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Background: Variability in cognitive functions in healthy and pathological aging is
often explained by educational attainment. However, it remains unclear to which extent
different disease states alter protective effects of education. We aimed to investigate
whether protective effects of education on cognition depend on (1) clinical diagnosis
severity, and (2) the neuropathological burden within a diagnosis in a memory clinic
setting.

Methods: In this cross-sectional study, we included 108 patients with subjective
cognitive decline [SCD, median age 71, IQR (66–78), 43% men], 190 with mild cognitive
impairment [MCI, median age 78, IQR (73–82), 44% men], and 245 with Alzheimer’s
disease dementia (AD) [median age 80, IQR (76–84), 35% men]. We combined visual
ratings of hippocampal atrophy, global atrophy, and white matter hyperintensities on
MRI into a single neuropathology score. To investigate whether the contribution of
education to cognitive performance differed across SCD, MCI, and AD, we employed
several multiple linear regression models, stratified by diagnosis and adjusted for age,
sex, and neurodegeneration. We re-ran each model with an additional interaction term
to investigate whether these effects were influenced by neuropathological burden for
each diagnostic group separately. False discovery rate (FDR) corrections for multiple
comparisons were applied.

Results: We observed significant positive associations between education and
performance for global cognition and executive functions (all adjusted p-values < 0.05).
As diagnosis became more severe, however, the strength of these associations
decreased (all adjusted p-values < 0.05). Education related to episodic memory
only at relatively lower levels of neuropathology in SCD (β = −0.23, uncorrected
p = 0.02), whereas education related to episodic memory in those with higher levels
of neuropathology in MCI (β = 0.15, uncorrected p = 0.04). However, these interaction
effects did not survive FDR-corrections.
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Conclusions: Altogether, our results demonstrated that positive effects of education on
cognitive functioning reduce with diagnosis severity, but the role of neuropathological
burden within a particular diagnosis was small and warrants further investigation.
Future studies may further unravel the extent to which different dimensions of an
individual’s disease severity contribute to the waxing and waning of protective effects
in cognitive aging.

Keywords: education, Alzheimer’s dementia, mild cognitive impairment, subjective cognitive decline, cognitive
functioning

INTRODUCTION

The process of aging is accompanied by alterations in cognitive
functions, ranging in severity from normal aging-related
changes, to subjective cognitive decline (SCD), mild cognitive
impairment (MCI) and, ultimately, dementia (Jack et al., 2018;
Salthouse, 2019). Within each diagnostic group, however, there
is considerable inter-individual variability in the extent to which
cognitive decline manifests itself (Cabeza et al., 2018; Soldan
et al., 2020). Educational attainment is a major contributor
to this heterogeneity, where individuals with higher levels of
education are not only at a lower risk of developing cognitive
impairments (Livingston et al., 2020), but also demonstrate
better cognitive performance than those with lower educational
attainment, sometimes even in advanced stages of pathological
aging (Lövdén et al., 2020; Seblova et al., 2020; Stern et al.,
2020). The extent to which the positive effects of education are
sustained across SCD, MCI, and Alzheimer’s disease dementia
(AD) remains poorly understood. It has been suggested that
disease state may attenuate such effects (Stern, 2012; Gregory
et al., 2017; Mungas et al., 2021), and previous studies have
demonstrated that the benefits of higher education become less
pronounced or disappear entirely as disease severity increases
(Ye et al., 2013; Soldan et al., 2015; Groot et al., 2018). In
contrast, recent findings revealed stronger education-cognition
associations in AD relatively to SCD and MCI (Staekenborg et al.,
2020). Furthermore, neuropathological burden varies greatly
within each diagnostic group (Mehta and Schneider, 2021), and
the protective effects of education may consequently vary as a
function of neuropathological severity (Perneczky et al., 2009;
Mungas et al., 2018, 2021).

In this cross-sectional study, we therefore investigated how
different syndromal states that vary in neuropathological severity
may alter the positive effects of education on cognitive functions
in a memory clinic population. More specifically, we investigated
whether this relationship differed (1) across diagnostic categories
with varying levels of clinical severity (SCD, MCI, and AD),
and (2) within each diagnostic category based on the severity of
neuropathological features.

MATERIALS AND METHODS

Study Population
For this retrospective study, we included a total of 543
participants; 108 with SCD, 190 with MCI, and 245 with dementia
due to AD. Data from this study sample were extracted from

a database containing data of patients who were referred for
memory complaints to the memory clinic at Gelre Hospital in
Zutphen, Netherlands, between November 2004 and February
2015. All participants underwent a comprehensive clinical
and neurological evaluation, neuropsychological assessment,
blood screening, electroencephalogram, and magnetic resonance
imaging (MRI; Overdorp et al., 2014). Patients were excluded
from the present study if MRI data were missing and/or of too
poor quality for assessment.

Each clinical diagnosis was established within
multidisciplinary consensus meetings and in accordance
with the established criteria. Diagnosis of MCI was based
on the Petersen et al. (2001) criteria. Diagnosis of probable
AD was based on the DSM-IV-TR criteria for dementia
of the Alzheimer’s type (APA, 2000). Although assessment
of cerebrospinal fluid (CSF) biomarkers is not part of
the standard diagnostic work-up in the Netherlands
for diagnosing AD, CSF biomarkers were additionally
obtained as supportive evidence in case no consensus was
reached. Those patients who neither demonstrated any
cognitive impairments after neuropsychological assessment
using age- and education adjusted normative data, nor
suffered from a psychiatric or neurological disorder, were
classified as having SCD.

Education
Educational attainment was measured using the Dutch education
classification system, which distinguishes different educational
levels, rather than using the years of education that are typically
used in the Anglo-Saxon world. This educational classification
is comparable with the International Standard Classification of
Education (UNESCO, 2011), and results in a score between 1 and
7: (1) unfinished primary school, (2) finished primary school, (3)
unfinished low-level secondary education, (4) lower vocational
training, (5) advanced vocational training or lower professional
education, (6) finished higher professional education or senior
general secondary education, and (7) obtained a university degree
(Verhage, 1964). Considering the low prevalence of individuals
with unfinished primary school (n = 7) and a university degree
(n = 31), we made the categorical distinction between low
(Verhage scores 1–3), average (4–5), and high education level
(6–7; Zhou et al., 2019).

Cognitive Functioning
All neuropsychological tests were administered and subsequently
analyzed by two experienced neuropsychologists, that were
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blinded to all medical records at the time. A detailed overview of
the assessment protocol and tests has been described previously
(Overdorp et al., 2014). For the present study, we only included
tests with available normative data. Briefly, we incorporated
the total score of the Mini-Mental State Examination (MMSE;
Folstein et al., 1975), the total score of the Visual Association
Test (VAT; Lindeboom et al., 2002), the immediate and
delayed recall of the 8-Word Test of the Amsterdam Dementia
Screening (de Jonghe et al., 1994), the total number correct
of the Semantic/Verbal Fluency Test (1-min animal/profession
naming), the total score of the Frontal Assessment Battery (FAB;
Dubois et al., 2000), the time to complete part A of the Trail
Making Test (TMT; Reitan, 1958), and the TMT ratio score (time
to complete B/A).

We generated compound scores for three cognitive domains:
global cognition, episodic memory, and executive functioning.
First, raw test scores were z-standardized using the mean and
standard deviation of the whole study sample. We inverted the
z-scores of the TMT, so that higher z-scores are always indicative
of better cognitive performance. Compound scores were then
calculated for each cognitive domain by taking the average
of the z-scores from the available (sub-)tasks of an individual
corresponding to that domain. Global cognition was based on
scores of the MMSE, VAT, 8-Word Test, Verbal Fluency, FAB,
TMT A, and TMT ratio; episodic memory on the VAT and 8-
Word test; executive functioning on Verbal Fluency, FAB, and
TMT ratio. If participants were unable to complete part B of
the TMT (N = 112), which primarily occurred in patients with
MCI (N = 40) and AD (N = 65), the lowest possible z-score
of the sample was assigned. Participant characteristics for the
individual (sub-)test scores, including an overview of missing
data, are displayed in Supplementary Table A.

MRI
All MRI scans were obtained using a 1.5 Tesla GE-Signa Horizon
LX scanner. Briefly, the MRI protocol included the following
sequences: whole brain axial and coronal fluid-attenuated
inversion recovery (FLAIR) sequences (TR/TE 10.000/160 ms);
a sagittal T1-weighted sequence (TR/TE 300/4 ms); and an axial
T2-weighted sequence (TR/TE 6,500/105 ms).

Measures of Neuropathology
Three experienced independent observers (EO, JC, and JO),
blinded to the clinical diagnoses and neuropsychological test
scores, visually rated white matter hyperintensities (WMH),
medial temporal lobe atrophy (MTA), and global atrophy (GA).
In this study, we employed qualitative visual rating scales as
these are easily applicable in clinical practice and, relatively to
volumetric measures, provide comparable or even more reliable
assessments of neuropathology (Gouw et al., 2006; Persson et al.,
2018; Topiwala et al., 2019). WMH were rated on axial FLAIR
and T2-weighted images using the Fazekas scale, providing a
score between 0–3 based on the deep and periventricular areas
of the brain (Fazekas et al., 1987). MTA was rated on coronal
T1-weighted images with a 5-point (0–4) scale, considering the
height of the hippocampus as well as the width of the choroid
fissure and temporal horn of the left and right MTA (Scheltens

et al., 1992). GA was rated on a 4-point (0–3) rating scale using
all available MRI sequences, and represented the mean score for
cortical atrophy based on the width of gyri and sulci across the
whole cerebrum (Scheltens et al., 1997).

As we were interested in capturing the accumulation
of neuropathological damage rather than the effects of a
particular type of neuropathology, we combined the effects of
MTA, GA, and WMH to obtain a single measure indicative
of neuropathology per patient in relation to each separate
cognitive domain. To accomplish this, first, separate multiple
linear regression models were performed using the cognitive
domain scores as dependent variables and the measures of
neuropathology as predictors. As sample sizes differed across
the diagnostic groups, with substantially less cases of SCD,
we wanted to make sure that our neuropathology metric was
not biased by the number of patients per group. To this end,
a bootstrap scheme was adopted. Across 100 replications, we
randomly selected 75 cases from each diagnosis group. Within
each bootstrap, leave one out cross validation (LOOCV) was
applied to retrieve optimal model parameters. The resulting
intercepts and regression weights were averaged to obtain the
final parameters, and were subsequently inverted to retrieve
the final measure of neuropathological burden (the higher
this score, the more neurodegeneration was present that was
relevant to a particular cognitive domain). These final burden
scores allowed us to identify whether cognitive-domain specific
neuropathology scores affect the relationship between education
and cognitive functioning.

Statistical Analysis
Demographics, vascular risk factors, cognitive performance and
measures of brain degeneration were compared between groups
using univariate tests (analysis of variance, ANOVA; Chi-squared
test; Mann–Whitney U test; and Kruskall–Wallis test, where
appropriate). Post hoc pairwise comparisons (SCD vs. MCI; SCD
vs. AD; MCI vs. AD) were corrected for multiple comparisons
using false discovery rate (FDR) adjustments.

First, to investigate whether the contribution of education
to cognitive performance differed across the different clinical
diagnoses (SCD, MCI, and AD), we applied Analysis of
Covariance (ANCOVA) models. The cognitive domain scores
functioned as outcome variables and education level, diagnostic
group, and the interaction between education level and diagnostic
group as predictors. Subsequently, to further investigate the
direction of significant interactions, several multiple linear
regression models were performed stratified by diagnostic group,
and the resulting slopes of education were compared pairwise
using Welch T-tests (SCD vs. MCI, SCD vs. AD). All analyses
were corrected for age, sex, and neuropathology scores.

Second, we investigated whether the effects of education
differed as a function of neuropathology within each diagnosis
group. We performed another set of multiple linear regression
models, but now separately for each diagnosis group, and
education level, neuropathology, and the interaction between
education and neuropathology functioned as predictors. This
model allowed to test whether the relationship between education
and cognitive performance was moderated by current degree of
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neuropathology. Significant interactions were further examined
using simple slope analysis from the interactions package
in R (Bauer and Curran, 2005). Briefly, the relationship
between education and cognitive performance was plotted as
a function of different degrees of relative neuropathological
burden: lower levels of neuropathology [−1 standard deviation
(SD)], average neuropathology (0 SD), and higher levels of
neuropathology (+ 1 SD).

Furthermore, we performed sensitivity analyses to investigate
whether our results were influenced by using standardized norm
scores to calculate the cognitive domain scores, as norm scores
provide an indication of cognitive performance relatively to
an individual’s age, sex and/or educational level. Norm scores
were computed using a large Dutch normative database from
the Advanced Neuropsychological Diagnostics Infrastructure
(ANDI; de Vent et al., 2016). As normative data for the FAB
were unavailable in ANDI, these norm scores were generated
using another normative database (Coen et al., 2016). Moreover,
given that floor performance on the TMT ratio scores and delayed
recall of the 8-Word Test occurred more frequently in AD
and MCI relatively to SCD (see Supplementary Table A), we
also repeated our analyses while deriving the compound scores
without these particular (sub-)tests. In addition, we investigated
whether the effects of the neuropathological compound score
were driven by a particular MRI rating (MTA, GA, or WMH).
Therefore, we repeated our analysis using either MTA, GA,
or WMH in the interaction term and corrected for the other
neuropathological features (e.g., interaction between education
and MTA, additionally correcting for GA and WMH).

For each linear regression model, all variables were scaled (i.e.,
z-normalized) prior to the analysis. Assumptions were checked
using regression diagnostic plots and the gvlma package in R
(Pena and Slate, 2006). None of the assumptions were violated
(e.g., linearity, distribution of residuals, homoscedasticity).

All analyses were performed using R (version 3.6.11).
Two-tailed p-values of < 0.05 were considered statistically
significant. We report uncorrected p-values and FDR-corrected
p-values to account for multiple comparisons across diagnoses
and cognitive domains. We calculated Cohen’s f2 to indicate
the effect sizes for our effects of interest (0.02 = small,
0.15 = medium, 0.35 = large; Cohen, 2013). Data visualization
was performed using the raincloudplots and sjPlot packages in
R (Allen et al., 2021; Lüdecke, 2021).

RESULTS

An overview of participant characteristics for participants with
SCD, MCI, and AD is provided in Table 1. The variability
in cognitive performance across each cognitive domain and
diagnosis group is visualized in Figure 1. We did not observe any
differences between diagnostic groups regarding sex (p = 0.11),
diabetes (p = 0.80), hypertension (p = 0.56), cardiac disease
(p = 0.06), and history of stroke (p = 0.91). After FDR-
adjustments for multiple comparisons, age, education, cognitive

1https://www.R-project.org

performance and visual MRI ratings differed significantly
between groups (all corrected p-values < 0.01). Post hoc tests
revealed that individuals with SCD were relatively younger than
those with MCI or AD, and those with MCI were younger than
with AD (all corrected p-values < 0.05). Educational attainment
and cognitive performance scores were relatively higher in SCD,
followed by MCI and AD (all corrected p-values < 0.05). MTA,
GA, and WMH were less pronounced in individuals with SCD
when compared to both MCI and AD; and both MTA and
GA were less severe in MCI relatively to AD (all corrected
p-values < 0.05).

We noted significant interactions between education and
clinical diagnosis on global cognition (F2,534 = 4.48, p = 0.01),
episodic memory (F2,532 = 3.84, p = 0.01), and executive functions
(F2,533 = 5.09, p = 0.006). Forest plots of the subsequent stratified

TABLE 1 | Overview of participant characteristics.

SCD MCI AD

N 108 190 245 p-value

Demographics

Age, median (IQR) 71
(66–78)

78
(73–82)

80
(76–84)

< 0.001a,b,c,d

Sex, N (%) 61 (57%) 106
(56%)

159
(65%)

0.110

Education level, median (IQR) 5 (3–5) 4 (4–5) 4 (3–5) 0.006a,c,d

High education, N (%) 26 (24%) 46 (24%) 45 (18%)

Average education, N (%) 54 (50%) 102
(54%)

114
(47%)

Low education, N (%) 28 (26%) 42 (22%) 86 (36%)

Vascular risk factors

Diabetes mellitus, N (%) 20 (19%) 30 (16%) 39 (16%) 0.800

Hypertension, N (%) 46 (43%) 88 (46%) 101
(41%)

0.561

History of stroke/TIA, N (%) 16 (15%) 30 (16%) 35 (14%) 0.915

Cardiac disease, N (%) 26 (24%) 67 (35%) 66 (27%) 0.063

Cognitive functions

MMSE, mean (SD) 28.06
(2.02)

26.25
(2.49)

22.34
(3.84)

< 0.001a,b,c,d

Global cognition, mean (SD) 0.74
(0.49)

0.13
(0.47)

−0.56
(0.58)

< 0.001a,b,c,d

Episodic memory, mean (SD) 1.13
(0.58)

0.10
(0.63)

−0.52
(0.58)

< 0.001a,b,c,d

Executive functions, mean (SD) 0.56
(0.69)

0.12
(0.63)

−0.51
(0.72)

< 0.001a,b,c,d

Neuropathological measures

MTA, median (IQR) 0 (0–1) 1 (1–2) 2 (1–2) < 0.001a,b,c,d

WMH, median (IQR) 1 (0−2) 2 (1–3) 2 (1–3) < 0.001a,b,c

GA, median (IQR) 1 (0–1) 1 (1–2) 1 (1–2) < 0.001a,b,c,d

SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s
disease dementia; TIA, transient ischemic attack; MTA, medial temporal lobe
atrophy; WMH, white matter hyperintensities; GA, global atrophy. Information was
missing for history of stroke/TIA in 1 (0.18%), cardiac disease in 1 (0.18%),
episodic memory in 2 (0.37%), executive functions in 1 (0.18%). P-values displayed
are uncorrected.
aGroup contrast, surviving FDR-correction for multiple comparisons.
bSignificant SCD vs. MCI comparison after FDR-corrections.
cSignificant SCD vs. AD comparison after FDR-corrections.
dSignificant MCI vs. AD comparison after FDR-corrections.
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FIGURE 1 | Variability in cognitive performance in SCD, MCI, and AD. SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease
dementia.

FIGURE 2 | Effects of education on cognitive performance across diagnosis severity. Forest plots indicating the role of education in predicting cognitive performance
across diagnosis groups, corrected for age, sex, and neuropathological burden. Effect sizes for the contribution of education were calculated with Cohen’s f2.
P-values displayed are uncorrected. Differences in slopes (β) between diagnosis groups were compared using Welch’s t-tests (SCD vs. MCI, SCD vs. AD, MCI vs.
AD). SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease dementia. *Uncorrected p < 0.05. **FDR-corrected p < 0.05.

multiple linear regression models, by diagnostic group, corrected
for age, sex, and neuropathological burden, are displayed in
Figure 2. These analyses revealed that education independently
contributed to cognitive performance on global cognition and
executive functions across each diagnosis group (all corrected
p-values < 0.05), but not on episodic memory in MCI and

AD (all corrected p-values > 0.05). Statistical comparison of
the corresponding slopes showed that the associations between
education and global cognition were stronger in those with
SCD relatively to both MCI and AD (uncorrected p = 0.04 and
p = 0.002, respectively). However, the slope difference between
SCD and MCI did not survive FDR-corrections (corrected

Frontiers in Human Neuroscience | www.frontiersin.org 5 September 2021 | Volume 15 | Article 723728

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-723728 September 2, 2021 Time: 12:46 # 6

Jansen et al. Disease-Dependent Effects of Education

FIGURE 3 | Effects of education on cognitive performance across different degrees of neuropathological burden. SCD, subjective cognitive decline; MCI, mild
cognitive impairment; AD, Alzheimer’s disease dementia. *Uncorrected p = 0.04 for interaction between education and neuropathological burden. **Uncorrected
p = 0.02 for interaction between education and neuropathological burden.

p > 0.05). For executive functions, we found that the effects of
education were stronger in the SCD group as compared to both
MCI and AD (all corrected p-values < 0.05).

The second set of linear regression models, modeling the
interaction between education and neuropathological burden,
revealed significant interactions in the domain of episodic
memory only. These were found among those individuals with
SCD [β =−0.23, 95% CI = (−0.42;−0.04), uncorrected p = 0.02],
and MCI [β = 0.15, 95% CI = (0.01; 0.30), uncorrected p = 0.04;
Figure 3]. However, these associations did not survive FDR-
corrections. In the SCD group, subsequent simple slope analyses
revealed significant effects of education on episodic memory only
in those with average or relatively lower levels of neuropathology
(β = 0.36, uncorrected p < 0.001; β = 0.59, uncorrected p < 0.001).
In contrast, among patients with MCI, simple slope analyses
revealed that education only significantly contributed to episodic
memory performance in those with average or relatively higher
levels of neuropathology (β = 0.17, uncorrected p = 0.02;
β = 0.33, uncorrected p = 0.003). Results from the multiple linear
regression models, including and excluding the interaction terms,
are provided in Supplementary Table B.

The sensitivity analyses showed that the use of standardized
norm scores rather than whole population z-scores to calculate

the cognitive domain scores concurred with weaker effects
of education on cognitive performance across the different
diagnoses. However, the direction of results remained similar
(i.e., effect of education on cognition decreased with diagnosis
severity). Moreover, the interaction between education and
neuropathology on episodic memory in MCI was no longer
significant (see Supplementary Table C and Supplementary
Figure A). After calculating the compound scores without the
TMT ratio and 8-Word Test delayed recall, our results remained
largely similar, however the interaction between education and
neuropathology on episodic memory was no longer significant
in MCI (see Supplementary Table D). When using the separate
visual MRI ratings in our models, our results were also largely
unaffected. We observed that MTA was the main driver of the
interaction effect in SCD, whereas GA was the main driver of the
interaction in MCI. A complete overview of these results is shown
in Supplementary Tables E, F, G.

DISCUSSION

In this study, we characterized the effects of education on
cognitive functions across different syndromes that vary in the
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severity of neuropathology and cognitive dysfunction. First,
we focused on the different clinical diagnoses as observed in
a memory clinic population, comparing patients with SCD,
MCI and AD. We demonstrated that the contribution of
education in explaining variability in cognitive performance
decreased with diagnosis severity, independent of age, sex,
and neuropathological burden. Second, we concentrated on the
severity of neuropathological burden within these diagnostic
groups. We found that the role of education differed as a
function of neuropathology in the domain of episodic memory.
In SCD, the effects of education on cognition were only
found in those individuals with lower levels of neuropathology.
In contrast, among those with MCI, the role of education
was merely present in individuals with relatively more severe
neuropathological burden.

The observed positive effects of education on cognitive
functioning throughout SCD, MCI, and AD are in line with
previous studies (Perneczky et al., 2009; Groot et al., 2018;
Ossenkoppele et al., 2020). Although positive effects of education
on global cognition and executive functioning were present
across all clinical diagnoses, these effects were less pronounced
with increasing diagnosis severity. With regard to episodic
memory, positive associations with education were merely
present in SCD. These results corroborate previous findings
among AD-biomarker positive memory clinic patients, where
education level was more strongly associated with measures of
attention and executive functioning in SCD and MCI when
compared to AD, while no associations were found between
education and episodic memory (Groot et al., 2018). It has
been suggested that clinical deterioration may become too
severe at some point in time, accompanied by a subsequent
decline of protective mechanisms including the positive effects
of education (Stern, 2012; Mungas et al., 2018; van Loenhoud
et al., 2019; Soldan et al., 2020). This may also explain why
education was not related to episodic memory in MCI and
AD patients, as episodic memory loss is considered to be
the most pronounced clinical hallmark of these diagnoses
and the underlying pathological processes (Albert et al., 2011;
McKhann et al., 2011; Veitch et al., 2019).

Although pathological processes overall exacerbate with
clinical severity, neuropathological burden remains highly
variable within a particular clinical diagnosis (Boyle et al.,
2017; Mehta and Schneider, 2021). Previous studies among
individuals with normal cognitive functions, MCI, and AD
demonstrated that positive effects of education on cognitive
performance declined with increased neuropathological burden,
sometimes even provoking worse cognitive outcomes (Perneczky
et al., 2009; Mungas et al., 2018, 2021; Zahodne et al., 2019).
Our findings add to these prior studies by showing that
neuropathological burden may differentially alter the association
between education and cognition in SCD and MCI. More
specifically, we only observed positive effects of education on
cognition in those with relatively lower levels of neuropathology
in SCD, while in MCI these associations were found in
individuals with relatively higher levels of neuropathology. As
our results did not survive corrections for multiple comparisons
and did not remain significant in several sensitivity analyses,

however, cautious interpretation is warranted. Interestingly,
similar changes in the direction of effects were observed in a
recent study that compared the effects of a composite measure
of education and verbal intelligence on episodic memory at
different degrees of gray matter atrophy between young-old
and old-old participants in a normal elderly cohort (Kwak
et al., 2020). Differences in neuropathological burden across
seemingly similar populations thus may influence the observed
education-cognition associations, conversely contributing to
discrepancies in findings across studies (Ewers, 2020; Soldan
et al., 2020). More specifically, it has been suggested that the
positive effects of education initially emerge as a function of
neuropathology, plateau, and subsequently decline (Gregory
et al., 2017; Staekenborg et al., 2020). For example, contrarily
to our study results and prior findings (Groot et al., 2018),
another recent study demonstrated that education more strongly
related to cognitive performance in AD relative to SCD and MCI,
although these effects diminished in the most severely affected
AD patients (Staekenborg et al., 2020).

Several mechanisms have been proposed to explain the
benefits of education in both healthy and pathological aging
(Fratiglioni et al., 2020). It has been suggested that education
contributes to an increased resistance for neurodegenerative
processes (i.e., brain maintenance; Noble et al., 2012; Chen
et al., 2019; Steffener, 2021). However, this does not explain why
individuals with higher levels of education show better cognitive
performance at similar levels of neuropathology or demonstrate
relatively more neuropathological burden in clinical samples
(Stern, 2012; Soldan et al., 2020). Furthermore, a recent large-
scale longitudinal study found that education related to an initial
advantage in structural properties of the brain instead, and not to
different rates in neural decline (Nyberg et al., 2021). Education
may thus contribute to a stable advantage, where relatively more
neurodegeneration is required before the threshold is reached
where cognitive dysfunctions start to emerge (i.e., brain reserve;
Cabeza et al., 2018; Stern et al., 2020). In line with this, previous
studies associated education with better cognitive functions in
healthy aging (Lövdén et al., 2020; Seblova et al., 2020) as
well as in SCD, MCI, and AD (Groot et al., 2018; Staekenborg
et al., 2020). Moreover, it has been hypothesized that education
facilitates cognitive functions by promoting cognitive reserve
(CR; Stern, 2012; Stern et al., 2020). CR refers to the ability
to compensate for the deteriorative effects of neuropathological
processes through the recruitment of existing neural networks
and/or compensatory processes via alternative networks (Stern,
2012; Cabeza et al., 2018; Soldan et al., 2020; Stern et al.,
2020). However, the contribution of education to CR is under
debate, as previous longitudinal and cross-sectional studies have
not consistently demonstrated that higher levels of education
concur with relatively decreased rates of age- or pathology-
related cognitive decline over time (Wilson et al., 2019; Ewers,
2020; Lövdén et al., 2020; Seblova et al., 2020). Lastly, it has to
be noted that higher levels of cognitive functioning themselves
could facilitate the likelihood of an individual completing higher
levels of education (Peng and Kievit, 2020). Therefore, the
precise underlying mechanisms and direction of effects between
education and cognitive performance remain to be elucidated.
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The present study has several strengths and limitations.
While earlier studies mostly focused on a single marker of
neuropathology (Perneczky et al., 2009; Teipel et al., 2009;
Mortamais et al., 2014; Soldan et al., 2015; Kwak et al.,
2020), we combined multiple visual MRI ratings into a single
measure reflective of brain-wide pathology. Nevertheless, these
approaches are restricted in terms of the spatial characterization
of neurodegenerative processes (Jagust, 2018). Voxel-wise
analyses (Ledig et al., 2018), connectivity-based approaches
(Berron et al., 2020), or data-driven techniques could help to
further delineate neuropathological patterns that may better
explain individual variations in cognitive performance (Verdi
et al., 2021). Furthermore, although we examined a representative
sample of patients referred to a memory clinic in the Netherlands,
increasing the external validity of our results, causal inference is
impossible due to the lack of longitudinal data, and our cross-
sectional design did not allow the investigation of the effects of
education on disease progression across the different syndromes.
Lastly, we emphasize that our findings require replication in
larger cohort studies, given that the neuropathology-dependent
effects of education did not survive corrections for multiple
comparisons. An increased understanding of such dynamics is
not only critical to understand healthy cognitive aging (Cabeza
et al., 2018; Stern et al., 2020), but may also aid in the development
of individualized prevention or intervention strategies and
prognostic models of cognitive decline (Fratiglioni et al., 2020;
Livingston et al., 2020; Soldan et al., 2020; Anatürk et al.,
2021). Future research should ideally incorporate longitudinal,
multi-modal MRI measures to determine how education-
cognition associations vary as a function of neuropathology in
SCD, MCI, and AD.

In conclusion, we further characterized the extent to which
education continues to benefit cognitive performance depending
on different disease stages: across and within SCD, MCI, and
AD. Generally, the positive effects of education were most
strongly pronounced in individuals with SCD and diminished
with diagnosis severity. Within a particular diagnosis, however,
an increased degree of neuropathological burden does not
necessarily imply a reduction of effects. Altogether, our findings
highlight the complex dynamics between education and its
protective effects on cognitive functions, and the importance of

taking into account the diverse dimensions of an individual’s
disease severity to understand such associations.
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