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Abstract
Background: Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles
depending on their parental origins, has been widely observed in nature. It has been shown recently
that the epigenetic modification of an imprinted gene can be detected through a genetic mapping
approach. Such an approach is developed based on traditional quantitative trait loci (QTL) mapping
focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals
play an important role in controlling embryonic growth and post-natal development. For a
developmental character such as growth, current approach is less efficient in dissecting the dynamic
genetic effect of imprinted genes during individual ontology.

Results: Functional mapping has been emerging as a powerful framework for mapping quantitative
trait loci underlying complex traits showing developmental characteristics. To understand the
genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the
functional mapping approach with genomic imprinting. We demonstrate the approach through
mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical
behavior of the approach is shown through simulation studies, in which the parameters can be
estimated with reasonable precision under different simulation scenarios. The utility of the
approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse
stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse
body weight.

Conclusion: The functional iQTL mapping approach developed here provides a quantitative and
testable framework for assessing the interplay between imprinted genes and a developmental
process, and will have important implications for elucidating the genetic architecture of imprinted
traits.

Background
Hunting for genes underlying mendelian disorders or
quantitative traits has been a long-term effort in genetical
research. Most current statistical approaches to gene map-
ping assume that the maternally and paternally derived
copies of a gene in diploid organisms have a comparable

level of expression. This, however, is not necessarily true
as revealed by recent studies, in which some genes show
asymmetric expression, and their expression in the off-
spring depends on the parental origin of their alleles [1-3].
This phenomenon, termed genomic imprinting, results
from the modification of DNA structure rather than

Published: 17 March 2008

Theoretical Biology and Medical Modelling 2008, 5:6 doi:10.1186/1742-4682-5-6

Received: 18 January 2008
Accepted: 17 March 2008

This article is available from: http://www.tbiomed.com/content/5/1/6

© 2008 Cui et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.tbiomed.com/content/5/1/6
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18346281
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Theoretical Biology and Medical Modelling 2008, 5:6 http://www.tbiomed.com/content/5/1/6
changes in the underlying DNA sequences. As one type of
epigenetic phenomenon, genomic imprinting has greatly
shaped modern research in genetics since its discovery.
Some previously puzzling genetic phenomena can now be
explained by imprinting theory. However, little is known
about the size, location and functional mechanism of
imprinted genes in development.

The selective control of gene imprinting is unique to pla-
cental mammals and flowering plants. There is increasing
evidence that many economically important traits and
human diseases are influenced by genomic imprinting [3-
6]. More recent studies have shown that genomic imprint-
ing might be even more common than previously thought
[7]. Despite its importance, the study of genomic imprint-
ing is still in its early infancy. The biological function of
genomic imprinting in shaping an organism's develop-
ment is still unclear. Recent publications have shown that
the majority of imprinted genes in mammals play an
important role in controlling embryonic growth and
development [8,9], and some involve in post-natal devel-
opment, affecting suckling and metabolism [9,10]. The
malfunction of imprinted genes at any developmental
stage could lead to substantially abnormal characters such
as cancers or other genetic disorders. It is therefore of par-
amount importance to identify imprinted genes and to
understand at which developmental stage they function,
to help us explore opportunities to prevent, control and
treat diseases therapeutically. With the development of
new biotechnology coupled with computationally effi-
cient statistical tools, it is now possible to map imprinted
genes and understand their roles in disease susceptibility.

Several studies have shown that the effects of imprinted
quantitative trait loci (iQTL) can be estimated and tested
in controlled crosses of inbred or outbred lines [6,11-15].
These approaches are designed on the traditional QTL
mapping framework where a phenotypic trait is measured
at certain developmental stage for a mapping subject,
ignoring the dynamic features of gene expression. As a
highly complex process, genomic imprinting involves a
number of growth axes operating coordinately at different
development stages [16]. Changes in gene expression at
different developmental stages reflect the dynamic
changes of gene function over time. They also reflect the
response of an organism to either internal or external
stimuli, so it can redirect its developmental trajectory to
adapt better to environmental conditions, and thereby to
increase its fitness [17]. For this reason, incorporating
such information into genetic mapping should provide
more information about the genetic architecture of a
dynamic developmental trait.

When a developmental feature of an imprinted trait is
considered, traditional iQTL mapping approaches that

only consider the phenotypic trait measured at a particu-
lar time point will be inappropriate for such an analysis.
In fact, for a quantitative trait of developmental behavior,
the genetic effect at time t (denoted as Gt) is composed of
the genetic effect at time t - 1 (denoted as Gt-1) and the
extra genetic effect from time t - 1 to t (denoted as G∆t)
[18]. Therefore, the phenotypic trait measured at time t
reflects the cumulative gene effects from initial time to t,
and is highly correlated with the trait measured at time t -
1. The correlations among traits measured at different
time periods (i.e., different developmental stages) thus
provide correlation information about gene expressions,
and hence tell us how genes mediate to respond to inter-
nal and external stimuli. Current imprinting QTL (iQTL)
mapping approaches, by ignoring the correlations among
traits measured at different developmental stages, could
therefore potentially overestimate the number and the
effective size of iQTLs, and lead to wrong inferences.

Although conditional QTL analysis can reduce bias and
increase detecting power by partitioning the genetic effect
in a conditional manner [18], analysis of traits at each
measurement time point is still less powerful and less
attractive than analysis by considering measurements at
different developmental stages jointly [19]. The recent
development of functional mapping brings challenges as
well as opportunities for mapping genes responsible for
dynamic features of a quantitative trait [17,19,20]. Func-
tional mapping is the integration between genetic map-
ping and biological principles through mathematical
equations. The relative merits of functional mapping in
biology lie in the strong biological relevance of QTL detec-
tion, and its statistical advantages are that it reduces data
dimensions and increases the power and stability of QTL
detection. By incorporating various mathematical func-
tions into the mapping framework, functional mapping
has great flexibility for mapping genes that underlie com-
plex dynamic/longitudinal traits. It provides a quantita-
tive framework for assessing the interplay between genetic
function and developmental pattern and form.

In this article, we extend our previous work of interval
iQTL mapping to functional iQTL mapping by incorporat-
ing biologically meaningful mathematical functions into
a QTL mapping framework. We illustrate the idea through
an inbred line F2 design, although it can be easily
extended to other genetic designs. To distinguish the
genetic differences between the two reciprocal hetero-
zygous forms derived from an F2 population, information
about sex-specific differences in the recombination frac-
tion is used. Monte Carlo simulations are performed to
evaluate the model performance under different scenarios
considering the effect of sample size, heritability and
imprinting mechanism. A real example is illustrated in
which three iQTLs affecting the growth trajectory of body
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weight in an F2 family derived from two different mouse
strains are identified through a genome-wide linkage scan.

Methods
Functional QTL Mapping
Statistical methods for mapping QTL underlying develop-
mental characteristics such as growth or HIV dynamics
have been developed previously [19,20]. The so called
functional mapping approach has been recently applied
to mapping QTL underlying programmed cell death
[21,22]. Functional mapping is derived under the finite
mixture model-based likelihood framework. In the mix-
ture model, each observation y is modelled as a mixture of
J (known and finite) components. The distribution for
each component corresponds to the genotype category
depending on the underlying genetic design. For an F2
design, there are three mixture components (J = 3). The
density function for each genotype component is assumed
to follow a parametric distribution (f) such as Gaussian,
which can be expressed as:

where  = (π1, π2, π3) is a vector of mixture proportions

which are constrained to be non-negative and sum to

unity;  = (ϕ1, ϕ2, ϕ3) is a vector for the component spe-

cific parameters, with ϕj being specific to component j;

and η contains parameters (i.e., residual variance) that are
common to all components.

For an F2 design initiated with two contrasting
homozygous inbred lines, there are three genotypes at
each locus. Suppose there is a putative segregating QTL
with alleles Q and q that affects a developmental trait such
as growth. In a QTL mapping study, the QTL genotype is
generally considered as missing, but can be inferred from
the two flanking markers. The missing QTL genotype
probability πj can be calculated as the conditional proba-
bility of the QTL genotype given the observed flanking
marker genotypes. For a population with structured pedi-
gree like an F2 population, it can be expressed in terms of
the recombination fractions, whereas for a natural popu-
lation, it can be expressed as a function of linkage disequi-
libria. The derivations of the conditional probabilities of
QTL genotypes can be found in the general QTL mapping
literature [23].

In functional mapping, the parameters  = (ϕ1, ϕ2, ϕ3)

specify the underlying developmental mean function (m).
For an F2 design, there are three sets of mean functions

corresponding to three QTL genotypes. To reduce the
number of parameters and enhance the interpretability of

functional mapping, the mean process is modelled by cer-
tain biologically meaningful mathematical functions,
either parametrically or nonparametrically. Suppose that
the phenotypic traits are acquired from n individuals, and
that t measurements are made on each individual i. Let the
response of individual i at time t be denoted by yi(t), i = 1,

�, n; t = 1, �, τ. Then the response can be modelled as

yi(t) = f (t) + ei(t),

where f(t) is a linear or nonlinear function evaluated at
time t, depending on the underlying developmental pat-
tern; ei(t) is the residual error, which is assumed to be nor-

mal with mean zero and variance σ2(t). The intra-

individual correlation is specified as ρ, which leads to the
covariance for individual i at two different time points, t1

and t2, expressed as cov(yi(t1), yi(t2)) = . Assum-

ing multivariate normal distribution, the density function
for each progeny i who carries genotype j can be expressed
as

where mj = [mj(1), �, mj(τ)] is the mean vector common
for all individuals with genotype j, which can be evaluated
through function f in Model (2). The unknown parame-
ters that specify the position of QTL within a marker inter-
val are arrayed in Ωr. The parameters that define the mean
and the covariance functions are arrayed in Ωq.

Since we do not observe the QTL genotype, the distribu-
tion of y is modelled through a finite mixture model given
in Model (1). At a particular time point (say t), the genetic
effect can be obtained by solving the following equations

where a(t) and d(t) are the additive and dominant effects
at time t, respectively.

Functional iQTL Mapping
Modelling the imprinted mean function
In an F2 population, three QTL genotypes are segregated.
The three QTL genotypes may have different expressions
which result in three different mean trajectories. Consid-
ering the imprinting property of an iQTL, we introduce
the notation for the parental origin of alleles inherited
from both parents. Let QM and qM be two alleles inherited
from the maternal parent, and QP and qP be two alleles
derived from the paternal parent. The subscripts M and P
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refer to maternal and paternal origin, respectively. These
four parentally specific alleles form four distinct geno-
types expressed as QMQP, QMqP, qMQP, and qMqP. In con-
trast, in a regular QTL mapping study without
distinguishing the allelic parental origin, the two recipro-
cal heterozygotes, QMqP and qMQP, are collapsed to one
heterozygote. When a QTL is imprinted, the four QTL gen-
otypes show different gene expressions, which result in
different developmental growth trajectories. For a mater-
nally (or paternally) imprinted QTL, the allele inherited
from the maternal (or paternal) parent is not expressed.
Thus, two growth trajectories would be expected. By test-
ing the differences of the four growth trajectories, one can
test whether there is a QTL, and whether the QTL is
imprinted.

For simplicity, we use numerical notation to denote the
four parent-of-origin-specific genotypes, i.e., QMQP = 1,
QMqP = 2, qMQP = 3, and qMqP = 4. The mean functions of
these genotypes are denoted as mj, (j = 1, �, 4). We know
that for an imprinted gene, the expression of an allele
depends on its parental origin. On a developmental scale,
the two reciprocal heterozygotes, QMqP and qMQP, may
present different mean trajectories. The degree of imprint-
ing of an iQTL can thus be assessed by the genotype-spe-
cific parameters. Through testing the difference between
the mean functions of the two reciprocal heterozygotes,
we can assess the imprinting property of a QTL. An over-
lap of the two trajectories for the two reciprocal heterozy-
gotes indicates no sign of imprinting.

For a developmental characteristic such as growth, it is
well known that the underlying trajectory can be
described by a universal growth law, which follows a
logistic growth function [24]. At a developmental stage,
say time t, the mean value of an individual carrying QTL
genotype j can be expressed by

where the growth parameters (αj, βj, γj) describe asymp-
totic growth, initial growth and relative growth rate,
respectively [25]. With estimated growth parameters, we
can easily retrieve the genotypic means at every time point
by simply plugging t into Equation (5). This modelling
approach can significantly reduce the number of
unknown parameters to be estimated, especially when the
number of measurement points is large [19].

At a particular time point (say t), the mean expression of
an individual carrying QTL genotype j can be evaluated
through the three growth parameters (αj, βj, γj). On the
basis of the univariate imprinting model given in [12], we

can partition the genetic effects at time t as the allele-spe-
cific effects, i.e.

where aM and aP refer to the additive effects of alleles
inherited from mother and father, respectively; d refers to
the allele dominant effect.

To illustrate the idea, we use the growth trait to demon-
strate the mapping principle. The idea can be easily
extended to other developmental characteristics. For
developmental characteristics other than growth, different
mathematical functions should be developed. Some flexi-
ble choices include nonparametric regressions based on
smoothing splines or orthogonal polynomials [21].

Modelling the covariance structure
To understand how QTL mediate growth, it is essential to
take correlations among repeated measures into account
[19]. The repeated measures provide correlation informa-
tion on gene expression. Hence, dissection of the intra-
individual correlation will help us to understand better
how genes function over time. One commonly used
model for covariance structure modelling is the first-order
autoregressive (AR(1)) model [26], expressed as

σ2(1) = � = σ2(τ) = σ2

for the variance, and

for the covariance between any two time points tk and tk',
where 0 <ρ < 1 is the proportion parameter with which the
correlation decays with time lag.

For a developmental characteristic such as growth, the
inter-individual variation generally increases as time
increases, which leads to a nonstantionary variance func-
tion. Since the AR(1) covariance model assumes station-
ary variance, it can not be applied directly. To stabilize the
variance at different measurement time points, we apply a
multivariate Box-Cox transformation to stabilize the vari-
ance [27], which has the form
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The Box-Cox transformation ensures the homoscedastic-
ity and normality of the response y. For repeated measures
or longitudinal studies, a reasonable constraint is to set
λ(t) = λ for all t. Then the optimal choice of λ can be esti-
mated from the data. To preserve the interpretability of
the estimated mean parameters, Carroll and Ruppert [28]
proposed a transform-both-sides (TBS) model in which
the same transformation form is applied to both sides of
Model (2). For a log-transformation, this results in logyi(t)
= logf(t) + ei(t). Wu et al. [29] later showed the favorable
property of this approach in functional mapping. For the
modelling purpose of stabilizing variances, we simply
adopt the log-transformation in the current setting.

Alternatively, one can model the covariance structure
nonstationarily without transforming the original data.
Among a pool of choices, the structured antedependence
(SAD) model [30] displays a number of favorable merits.
The SAD model of order p for modelling the error term in
Eq. (2) is given by

ei(t) = φ1ei(t - 1) + � + φpei(t - r) + εi(t)

where εi(t) is the "innovation" term assumed to be inde-

pendent and distributed as . Therefore, the vari-

ance-covariance matrix can be expressed as

Σ = AΣεAT,

where Σε is a diagonal matrix with diagonal elements
being the innovation variance; A is a lower triangular
matrix which contains the antedependence coefficient φr.
The SAD order (p) can be selected through an information
criterion [31]. The SAD(r) model has been previously
applied in functional mapping of programmed cell death
[21].

Parameter Estimation
Assuming inter-individual independence, the joint likeli-
hood function is given by

where zi = [zi(1), �, zi(τ)] is the observed log-transformed

trait vector for individual i (i = 1, �, n) over τ time points;
fj is the multivariate normal density function with log-

transformed mean for QTL genotype j; πj|i (j = 1, �, 4) is

the mixture proportion for individual i with genotype j,
which is derived assuming a sex-specific difference in
recombination rate and can be found in [12]. The

unknown parameters in Ω comprise three sets, one defin-
ing the co-segregation between the QTL and markers and
thereby the location of the QTL relative to the markers,

denoted by Ωr, and the other defining the distribution of

a growth trait for each QTL genotype, denoted by Ωq =

(Ωm, Ωv), where  defines the

mean vector for different genotypes and Ωv defines the

covariance parameters.

We implement the EM algorithm to obtain the maximum
likelihood estimates (MLEs) of the unknown parameters.
The first derivative of the log-likelihood function, with
respect to specific parameter ϕ contained in Ω, is given by

where we define

The MLEs of the parameters contained in (Ωm, Ωv) are
obtained by solving

Direct estimation is unavailable since there is no closed
form for the MLEs of parameters. The EM algorithm is
applied to solve these unknowns iteratively.

E-step: Given initial values for (Ωm, Ωv), calculate the pos-
terior probability matrix Π = {Πj|i} in Eq. (8).

M-step: With the updated posterior probability Π, we can
update the parameters contained in Ωq. The maximization
can be implemented through an iteration procedure or
through the Newton-Raphson or other algorithm such as
simplex algorithm [32].
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The above procedures are iteratively repeated between (8)
and (9), until a certain convergence criterion is met. For
details of the EM algorithm, one can refer to [19]. The con-
verged values are the MLEs of the parameters. The initial
values under the alternative hypothesis are generally set as
the estimated values under the null. Note also that in the
above algorithm, we do not directly estimate the QTL-seg-
regating parameters (Ωr). In general, we use a grid search
approach to estimate the QTL location by searching for a
putative QTL at every 1 or 2 cM on a map interval brack-
eted by two markers throughout the entire linkage map.
The log-likelihood ratio test statistic for a QTL at a testing
position is displayed graphically to generate a log-likeli-
hood ratio plot called LR profile plot. The genomic posi-
tion corresponding to a peak of the profile is the MLE of
the QTL location.

We have found that the algorithm is sensitive to initial val-
ues, particularly the mean values of the two reciprocal het-
erozygotes. To make sure the parameters are converged to
the "correct" ones, we normally give different initial val-
ues for the two reciprocal heterozygotes and check which
one produces the highest likelihood value. The ones
which produce higher likelihood value are considered as
the MLEs.

Hypothesis Testing
Global QTL test
Testing whether there is a QTL affecting the developmen-
tal trajectory is the first step toward understanding of
genetic architecture of an imprinted trait. Once the MLEs
of the parameters are obtained, the existence of a QTL
affecting the growth curve can be tested by formulating
the following hypotheses

where H0 corresponds to the reduced model, in which the
data can be fit by a single curve, and H1 corresponds to the
full model, in which there exist different curves to fit the
data. The above test is equivalent to test

The statistic for testing the hypotheses is calculated as the
log-likelihood (LR) ratio of the reduced to the full model

where  and  denote the MLEs of the unknown
parameters under H0 and H1, respectively. An empirical

approach to determining the critical threshold is based on
permutation tests [33].

Imprinting test
Rejection of the null hypothesis in Test (10) at a particular
genomic position indicates evidence of a QTL at that
locus. Next, we would like to know the imprinting prop-
erty of a detected QTL. To test if a detected QTL is
imprinted or not, we develop the following hypothesis

The null hypothesis states that the two reciprocal QTL
genotypes have the same mean curve and hence have the
same gene expression, i.e., the expressions of genotypes
QMqP and qMQP are independent of allelic origin. Rejec-
tion of the null hypothesis indicates evidence of genomic
imprinting.

Following Test (11), if the null is rejected, further tests can
be done to test whether an iQTL is maternally imprinted
or paternally imprinted. The following hypothesis tests
can be formulated

for testing paternally imprinted QTL and

for testing maternally imprinted QTL.

The null hypothesis in Test (12) states that the two QTL
genotypes QMQP and QMqP have the same mean curves
and hence same expressions (i.e., allele inherited from the
paternal parent does not express).

The iQTL identified can then be claimed as a paternally
imprinted QTL. Similarly, if one fails to reject the null in
Test (13), the conclusion that there is maternal imprinting
can be reached.

Note that the imprinting test (11) is only conducted at the
position where a significant QTL is declared on the basis
of Test (10). So Test (11) is a point test. Tests (12) and
(13) are only conducted when the null in Test (11) is
rejected. We can either use the likelihood ratio test or a
nonparametric test based on the area under the curve
(AUC). The idea of the AUC test is that if two genotypes
have the same expression, the area under the developmen-
tal curve would be the same. The AUC for QTL genotype j
is defined as
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Similarly, Tests (11)–(13) can be defined accordingly
based on the AUC. For example, to test (12), the hypoth-
esis would be simplified to

The significance of Tests (11)–(13) can be evaluated on
the basis of permutations. In our simulation study, we
found that the test based on the AUC is more sensitive and
powerful than the one based on the likelihood ratio test.

Regional test
Even though a mean curve can be modelled throughout a
continuous function, genes may not function across all
the observed stages. For imprinted genes, loss of imprint-
ing (LOI) is reported in the literature [34]. The question of
how a QTL exerts its effects on an interval across a growth
trajectory (say [t1, t2]) can be tested using a regional test
approach based on the AUC. The AUC for genotype j at a
given time interval is calculated as

If the AUCs of the four genotypes for a testing period [t1,
t2] are the same, we claim there is no QTL effect at that
time interval. The hypothesis test for the genetic effect
over a period of growth can be formulated as

This test can detect if a QTL exerts an early gene effect or
triggers a late effect.

Results
Monte Carlo Simulation
Monte Carlo simulations are performed to evaluate the
statistical behavior of the developed approach. Consider
an F2 population initiated with two contrasting inbred
lines, with which a 100 cM long linkage group composed
of 6 equidistant markers is constructed. A putative QTL
that affects the imprinted growth process is located at 46
cM from the first marker on the linkage group. The marker
genotypes in the F2 family are simulated by mimicking
sex-specific recombination fractions in mice, i.e., rM =
1.25rP . The Haldane map function is used to convert the

map distance into the recombination fraction. Data are
simulated with different specifications, namely different
heritability levels (H2 = 0.1 vs 0.4) and different sample
sizes (n = 200 vs 500). For each F2 progeny, its phenotype
is simulated with 10 equally spaced time points. The cov-
ariance structure is simulated assuming the first-order
AR(1) model. Note that the variance parameter (σ2) is cal-
culated on the basis of the log-transformed data.

Several data sets are simulated assuming no imprinting,
partial imprinting, complete maternal and paternal
imprinting. The simulation results are summarized in
Tables 1, 2, 3, 4. As we expected, the precision of parame-
ter estimates is increasing with the increase of the sample
size and heritability under different imprinting scenarios.
For example, when a QTL is not imprinted (Table 4), the
RMSE of the parameter a for genotype QMQP decreases
from 0.397 to 0.327, an 18% increase in precision when
the sample size increases from 200 to 500 with fixed her-
itability level (0.1). For the same parameter, when a QTL
is completely maternally imprinted, a reduction in RMSE
from 0.478 to 0.305 is observed (Table 1). When we fix
the sample size and increase the heritability level, the
reduction in RMSE is even more noteworthy. For example,
under fixed sample size (n = 200), the RMSE of the param-
eter a for QTL genotype QMQP is reduced from 0.397 to
0.137, a 65% increase in precision compared to an 18%
increase when sample size increases from 200 to 500 with
fixed heritability (Table 4). Large heritability infers high
genetic variability and low environmental variation [35].
Therefore, to increase the precision of parameter estima-
tion, well managed experiments in which environmental
variation is reduced is more important than just simply
increasing sample sizes.

Under different simulation scenarios, another general
trend is that the estimation for the genetic parameters of
the two homozygotes performs better than that for the
two reciprocal heterozygotes. For example, the RMSE of
the growth parameter a for QMqP is 0.765, while it
decreases to 0.397 for genotype QMQP with fixed sample
size 200 and heritability level 0.1 (Table 4). This is what
we expected since partitioning the heterozygote into two
parts may cause information loss. As the sample size or
the heritability level increases, the RMSEs are greatly
reduced for the two reciprocal heterozygous genotypes.
For example, the RMSE (for parameter a) is reduced from
0.765 to 0.304 when the heritability level increases from
0.1 to 0.4 under fixed sample size 200 (Table 4). Overall,
the QTL position estimation is reasonably good under dif-
ferent simulation scenarios, even though the precision is
reduced a little with completely imprinted models (Tables
1 and 2), compared with the non-imprinting and partial
imprinting models (Tables 3 and 4).
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Table 1: The MLEs of the model parameters and the QTL position derived from 200 simulation replicates assuming complete maternal imprinting. The square root of the mean square errors 
(RMSEs) of the MLEs are given in parentheses.

QMQP QMqP qMQP qMqP Residual

H2 n Position (cM) α1
36.5

β1
6.5

γ1
0.75

α2
33.5

β2
5.5

γ2
0.75

α3
36.5

β3
6.5

γ3
0.75

α4
33.5

β4
5.5

γ4
0.75

σ2 ρ
0.8

0.1 200 45.31 (7.506) 36.52 (0.478) 6.50 (0.135) 0.75 (0.010) 33.74 (0.992) 5.60 (0.333) 0.75 (0.014) 36.22 (0.998) 6.38 (0.341) 0.75 (0.015) 33.47 (0.438) 5.50 (0.117) 0.75 (0.011) 0.0086 (0.001) 0.79 (0.014)

NI 45.54 (8.267) 36.5685 (0.515) 6.53 (0.147) 0.75 (0.010) 35.03 (1.579) 5.99 (0.504) 0.75 (0.007) 35.03 (1.554) 5.99 (0.523) 0.75 (0.007) 33.42 (0.464) 5.48 (0.115) 0.75 (0.011) 0.009 (0.001) 0.81 (0.013)

0.1 500 45.88 (3.615) 36.54 (0.305) 6.51 (0.087) 0.75 (0.006) 33.72 (0.866) 5.57 (0.285) 0.75 (0.009) 36.32 (0.832) 6.42 (0.272) 0.75 (0.009) 33.49 (0.289) 5.50 (0.071) 0.75 (0.006) 0.0089 (0.0005) 0.80 (0.008)

NI 46.12 (4.483) 36.59 (0.323) 6.53 (0.089) 0.75 (0.006) 34.97 (1.486) 5.97 (0.477) 0.75 (0.005) 34.97 (1.541) 5.97 (0.501) 0.75 (0.005) 33.41 (0.304) 5.48 (0.079) 0.75 (0.006) 0.009 (0.0006) 0.81 (0.01)

0.4 200 46.33 (2.671) 36.51 (0.206) 6.50 (0.057) 0.75 (0.004) 33.54 (0.352) 5.51 (0.111) 0.75 (0.004) 36.46 (0.361) 6.49 (0.112) 0.75 (0.004) 33.49 (0.186) 5.50 (0.045) 0.75 (0.004) 0.0015 (0.0003) 0.80 (0.014)

NI 47.63 (4.625) 36.67 (0.251) 6.56 (0.080) 0.75 (0.004) 34.96 (1.502) 5.98 (0.495) 0.75 (0.005) 34.96 (1.582) 5.98 (0.532) 0.75 (0.004) 33.38 (0.212) 5.45 (0.065) 0.75 (0.004) 0.0018 (0.0003) 0.82 (0.027)

0.4 500 46.07 (1.684) 36.48 (0.119) 6.50 (0.031) 0.75 (0.002) 33.50 (0.127) 5.50 (0.034) 0.75 (0.003) 36.49 (0.145) 6.50 (0.037) 0.75 (0.003) 33.49 (0.123) 5.50 (0.030) 0.75 (0.002) 0.0015 (0.0001) 0.80 (0.007)

NI 48.21 (2.644) 36.67 (0.215) 6.56 (0.072) 0.75 (0.002) 34.97 (1.487) 5.98 (0.486) 0.75 (0.002) 34.97 (1.551) 5.98 (0.526) 0.75 (0.002) 33.36 (0.182) 5.45 (0.057) 0.75 (0.003) 0.0018 (0.0003) 0.83 (0.029)

The location of the simulated QTL is described by the map distances (in cM) from the first marker of the linkage group (100 cM long). The hypothesized σ2 value is 0.009 for H2 = 0.10 and 0.0015 for H2 = 0.4. 
The analysis results by non-imprinting model are indicated by "NI".

Table 2: The MLEs of the model parameters and the QTL position derived from 200 simulation replicates assuming complete paternal imprinting. The square root of the mean square 
errors (RMSEs) of the MLEs are given in parentheses.

QMQP QMqP qMQP qMqP Residual

H2 n Position (cM) α1
36.5

β1
6.5

γ1
0.75

α2
36.5

β2
6.5

γ2
0.75

α3
33.5

β3
5.5

γ3
0.75

α4
33.5

β4
5.5

γ4
0.75

σ2 ρ 
0.8

0.1 200 43.56 (8.519) 36.84 (0.567) 6.54 (0.141) 0.75 (0.010) 36.84 (0.974) 6.51 (0.297) 0.75 (0.016) 33.89 (0.904) 5.61 (0.293) 0.75 (0.017) 33.87 (0.585) 5.57 (0.140) 0.75 (0.012) 0.01 (0.0012) 0.81 (0.019)

0.1 500 45.27 (4.683) 36.90 (0.508) 6.56 (0.107) 0.75 (0.006) 36.88 (0.731) 6.55 (0.204) 0.75 (0.010) 33.87 (0.732) 5.56 (0.210) 0.75 (0.011) 33.82 (0.437) 5.55 (0.090) 0.75 (0.007) 0.009 (0.0005) 0.81 (0.011)

0.4 200 45.67 (3.217) 36.51 (0.193) 6.50 (0.050) 0.75 (0.003) 36.47 (0.374) 6.49 (0.114) 0.75 (0.004) 33.52 (0.348) 5.51 (0.108) 0.75 (0.004) 33.52 (0.168) 5.51 (0.046) 0.75 (0.004) 0.0015 (0.0004) 0.80 (0.012)

0.4 500 46.04 (1.579) 36.48 (0.118) 6.50 (0.035) 0.75 (0.002) 36.49 (0.129) 6.50 (0.039) 0.75 (0.002) 33.50 (0.121) 5.50 (0.033) 0.75 (0.003) 33.50 (0.111) 5.50 (0.028) 0.75 (0.003) 0.0015 (0.0001) 0.80 (0.008)

The location of the simulated QTL is described by the map distances (in cM) from the first marker of the linkage group (100 cM long). The hypothesized σ2 value is 0.009 for H2 = 0.10 and 0.0015 for H2 = 0.4.
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Table 3: The MLEs of the model parameters and the QTL position derived from 200 simulation replicates assuming partial imprinting. The square root of the mean square errors (RMSEs) 
of the MLEs are given in parentheses.

QMQP QMqP qMQP qMqP Residual

H2 n Position (cM) α1
36.5

β1
6.5

γ1
0.7

α2
35.5

β2
6.5

γ2
0.7

α3
34.5

β3
6

γ3
0.7

α4
33.5

β4
5.5

γ4
0.7

σ2 ρ
0.8

0.1 200 45.37 (3.932) 36.51 (0.324) 6.49 (0.096) 0.70 (0.006) 35.18 (0.891) 6.27 (0.363) 0.70 (0.011) 34.85 (0.863) 6.23 (0.356) 0.70 (0.012) 33.51 (0.316) 5.51 (0.084) 0.70 (0.007) 0.0043 (0.001) 0.79 (0.014)

0.1 500 45.96 (2.206) 36.52 (0.225) 6.50 (0.060) 0.70 (0.004) 35.15 (0.686) 6.30 (0.321) 0.70 (0.008) 34.88 (0.716) 6.20 (0.323) 0.70 (0.008) 33.49 (0.201) 5.50 (0.052) 0.70 (0.004) 0.0044 (0.0008) 0.80 (0.011)

0.4 200 46.21 (1.787) 36.51 (0.134) 6.50 (0.038) 0.70 (0.002) 35.21 (0.566) 6.36 (0.268) 0.70 (0.003) 34.78 (0.572) 6.14 (0.271) 0.70 (0.003) 33.50 (0.123) 5.50 (0.032) 0.70 (0.0003) 0.0008 (0.0005) 0.79 (0.013)

0.4 500 46.17 (1.09) 36.51 (0.093) 6.50 (0.024) 0.70 (0.002) 35.29 (0.461) 6.40 (0.229) 0.70 (0.002) 34.72 (0.476) 6.11 (0.234) 0.70 (0.002) 33.50 (0.076) 5.50 (0.021) 0.70 (0.002) 0.0007 (0.0002) 0.80 (0.005)

The location of the simulated QTL is described by the map distances (in cM) from the first marker of the linkage group (100 cM long). The hypothesized σ2 value is 0.0045 for H2 = 0.10 and 0.00075 for H2 = 
0.4.

Table 4: The MLEs of the model parameters and the QTL position derived from 200 simulation replicates assuming no imprinting. The square root of the mean square errors (RMSEs) of the 
MLEs are given in parentheses.

QMQP QMqP qMQP qMqP Residual

H2 n Position (cM) α1
36.5

β1
6.5

γ1
0.7

α2
35

β2
6

γ2
0.7

α3
35

β3
6

γ3
0.7

α4
33.5

β4
5.5

γ4
0.7

σ2 ρ
0.8

0.1 200 45.24 (4.351) 36.74 (0.397) 6.53 (0.096) 0.698 (0.006) 35.09 (0.765) 5.99 (0.188) 0.70 (0.013) 35.35 (0.855) 6.09 (0.204) 0.70 (0.014) 33.71 (0.379) 5.54 (0.090) 0.70 (0.007) 0.004 (0.0009) 0.80 (0.02)

0.1 500 46.01 (2.196) 36.74 (0.327) 6.54 (0.070) 0.70 (0.004) 35.17 (0.567) 6.00 (0.138) 0.70 (0.012) 35.28 (0.640) 6.07 (0.160) 0.70 (0.012) 33.69 (0.273) 5.53 (0.058) 0.70 (0.004) 0.004 (0.0004) 0.80 (0.01)

0.4 200 46.07 (1.731) 36.56 (0.137) 6.51 (0.037) 0.70 (0.002) 34.99 (0.304) 6.00 (0.076) 0.70 (0.005) 35.11 (0318) 6.02 (0.076) 0.70 (0.005) 33.55 (0.127) 5.51 (0.033) 0.70 (0.003) 0.001 (0.0005) 0.80 (0.011)

0.4 500 46.17 (1.07) 36.56 (0.106) 6.51 (0.026) 0.70 (0.002) 35.03 (0.208) 6.00 (0.053) 0.70 (0.004) 35.07 (0.222) 6.01 (0.056) 0.70 (0.004) 33.54 (0.088) 5.51 (0.021) 0.70 (0.002) 0.0007 (0.0001) 0.80 (0.005)

The location of the simulated QTL is described by the map distances (in cM) from the first marker of the linkage group (100 cM long). The hypothesized σ2 value is 0.0041 for H2 = 0.10 and 0.0007 for H2 = 0.4.
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Table 1 also summarizes the results of comparison
between the imprinting and non-imprinting models, in
which the regular non-imprinting functional mapping
model is indicated by "NI". Data are simulated assuming
complete maternal imprinting, and are then subject to
analysis using the imprinting (four QTL genotypes) and
non-imprinting (three QTL genotypes) models. It can be
seen that the non-imprinting model produces poorer esti-
mation than the imprinting model. The RMSE is generally
large when data are analyzed with the non-imprinting
model, especially the mean parameters for the two recip-
rocal heterozygotes. We observed similar results under
other imprinting mechanisms (e.g., partial or complete

paternal imprinting) and the results are omitted. When
data are simulated assuming no imprinting, the non-
imprinting model, however, outperforms the imprinting
model, in which the standard errors of the mean parame-
ters fitted with the imprinting model are slightly higher
than those fitted with the non-imprinting model (data
not shown). Similar results were also obtained in our pre-
vious univariate imprinting analysis [22]. Therefore, cau-
tion is needed about the interpretation of the results. One
should try both imprinting and non-imprinting models
and report the union of QTLs that are shown in both anal-
yses.

Genomewide likelihood ratio profile plotFigure 1
Genomewide likelihood ratio profile plot. The profiles of the log-likelihood ratios (LR) between the full and reduced (no 
QTL) model estimated from the functional imprinting model for body mass growth trajectories across chromosome 1 to 19 
using the linkage map constructed from microsatellite markers [36]. The threshold value for claiming the existence of QTLs is 
given as the horizonal dotted line for the genome-wide level and dashed line for the chromosome-wide level. The genomic 
positions above the threshold line and corresponding to the peaks of the curves are the MLEs of the QTL positions. The posi-
tions of markers on the linkage groups [36] are indicated at ticks.
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A Case Study
We apply the developed model to a published data set
[36] to show the utility of the approach. The data contain
502 F2 mice derived from two inbred strains differing
greatly in body weight, the Large (LG/J) and Small (SM/J).
Each F2 progeny was measured for its body mass at 10
equally spaced weeks starting at day 7 after birth. Ninety-
six codominant markers were obtained with an average
length of ~23 cM spanning the 19 autosomes. For more
information about the data, readers are referred to the
original paper [36].

The sex-specific recombination rate is reconstructed on
the basis of the marker data according to the average
1.25:1 recombination rate between female and male chro-
mosomes [37]. The data were analyzed previously with a
univariate imprinting model [12], in which three iQTL
and one Mendelian QTL were detected. Considering the
limitation of the univariate analysis as introduced in the
background section, we apply the data to the newly devel-
oped functional mapping model. As clearly shown by the
genomewide LR profile plot in Fig 1, the model detects
four major QTLs. One QTL passes the genomewide
threshold and is located on chromosome 6. The other
three QTLs, located on chromosomes 7, 10 and 16,
respectively, are only significant at the chromosome-wide
level. In the plot, the solid curve corresponds to the likeli-
hood ratio statistics at every testing position. The 5% sig-
nificance threshold value for claiming the existence of
QTLs at the genome-wide level is marked with the hori-
zonal solid line based on permutation tests. The dashed
line represents the 5% chromosome-wide threshold,
which is obtained by only scanning the targeted chromo-
some.

Table 5 tabulates the estimated QTL positions, the marker
intervals of the QTL belonging to each, the MLEs of curve
parameters that specify the developmental pattern, and
the asymptotic standard errors of the estimators (in paren-
theses). It can be seen that all parameters can be reasona-
bly estimated with small sampling errors. The four QTLs
detected are located between markers Nds5 and Mit15 on
chromosome 6, between markers Nds1 and Mit148 on
chromosome 7, between markers Mit133 and Mit14 on
chromosome 10, and between markers Mit2 and Mit5 on
chromosome 16. The data are also analyzed with the reg-
ular functional mapping approach and four QTLs are
detected, among which only two QTLs, located on chro-
mosomes 6 and 7, agree in both models. The other two,
located on chromosomes 11 and 15, do not show signifi-
cance with the imprinting analysis. The miss-detection of
these two QTLs by the imprinting model may partially be
due to the limitation of the imprinting approach as
revealed by the simulation study.

To dissect the imprinting property of the detected QTLs,
we further conduct hypothesis tests based on Tests (11)–
(13). Among the four QTLs detected, three show signs of
imprinting, i.e., the ones located on chromosomes 6, 10
and 16. The one located on chromosome 7 shows no sign
of imprinting. The developmental trajectories of the iden-
tified QTLs are plotted and are shown in Fig. 2 with the
growth trajectories for all individuals indicated as gray in
the background. The imprinting property of the four QTLs
can also be inferred from the plot. For example, for the
iQTL detected on chromosome 6, the solid and the
dashed blue curves for QTL genotypes QMQP and qMQP are
almost merged together and the solid and dashed red
curves for QTL genotypes QMqP and qMqP are almost
merged together. This implies that only the allele inher-
ited from the paternal parent is expressed and the QTL is
maternally imprinted. A similar result is obtained for this
QTL with our previous univariate imprinting model [12].
A similar pattern can be seen for other two imprinted
QTLs, while for the QTL detected on chromosome 7, four
separate developmental curves can be clearly seen, which
indicates that the QTL is not imprinted. The trajectory
plots confirm the testing results based on Tests (12) and
(13).

Discussion
We all know that the diversity of offspring genes inherited
from parents is due to the perturbation and reshuffling of
parental genetic information during meiosis. Maintaining
a functional expression balance between the paternal and
maternal alleles is crucial for an organism's normal devel-
opment. Breakage of the balance (e.g., the same allele
expresses differently depending on its parental origin)
often results in a phenomenon called genomic imprint-
ing. In extreme cases, when one allele is completely silent,
deletion of the functional allele may have serious conse-
quences. For example, a deletion of the paternal copies of
the imprinted SNRPN gene and necdin gene on chromo-
some 15 located in the region 15q11–13 may result in a
genetic disorder called Prader-Willis syndrome [38].

Genomic imprinting has been ubiquitously observed in
nature. The cause of imprinting has been thought to be
related to DNA methylation in which certain parts of the
DNA sequence are methylated and hence are silent in
expression [39]. Although the functional mechanism of
genomic imprinting is not totally clear, scientists thought
that genomic imprinting has the one-generation depend-
ence property. At the early stage of meiosis, the imprinting
mark is erased and is subsequently reset at the end of mei-
osis, and imprinting is passed from one generation to
another [40]. Offspring expression of an imprinted gene
only depends on the allelic origin and is independent of
the offspring sex. Therefore, any population in which the
Page 11 of 15
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Table 5: The QTL location, MLEs of the estimated parameters and their asymptotic standard errors in the parentheses with the AR(1) covariance structure.

QMQP QMqP qMQP qMqP Residual

CH* QTL position α1 β1 γ1 α2 β2 γ2 α3 β3 γ3 α4 β4 γ4 ρ σ2

6(M) Nds5-Mit15 (Nds5+12 cM) 36.53 (0.362) 6.47 (0.104) 0.67 (0.007) 33.09 (0.408) 7.01 (0.136) 0.67 (0.008) 36.11 (0.392) 5.87 (0.097) 0.66 (0.007) 33.36 (0.352) 5.90 (0.106) 0.66 (0.008) 0.77 (0.011) 0.012 (0.0005)

7(NI) Nds1-Mit148 (Nds1+7.5 cM) 36.28 (0.651) 6.53 (0.098) 0.65 (0.006) 35.88 (0.434) 5.79 (0.153) 0.63 (0.009) 34.44 (0.357) 6.72 (0.091) 0.68 (0.007) 32.86 (0.317) 6.13 (0.086) 0.67 (0.006) 0.81 (0.009) 0.013 (0.0004)

10(M) Mit133-Mit14 (Mit133+6.7 cM) 35.93 (0.335) 6.49 (0.094) 0.66 (0.006) 33.24 (0.436) 6.90 (0.139) 0.69 (0.009) 36.32 (0.398) 5.87 (0.097) 0.63 (0.007) 33.87 (0.329) 6.08 (0.090) 0.65 (0.006) 0.79 (0.008) 0.012 (0.0005)

16(M) Mit2-Mit5 (Mit2+20 cM) 35.58 (0.369) 6.28 (0.103) 0.67 (0.007) 33.27 (0.439) 7.18 (0.145) 0.68 (0.009) 35.97 (0.441) 5.90 (0.106) 0.64 (0.008) 34.52 (0.367) 5.98 (0.099) 0.65 (0.007) 0.78 (0.013) 0.011 (0.0007)

*CH refers to chromosome, M refers to maternal imprinting, and NI refers to no imprinting.
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allelic parental origin can be traced can be used for map-
ping purposes theoretically.

Experimental line crossing has been widely used in QTL
mapping studies. Several studies have been reported
based on inbred line crosses for iQTL mapping [11-13].
These approaches are developed for univariate QTL anal-
ysis. Considering the functional dynamics of a gene, a
powerful approach for understanding the genetic architec-
ture of a dynamic trait would be to incorporate the
dynamic feature of gene function into a mapping model.
Statistical functional mapping, as revealed by empirical
studies [20,22], shows its unique merits in mapping QTL
underlying developmental character or reaction norm. To
understand the genetic architecture of a dynamic
imprinted trait, we have extended the functional mapping
approach to map iQTL responsible for a dynamic

imprinted trait. The model is a natural extension of our
previous single trait imprinting model [12]. Simulation
studies have shown the small sample properties of the
approach under different simulation scenarios, consider-
ing the effect of sample size, heritability levels and differ-
ent imprinting mechanisms.

As revealed by the real data analysis, the current func-
tional iQTL mapping approach and our previous single
trait iQTL mapping approach [12] agree on most signifi-
cant QTLs, i.e., the ones from chromosomes 6,7 and 10.
The imprinting property of these QTLs also agrees with
the previous results, i.e., the QTLs on chromosome 6 and
10 are maternally imprinted and the QTL on chromosome
7 is not imprinted. However, the new model identifies
one new iQTL located on chromosome 16. This iQTL is
maternally imprinted. The one located on chromosome

Growth trajectory plotFigure 2
Growth trajectory plot. Four curves for the dynamic changes of mouse growth trajectory, each representing one of the 
four groups of genotypes, QMQP, QMqP, qMQP, and qMqP, at each of the four significant QTLs. Mouse growth trajectories for all 
observed individuals are indicated in gray background.
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15 detected by our previous single trait iQTL model does
not show significance in the current analysis. Since the
single trait analysis is based on the marginal distribution
of the data at certain developmental stage, it may amplify
the QTL effect by not adjusting the cumulative genetic
effects up to time t [18]. Further experimental evidence is
needed to confirm the results.

It is interesting to note that the detected iQTL for this data
set are all maternally imprinted. The results, however, are
not unusual, as explained by the parental genetic conflict
theory [41]. Based on the theory, paternally derived alleles
always trigger a favorable effect on the offspring's growth,
whereas maternally derived alleles tend to trigger the
opposite effect. As a result, imprinted genes that are pref-
erentially expressed from the paternal alleles are enriched
in genes that promote offspring growth. Therefore, for the
growth trait in the current study, it is not surprising to see
many maternally imprinted QTLs.

As a first attempt of its kind, we construct our functional
iQTL mapping idea on a tractable one-QTL interval map-
ping framework. A one-QTL model does not consider the
effects of background markers and is very limited to pre-
cisely elucidate the complex genetic architecture of a
dynamic imprinted trait. The incorporation of ideas from
more advanced mapping approaches such as composite
interval mapping [42] and multiple interval mapping [43]
can greatly enhance the utility of the developed method.
More recently, Yang et al. [44] developed a composite
functional mapping approach, which adopted a similar
idea as the composite interval mapping [42] and shows
improved features against the one-QTL functional map-
ping model. To make our work more useful in practice,
modelling of multiple QTLs by composite or multiple
interval mapping will be considered in future work.

The developed functional iQTL mapping is illustrated
using an inbred F2 design. Since the allele parental origin
for the two reciprocal heterozygotes is not distinguisha-
ble, we incorporate the sex specific recombination rate
information to discern the difference in distribution of the
two reciprocal heterozygotes. We assume an average
1.25:1 female-to-male recombination rate in mouse to
illustrate our method. Additional simulations are con-
ducted by varying the recombination ratio and similar
results are obtained (data not shown). The sex specific
recombination rates are commonly observed in nature.
For example, averaged over the entire genome, the female-
to-male recombination rate is 1.6:1 in human [45], 1.4:1
in dog [46], 1.4:1 in pig [47]. However, we also expect
local variation in sex specific recombination rate. For
example, Marklund et al. [47] reported that the chromo-
some specific female-to-male recombination rate varies
from 2.2:1 (Pig chromosome 5) to 1:1 (Pig chromosome

1), an approximately two-fold difference in female-to-
male recombination rates. This kind of local variation in
sex specific recombination rate may affect the analysis
results, and concomitantly the inference of genomic
imprinting. The use of a sex-specific linkage map would
greatly improve the inference of a local imprinting prop-
erty of a QTL. With the availability of sex specific linkage
information in experimental species, we expect the
method be more robust and to provide more informative
results. Meanwhile, owning to the limited information
about the sex specific recombination rate in other species,
this may limit the application of the developed approach
to other populations. An alternative genetic design that
can trace the allelic parental origin using experimental
line crosses is the backcross design. Statistical approaches
focusing on the backcross design have been developed for
iQTL mapping in univariate trait analysis [11,13]. The
idea can be extended to functional iQTL mapping with lit-
tle modification.

Functional mapping and its extension like the one pre-
sented in this article provide a stimulating way to map
complex biological processes by incorporating curve fit-
ting into a mapping framework. Regardless of the limita-
tions mentioned above, the integration of imprinting
information into the functional mapping framework pro-
vides a testable quantitative platform for understanding
the genetic basis of imprinted genes accounting for quan-
titative variation of a dynamic trait. The incorporation of
more flexible mean function modelling approaches, such
as non-parametric regression [48], would greatly enhance
the flexibility of the current approach.
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