [19,23], and that additional cooperating
events leading to altered cAMP/PKA signaling [24] are required to drive adrenocortical tumorigenesis.

The most widely-used and valuable histopathological scoring criteria for predicting pediatric
adrenocortical tumor malignancy is the Wieneke classification system [25], which relies on nine
macroscopic and microscopic variables. Based on this system, tumors are classified as adenoma
(ACA; 0–2 variables), undetermined malignant potential (Und; 3 variables), and carcinoma (ACC;
4 or more variables), which portends a poor clinical outcome [25]. However, lack of definitive and
reliable histopathological criteria for malignancy is still a challenge for pediatric ACT. About 50%
of pediatric ACTs are associated with germline TP53 variants that lead to more complex genomic
landscapes [26]. Although discrete genomic changes were not independently associated with prognosis,
complex genomic alterations tended to portend an unfavorable outcome [27]. Furthermore, TP53
variants observed in pediatric adrenocortical tumors did not correspond to the conventional hotspot
variants associated with classic Li–Fraumeni syndrome (LFS), and most retain a wide range of
functionality [28,29]. Consistent with these observations, among the five carriers of TP53 variants in
our cohorts, only one (patient #4) harbored a predicted nonfunctional TP53 variant [28], and none were
classified as LFS.

Loss of heterozygosity was observed for all inactivating phosphodiesterase/phosphodiesterase-
related variants. One can hypothesize that a complete inactivation of those proteins, due to an
inactivating variant in one allele and the loss of the second wild-type allele, in the right environment
could favor the development of tumors. The “right” environment could be formed by the presence of a
TP53 hypomorphic variant, that predisposes the cells to form tumors. A previous study demonstrated
that PDEs can act as phenotype modifiers, leading to adrenal tumors in Carney complex patients
carrying PRKAR1A variant [30].

A high frequency of PDE variants was observed in patients with prostate cancer [31]. The
pCREB:CREB ratio (phosphorylated cAMP response element-binding protein: cAMP response element-
binding protein) showed an imbalance in the cAMP availability, probably due to downregulation of
some of the PDE molecules [31]. In the present work, when the transcriptome analysis was accessed, a
decrease of PDE2A, PDE5A, and PDE8A expression and a significant overexpression of PDE4B and
PDE8B was observed in adrenocortical tumors, compared to normal adrenal tissue. PDEs have been
found to play critical roles in modulating multiple signaling pathways. The presence of consistent
and significative differences in the expression of PDEs throughout patients’ tumors as compared with
that in controls could indicate an imbalance of the cAMP pathway. Corroborating this hypothesis, a
knockout mouse for the Prkar1a gene in the pancreas leads to neuroendocrine tumorigenesis, probably
due to the dysregulation of the (cAMP)-dependent kinase (PKA) pathway [32].

Of interest, we have documented germline nonsense variants in PDE4DIP, a protein that interacts
with the cyclic nucleotide phosphodiesterase PDE4D to anchor this protein to the Golgi/centrosome
region of the cell. This gene has been associated with myeloproliferative disorders, as shown by its
fusions with platelet-derived growth factor receptor beta gene (PDGFRB) [33]. In addition, PDE4DIP
variants are one of the most frequent in metastatic adrenocortical carcinomas in adults [34]. Of note, all
four of our patients with an inactivating variant in PDE4DIP also harbor the hypomorphic widespread
TP53 p.R337H founder allele [35–37]. These findings suggest that PDE4DIP variants (and perhaps others
c-AMP signaling pathway genes) predispose TP53 p.R337H carriers to adrenocortical tumorigenesis.

Genome-wide associations studies demonstrate that PDE2A, PDE8B, and PDE11A modulate
steroidogenesis [17] and are associated with adrenal Cushing’s syndrome and/or bilateral adrenal
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hyperplasia [17]. In contrast, our findings identified germline inactivating PDE variants in patients who
developed adrenocortical carcinomas, including cases with virilization, and aldosterone-producing
tumors. The observed concomitant PDE variants and hypomorphic TP53 alleles or chromosome 11p
uniparental disomy in the germline of pediatric ACT cases support the combined additive effect of
multiple genetic variants in cancer susceptibility [38].

In this study, we added PDE variants as a candidate causative gene for pediatric adrenocortical
lesions. Altogether, sequencing analysis and transcriptome profiling support the importance of
alterations in the cAMP signaling pathway in adrenocortical tumors. As we learn more about
the functional roles and molecular interactions of each PDE, as well as how the variants operate in
adrenocortical tumorigenesis, we will better understand the full potential of PDEs as therapeutic targets.

4. Materials and Methods

4.1. Phosphodiesterase Variants in the Discovery Cohort

We retrieved data from primary ACTs and matched peripheral blood DNA analyzed by WGS
(n = 19) at an average 41.9x coverage or by WES (n = 18) at an average 84.8x coverage. Of the nine
cases with germline variants in PDEs, six were disclosed by WGS and three by WES [26]. WGS and
WES were performed as previously described [26]. Sequencing data for variants in the PDE family of
genes (PDE1 to PDE11, Figure 1), and PDE4DIP as well as cAMP/PKA-signaling pathway genes GNAS,
PRKACA, and CREB were analyzed. Detected germline variants were evaluated in tumor tissue to
determine heterozygosity status.

4.2. Transcriptome Profiling

Transcriptome profiling was performed by using total RNA extracted from pediatric ACTs (n = 16)
in the discovery cohort. Six samples of normal adrenocortical tissue obtained during nephrectomy for
Wilms tumor were used as controls in gene expression studies. Library construction and sequencing
was performed as previously described [26]. The RNA expression level of PDE genes was measured as
fragments per kilobase of transcript per million fragments mapped [26].

Sequencing and transcriptome data were retrieved from the European Genome-phenome Archive
(EGA) under accession code EGAS00001000192.

4.3. Whole Exome Sequencing of an Independent Cohort of Pediatric ACTs Harboring the Germline TP53
p.R337H Variant

Peripheral blood DNA was isolated from 18 children with ACT and 36 cancer-free parents and
analyzed by WES. All patients with ACTs tested positive for the germline TP53 p.R337H variant. Written
informed consent was obtained from all participants. This research was approved by the Pequeno
Príncipe Hospital Ethics Committees (Curitiba, PR, Brazil, under ethic codes CAA: 0023.0.208.000-05
(2005), and CAAE 0612.0.015.000-08 (2009 and 2012).

Genomic DNA was isolated from blood samples using the ReliaPrep™ Blood gDNA Miniprep
System (Promega, Madison, WI, USA) and quantified with the Qubit®3.0 Fluorometer and Qubit
dsDNA HS assay kit (Thermo Fisher Scientific, Grand Island, NY, USA). WES was performed by
using the SureSelect Human All Exon V5 (Agilent Technologies, Santa Clara, CA, USA) for sequence
capture and Illumina HiSeq2500 (2 × 125 bp paired-end) for sequencing (Illumina, San Diego, CA,
USA). Read alignment, variant calling, prioritization, and filtering were performed on the Sirius online
platform (Integragen, Evry, France). A custom Python script was used to compute filtered variant data
into tables.



Cancers 2020, 12, 506 9 of 11

5. Conclusions

We reported recurrent inactivating germline PDE variants in association with pediatric
adrenocortical tumors. In each case, the wild-type allele was selected against by LOH, suggesting an
imbalance of the cAMP signaling pathway contributes to tumor progression.
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