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ABSTRACT Ticks are hematophagous ectoparasites capable of transmitting multiple
human pathogens. Environmental changes have supported the expansion of ticks into
new geographical areas that have become the epicenters of tick-borne diseases (TBDs).
The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-trans-
mitted rickettsioses in areas of endemicity where ixodid ticks support host transmission
during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the mem-
bers of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most
lethal TBD in the United States. Cases of RMSF have been reported for over a century in
association with several species of ticks in the United States. However, the isolation of R.
rickettsii from ticks has decreased, and recent serological and epidemiological studies
suggest that novel species of SFG Rickettsia are responsible for the increased number of
cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial
genomes and advances in genetic and molecular studies of Rickettsia provided insights
into the biology of Rickettsia with the identification of conserved and unique putative
virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-
tick interactions mediating successful disease transmission and pathogenesis for SFG
rickettsiae remains an active area of research. This review summarizes recent advances
in understanding how SFG Rickettsia species coopt and manipulate ticks and mamma-
lian hosts to cause rickettsioses, with a particular emphasis on newly described or
emerging SFG Rickettsia species.
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EVOLUTION OF RICKETTSIA

Rickettsiae (alphaproteobacteria; Rickettsiales, Rickettsiaceae) are small (0.3- to 0.5-
by 0.8- to 2.0-mm) Gram-negative bacteria with an obligate intracellular life cycle circu-

lating between mammalian hosts and hematophagous arthropod vectors (e.g., ticks, mites,
fleas, and lice) in nature. Early studies using electron microscopy identified intracellular
Rickettsia with a trilaminar cell membrane surrounded by a slime layer (1). The rickettsial
outer membrane is decorated with lipopolysaccharides that are highly immunogenic and re-
sponsible for cross-reactive Weil-Felix antibodies (2). On the basis of the genome sequence,
antigenic properties, and disease attributes, rickettsiae are categorized as belonging to the
spotted fever group (SFG), typhus group (TG), transitional group (TRG), and ancestral group
(AG) (Table 1) (3, 4). Rickettsiae are transmitted to mammalian hosts during blood feeding
by infected ticks and mites or by contaminated feces of infected lice and fleas. Humans do
not contribute to rickettsial circulation in nature, except for Rickettsia prowazekii, for which
they serve as a reservoir and suffer from recurrent Brill-Zinsser disease (5, 6). Comparative
and phylogenomic analyses identified that while adapting to an intracellular life cycle, the
chromosomes of Rickettsia evolved via progressive reduction, resulting in small genomes
ranging from 1.1 to 1.5 Mbp (encoding ;800 to 1,300 proteins) with predictions of ;700
core genes, an ;30% G1C content, and a coding capacity of 69 to 84% (7). Through
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reductive genome evolution, Rickettsia lost genes involved in metabolic pathways and has a
limited ability to synthesize amino acids and nucleotides, mimicking symbiotic bacteria (8).
To compensate for gene loss, Rickettsia species developed parasitic mechanisms whereby a
large array of transport systems pilfers essential metabolites for their survival and replication
within the host cytosolic compartment (8). Thus, identifying specific metabolic pathways
missing in Rickettsia may provide critical knowledge in gaps in developing an axenic me-
dium that supports rickettsial extracellular replication and novel therapeutics that target
essential transport mechanisms.

Rickettsiae have evolved to adapt to diverse environmental conditions, including
various arthropod vectors and mammalian hosts, and display various degrees of mutu-
alism and pathogenicity. For instance, several R. felis (TRG) strains have been identified,
sequenced, and characterized for their diverse genetic makeup, pathogenicity, and
vector adaptations (9). R. felis in booklouse (Liposcelis bostrychophila) is involved in the
development of oocytes, maintained strictly via transovarial transmission, and is con-
sidered nonpathogenic in mammalian hosts (10). In contrast, flea-borne R. felis is re-
sponsible for many febrile diseases of unknown origins in areas of endemicity (11–14).
Comparative genome sequence analysis identified genomic sites that are conserved
and divergent between flea-derived and booklice-derived R. felis strains, suggesting
that genetic variability may contribute to vector specificity and virulence in mamma-
lian hosts (15). However, further studies are required to investigate the unique genetic
traits of R. felis, its adaptation to different arthropod vectors, and their relationship to
virulence in mammalian hosts.

Interestingly, R. prowazekii (TG), which has the smallest genome, causes the most severe
and lethal disease (epidemic typhus), which has claimed countless lives over the last centu-
ries (16). This paradoxical inverse correlation where increased pathogenicity is associated
with genome reduction has also been described for other pathogenic bacterial species such
asMycobacterium leprae, Yersinia pestis, and Streptococcus suis (17–19). While we do not fully
understand the complex evolutionary processes of rickettsial gene deterioration, compara-
tive and whole-genome sequencing analyses suggest that the increased pathogenicity of
Rickettsia is not associated with novel virulence gene acquisition but instead is correlated
with efficient and/or reduced gene regulation in virulent Rickettsia species (16, 20–26).
Despite ongoing reductive genome evolution, similar studies identified various degrees of
conservation and expansion of genes encoding tetratricopeptide repeats, ankyrin repeats,
toxin-antitoxin modules, stress response regulators (SpoT), ADP-ATP translocases, proteins

TABLE 1 Rickettsia groups and diseases

Group Species Disease Vector
Spotted fevera R. rickettsii Rocky Mountain spotted fever Tick

R. conorii Mediterranean spotted fever Tick
R. parkeri R. parkeri rickettsiosis Tick
R. philipii (Rickettsia sp. 364D) Pacific Coast tick fever Tick
R. africae African tick bite fever Tick
R. japonica Japanese spotted fever Tick
R. heilongjiangensis Far-Eastern spotted fever Tick
R. honei Flinders Island spotted fever Tick
R. amblyommatisb Mild spotted fever Tick

Typhus R. prowazekii Epidemic typhus Louse
R. typhi Murine typhus Flea

Transitionala R. felis Flea-borne spotted fever Flea
R. akari Rickettsialpox Mite

Ancestral R. bellii Nonpathogenic Tick
R. canadensis Nonpathogenic Tick

aA nonexhaustive list.
bRickettsiae presumptively associated with human diseases.
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involved in the type IV secretion system (T4SS), surface cell antigens (Sca), hemolysins, phos-
pholipases, and uncharacterized proteins with putative virulence functions (27–31). Gene
rearrangements, deletions, and mutations have been implicated in the attenuated virulence
of Rickettsia, but additional studies are needed to determine the functional significance of
genetic variants (32–34). The information gained from comparing the genomes of Rickettsia
strains has provided significant insights into the gene conservation, divergence, and evolu-
tion of Rickettsia and enabled investigators to identify putative virulence genes important
for the rickettsial intracellular life cycle in mammalian hosts and arthropod vectors and to
correlate these with diverse pathogenic mechanisms subverting host immunity. However,
the selective pressure and molecular mechanisms enabling Rickettsia species and strains to
maintain and reduce their genome sizes remain unknown.

SPOTTED FEVER GROUP RICKETTSIA

Ticks are hematophagous ectoparasites capable of transmitting multiple human patho-
gens of public health importance. Recent environmental changes have contributed to the
expansion and invasion of ticks into new geographical areas that have become the epi-
centers of tick-borne diseases (TBDs) (35, 36). Ticks require blood meals for their continued
development, reproduction, and survival. The SFG rickettsiae infect ticks and cause tick-
transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmis-
sion through their bites during blood feeding. Infected ticks become a primary reservoir
of SFG Rickettsia species, providing a lifelong opportunity to transmit and amplify these
pathogens in mammalian hosts (Table 1). In North and South America, Dermacentor varia-
bilis, D. andersoni, Rhipicephalus sanguineus, and Amblyomma sculptum are confirmed vec-
tors of R. rickettsii. In addition, A. maculatum, A. tigrinum, and A. triste transmit R. parkeri
rickettsioses. In Europe and the Mediterranean littoral to India and Africa, R. sanguineus is
the most common vector for R. conorii. R. africae has been associated with several tick spe-
cies of the genus Amblyomma in Africa. In Asia, R. japonica has been frequently isolated
from several tick species that belong to the genera Haemaphysalis, Ixodes, and
Dermacentor. With the advances in molecular genetics in the past decades, several novel
SFG rickettsiae have been identified and characterized for their association with tick reser-
voirs and contributions to numerous tick-borne rickettsioses throughout the world, for
instance, R. heilongjiangensis in Dysmicoccus sylvarum and Haemaphysalis ticks and R.
honei in Bothriocroton hydrosauri, Haemaphysalis novaeguineae, and Ixodes species (37–
39). These epidemiological data strongly advocate for the importance of tick surveys in
preventing and managing tick-borne rickettsioses and understanding the pathophysiol-
ogy of Rickettsia in tick and host transmission. Antibiotic treatment with doxycycline is
most effective when initiated early in the course of tick-borne rickettsioses (40). Delayed
diagnosis and antibiotic treatment are associated with adverse clinical outcomes such as
increased rates of hospitalization, admission to an intensive care unit, a delayed time to re-
covery with complications, and mortality (40–42). Increased levels of Rickettsia-specific
immune titers represent serologic confirmation of rickettsial infections; however, nonspe-
cific clinical symptoms (for instance, fever, headache, myalgias, and nausea) and limited
access to molecular diagnostic tools in reference laboratories prohibit the prompt diagno-
sis and treatment of rickettsial infections. As a result, the actual incidence of tick-borne
rickettsioses is predicted to be much higher, and the case fatality rate of SFG rickettsioses
remains high in many parts of the world (43–45). Overall, the public health burden of tick-
borne rickettsioses remains significantly underestimated.

TICK TRANSMISSION OF SFG RICKETTSIA

During blood feeding by infected ticks, rickettsiae in tick saliva are introduced into
the dermis and small capillaries, seeding initial infection with varying degrees of local
inflammation and cellular infiltrates such as macrophages (Fig. 1) (46–50). The underly-
ing molecular mechanisms mediating the initial acute phase of tick-borne rickettsiosis
in humans are largely unknown, as many patients seek medical interventions several
days after the onset of clinical symptoms. However, several factors contribute to the
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successful transmission of SFG Rickettsia, for instance, the duration of tick attachment,
bacterial loads in tick saliva, and the transmission efficiency of Rickettsia. Under labora-
tory conditions, R. rickettsii transmission occurred as soon as 8 h after D. variabilis bites
on guinea pigs, and the severity of clinical disease was dependent on the duration of
tick attachment (51). This study corroborates reported cases of R. parkeri rickettsiosis in
patients with,8 h of tick attachment (49, 50). The bacterial loads in tick saliva and sali-
vary glands and the capacity to transmit R. parkeri by infected A. maculatum ticks
played significant roles in successful R. parkeri transmission and causing local inflam-
mation at the tick attachment sites on Sprague-Dawley rats (52). Tick saliva contains an
arsenal of multiple immunomodulatory agents that affect host hemostasis and
immune defense mechanisms (53, 54). Besides facilitating tick attachment and blood
feeding, the immunomodulatory properties of tick saliva contribute to the enhanced
transmission of several tick-borne pathogens, including SFG Rickettsia (53–55). Skin-res-
ident dendritic cells (DCs) sense the local inflammatory environment and regulate tis-
sue homeostasis, immune tolerance, and T-cell responses against invading pathogens
(56–59). A recent study reported that prostaglandin E2 (PGE2) in A. sculptum saliva
dampened the proinflammatory immune responses of DCs infected with R. rickettsii
(60). The abundance of PGE2 increased as the ticks continued to blood feed, potentially
assisting in the survival and hematogenous dissemination of Rickettsia (60). Indian rhe-
sus macaques (Macaca mulatta) exposed to A. maculatum adult ticks and subsequently
infected with an intradermal injection of 107 R. parkeri cells suffered from persistent R.

FIG 1 Life cycle of tick-borne Rickettsia. (A) Spotted fever group rickettsiae infect salivary glands, midguts,
or ovaries of susceptible ticks. Infected ticks transmit rickettsiae through their bites during blood feeding,
along with immunomodulatory components in tick saliva. (B) Within the bloodstream, rickettsiae target
vascular endothelial cells, inducing actin-mediated uptake and the subsequent release of rickettsiae into
the cytoplasm. (C) The intracellular replication of rickettsiae requires multiple virulence factors for immune
evasion, host cell invasion, membrane lysis, and nutrient uptake. (D) Rickettsiae destroy vascular
endothelial cells, causing local and systemic vasculitis. Survival of rickettsiae within phagocytes is essential
for clinical disease. Infected individuals elicit Rickettsia-specific antibodies and T-cell responses for immune
protection.
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parkeri infection at the inoculation site (eschar) and systemic dissemination of R. par-
keri, suggesting that tick feeding introduced immunomodulatory factors and enhanced
the pathogenesis of R. parkeri rickettsiosis (61). Other investigators utilized mouse
infection models to determine the impacts of active tick attachment and blood feeding
during Rickettsia infection. In one study, infesting R. sanguineus nymphal ticks on C3H/
HeJ intradermally infected with 107 R. conorii cells reduced proinflammatory responses
but failed to change the histological features and bacterial loads in the lungs (62).
However, in a separate study, infesting A. maculatum nymphal ticks on C3H/HeJ mice
infected via intradermal injection of 5.5 � 106 R. parkeri cells supported rickettsial
growth, with extensive necrosis and inflammatory immune cell recruitment (63). The
R. parkeri study utilized laboratory-reared nymphs constitutively infected with “Candi-
datus Rickettsia andeanae,” but this nonpathogenic Rickettsia species failed to seed
infections in mice during blood feeding (63). A point mutation in the coding region of
the tlr4 gene in C3H/HeJ mice interferes with the Toll-like receptor 4 (TLR4)-mediated
activation of DCs and natural killer (NK) cells important for innate rickettsial immunity
and predisposes the animals to rickettsial infections (64–66). It remains unclear
whether different tick species (e.g., R. sanguineus and A. maculatum) produce different
classes and abundances of immunomodulatory molecules that pose various capacities
to facilitate SFG Rickettsia survival and reduce the proinflammatory immune responses
of DCs, NK cells, or other cellular components at the site of infection. Furthermore,
additional studies are required to identify specific rickettsial factors that synergize with
immunomodulatory factors in tick saliva, contributing to the enhanced transmission
and pathogenesis of tick-borne rickettsiosis. For in-depth discussions, interested read-
ers are directed to a recent review article highlighting the multifaceted and complex
relationships between Rickettsia and arthropod vectors (67).

SFG RICKETTSIA-ENDOTHELIAL CELL INTERACTIONS

In some cases of tick-borne rickettsioses, SFG Rickettsia actively replicates at tick bite sites
and produces epidermal and dermal necrotic lesions that are characterized as inoculation
eschars within a few days of infection. Histopathological analyses often identify vasculitis
and necrotic features associated with vascular thrombosis. Numerous clinical reports have
documented the presence of multiple eschars on patients infected by several SFG rickettsial
agents, such as R. parkeri, R. philipii, (previously known as Rickettsia sp. strain 364D), and R.
africae (48, 68). While most case studies (;80% of tick-borne rickettsial disease cases
reported to the CDC) failed to provide information on eschars, current surveillance data sug-
gest that eschar-associated rickettsial diseases are associated with less virulent tick-borne
rickettsial agents (69). A recent investigation developed a mouse infection model (C57BL/6
mice lacking the expression of receptors for type I interferon [IFN-I] and IFN-g) that recapitu-
lates R. parkeri eschar formation upon intradermal inoculation and characterized Sca2-medi-
ated R. parkeri dissemination to distal organ tissues, opening a new window of opportunity
to improve our understanding of how rickettsial virulence mechanisms impact eschar for-
mation (70).

Within the bloodstream, rickettsiae target and invade vascular endothelial cells and repli-
cate within the cytoplasmic compartment (Fig. 1). Infections with pathogenic SFG Rickettsia
induce increased vascular permeability associated with rickettsial replication and disruption of
vascular endothelial cells with perivascular infiltration of T cells and macrophages. Progressive
endothelial cell injury leads to the generation of the characteristic erythematous rash, dissemi-
nated vasculitis, cutaneous necrosis, pneumonitis, meningoencephalitis, and multiorgan failure
(71). Thus, the molecular interactions between Rickettsia and host endothelial cells have a sig-
nificant role in SFG rickettsioses. Infection of vascular endothelial cells with Rickettsia activates
a proinflammatory state and induces cytokine and chemokine responses. Human umbilical
vein endothelial cells (HUVECs) infected with R. rickettsii increased cell-associated interleukin-
1a (IL-1a) production for the potential activation of IL-1 receptor 1 (IL-1R1) signaling in an
intracrine and paracrine manner to coordinate the local inflammatory responses of endothelial
cells and recruit professional phagocytes (72, 73). R. conorii infections in HUVECs induced cell-
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associated IL-1a production, triggering the secretion of IL-6 and IL-8 and the expression of ad-
hesion molecules, including E-selectin, intercellular adhesion molecule 1 (ICAM-1), and vascular
cell adhesion molecule 1 (VCAM-1) (74–76). Similarly, infections with R. rickettsii, R. conorii, and
R. africae caused the secretion of two chemokines, IL-8 and monocyte chemoattractant pro-
tein 1 (MCP-1, also known as CCL2) from endothelial cells, implying their roles in activating
and recruiting neutrophils and monocytes to the sites of infection (75, 77–79). While HUVECs
exposed to heat-inactivated R. conorii generated a marked release of IL-8 and MCP-1 (CCL2) in
a dose- and TLR4-dependent manner, heat-inactivated R. africae caused rather modest
responses in HUVECs (75). In contrast to the comparable IL-8 levels in serum samples between
control and African tick bite fever (ATBF) (R. africae) subjects, Mediterranean spotted fever
(MSF) patients displayed a marked elevation of serum IL-8, potentially contributing to the dis-
tinct clinical features of MSF (75). Previous work demonstrated that IL-8 activates microvascular
endothelial cells via CXCR1 and CXCR2 pathways and may contribute to vascular permeability
during acute inflammation (80). It is also possible that IL-8 may inhibit and delay endothelial
cell apoptosis, providing an intracellular replicative niche for Rickettsia (81). R. conorii infection
of a mouse endothelial cell line, SVEC4-10, primed with IFN-g or a combination of tumor ne-
crosis factor alpha (TNF-a) and IFN-g induced the expression of two chemokines, CXCL9 and
CXCL10, known to target CXCR3 expressed on T and NK cells (important innate regulators of
rickettsial infections) (82). This observation was corroborated by histopathological analysis of
organ tissues collected from C3H/HeN mice infected with R. conorii (82). Human patients with
confirmed cases of MSF (R. conorii) in Italy and Spain displayed pronounced increases in serum
levels of CXCL10 (83). This was in part due to circulating blood cells releasing CXCL10 and
additional inflammatory regulators, which promoted endothelial cells to release additional
CXCL10 into the plasma (83).

Endothelial cells express CX3CL1 (fractalkine) as a transmembrane protein for the inter-
action with its receptor, CX3CR1, which is abundantly expressed on human innate immune
cells capable of controlling early rickettsial infections, including NK cells, T cells, and mono-
cytes/macrophages (84). Once cleaved from the surface by ADAM10 and ADAM17, soluble
CX3CL1 acts as a classical chemoattractant (85, 86). In vitro, R. rickettsii infection of HMEC-1
cells exploited microRNA-424 to actively modulate the expression of CX3CL1. While the
exact mechanisms remain unknown, in vivo C3H/HeN mouse infection studies performed
with R. conorii confirmed that the peak expression of CX3CL1 coincides with the recruit-
ment of macrophages during the acute phase of systemic endothelial infection (87). On
the other hand, increased expression of CX3CL1 on activated endothelial cells can trigger
platelet activation via CX3CR1 and enhance platelet adhesion via the glycoprotein Iba
(GPIba) receptor (88, 89). During rickettsial infections, endothelial cell activation and subse-
quent injury lead to a dysregulated state of the hemostasis system (90, 91). While a minor
reduction in platelet counts has often been reported for tick-borne rickettsiosis, severe coa-
gulopathies, such as deep venous thrombosis and disseminated intravascular coagulation,
have been documented for patients infected with pathogenic Rickettsia species, including
R. rickettsii, R. conorii, R. sibirica, and R. japonica (92–95). Such a procoagulant potential has
been documented for HUVECs infected with R. rickettsii, R. conorii, and R. africae (96–99). Of
note, ATBF (R. africae) patients displayed a significantly increased level of soluble CD40
ligand (sCD40L) in serum (99). In vitro infection of HUVECs with R. africae showed a syner-
gistic contribution of HUVECs and platelets to the elevation of sCD40L in a CX3CL1-de-
pendent manner, potentially contributing to vascular inflammation and dysregulated
hemostasis (99). These data illustrate that SFG Rickettsia infections of endothelial cells
induce common and unique inflammatory responses. It is possible that endothelial cell
responses to those species that cause mild or self-limiting tick-borne rickettsioses are bene-
ficial and contribute to the clearance of intracellular Rickettsia. On the other hand, highly
pathogenic SFG Rickettsia species may exploit host inflammatory responses to generate
inappropriate local and systemic inflammatory responses, leading to limited or self-destruc-
tive hyperactive immune responses. Furthermore, it remains unknown whether specific
SFG Rickettsia species are equipped with unique virulence factors to modulate endothelial
cell responses, contributing to different clinical features. Interested readers are directed to
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recently published review articles that provide an excellent and detailed overview of
Rickettsia-endothelial cell interactions (100, 101).

SURVIVAL OF PATHOGENIC SFG RICKETTSIA IN PROFESSIONAL PHAGOCYTES

As rickettsiae continue to replicate and spread through the vasculature, perivascular
neutrophilic and lymphohistiocytic inflammatory cells are recruited to the site of infection
to prevent further dissemination of the invading bacteria (Fig. 1) (47, 102, 103). Recent
investigations suggest that rickettsial survival in macrophages may determine the basis of
rickettsial virulence and pathogenesis. Pathogenic SFG Rickettsia species, such as R. rickett-
sii, R. conorii, R. parkeri, R. helvetica, and R. australis, have evolved to resist bactericidal
mechanisms and establish a replicative niche within the cytosolic compartments of macro-
phages (104–109). On the other hand, nonpathogenic R. montanensis and R. bellii fail to
escape the phagolysosome and survive within THP-1 macrophages (104, 106). R. conorii
replication in THP-1 macrophages induced unique proteome signatures (e.g., increased
levels of proteins involved in the tricarboxylic acid cycle, oxidative phosphorylation, fatty
acid b-oxidation, glutaminolysis, and mitochondrial transport) and altered metabolic and
lipid catabolic pathways favoring anti-inflammatory M2 responses (110, 111). On the other
hand, R. helvetica infection of THP-1 macrophages led to the production of the proinflam-
matory cytokine TNF-a (109). For R. parkeri survival in mouse bone marrow-derived macro-
phages (BMDMs), outer membrane protein B (OmpB), the most abundant and conserved
protein required for the formation of protective surface- and capsule-like layers on
Rickettsia, played a significant role in preventing the surface polyubiquitylation of OmpA
and subsequent autophagy evasion (108, 112). During R. parkeri infection of murine
BMDMs, R. parkeri activated the inflammasome in a caspase 1/11-dependent manner to
avoid IFN-I production and the subsequent activation of interferon regulatory factor 5
(IRF5), which upregulates rickettsicidal genes encoding guanylate-binding proteins (GBPs)
and inducible nitric oxide synthase (iNOS) (113). R. australis infections of human (periph-
eral blood mononuclear cell- and THP-1-derived) and mouse (BMDM) macrophages also
activated inflammasome responses and induced IL-1b and IL-18 secretion in a caspase 1-
and TLR4-dependent manner (107, 114). Furthermore, the activation of the inflammasome
contributed to host immune control of R. australis in C57BL/6 mice (114). A recent study
reported the role of nitric oxide in preventing protein synthesis and restricting the growth
of R. rickettsii in J774 macrophage-like cells (105). These studies provide evidence that
pathogenic Rickettsia species may exploit and evade host immune protection mechanisms
and establish an intracellular niche for their survival and transmission within macrophages.
Tick-borne rickettsioses present different clinical severities, ranging from life-threatening
diseases to self-limiting mild cases with no complications. It remains largely unknown
how individual pathogenic Rickettsia species employ unique or conserved virulence mech-
anisms to manage and foster intracellular replicative niches in macrophages, professional
phagocytes equipped with an impressive armamentarium of antimicrobial mechanisms,
and contribute to varying clinical severities. Many previous studies have been conducted
with macrophage-like cells or murine macrophages. Although macrophage-like cells are
convenient and economical, studies have demonstrated that these cells function differ-
ently in many aspects compared to primary macrophages (115). At the same time, mouse
models have provided significant insights into rickettsial pathogenesis and host immunity.
However, there are substantial differences between mouse and human immunology
(116). Thus, such differences should be carefully considered when studying Rickettsia-mac-
rophage interactions and their implications for human rickettsiosis.

NOTABLE EMERGING SFG RICKETTSIA SPECIES WITH CONFIRMED OR PRESUMPTIVE
HUMAN INFECTIONS

During most of the 20th century, R. rickettsii and R. conorii were considered the
major tick-borne Rickettsia species associated with human infections (RMSF and MSF,
respectively) in the Americas, Europe, and Africa (117). Over the last decades, investiga-
tors have discovered and characterized numerous novel Rickettsia species from ticks
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but considered them nonpathogenic to humans (117). However, this concept has been
challenged extensively as epidemiological analyses, clinical research, and laboratory
studies indicate that tick-borne rickettsioses are underdiagnosed and often associated
with previously uncharacterized SFG Rickettsia species (118). As discussed here and
elsewhere, recent investigations describe that emerging SFG Rickettsia species are
capable of infecting cells in the salivary glands and midguts of ticks, display moderate
virulence in in vitro and in vivo infection models, produce mild-to-moderate clinical dis-
ease in patients, and elicit inflammatory and pathogen-specific immune responses af-
ter tick transmission. Among many emerging SFG Rickettsia species, five such examples
are selected and reviewed in detail below to illustrate how recent studies provided
insights into understanding Rickettsia-host-tick interactions (additional emerging SFG
Rickettsia species are reviewed in references 118 and 119).

R. parkeri. R. parkeri was initially isolated from A. maculatum ticks collected from cows
in Texas in 1939 and characterized for mild febrile disease with edema and reddening of
the scrotum in guinea pigs (120). After .60 years of speculation, the pathogenicity of R.
parkeri was confirmed with a patient in Virginia presenting relatively mild febrile illness
accompanied by multiple eschars and a maculopapular eruption (121). Similar to other
tick-borne rickettsial infections, R. parkeri-infected patients display a combination of non-
specific clinical symptoms (e.g., fever, headache, malaise, and myalgia) and characteristic
eschars at the inoculation site of tick attachment (122–124). Some R. parkeri-infected
patients required hospitalization, but no case fatalities have been reported for R. parkeri
infections (125). Bioinformatics determined the syntenic organization of the three R. parkeri
genome sequences with differences in genome sizes (Atlantic Rainforest, 1.35 Mbp; Black
Gap, 1.33 Mbp; Portsmouth, 1.30 Mbp) and gene rearrangements, partly due to the pres-
ence or absence of tra genes (126). R. parkeri is associated with several Amblyomma ticks
(A. maculatum as the main vector) in the Americas (127–129). Over the last decades, many
tick species, including A. maculatum, have expanded their ranges, seeding new habitats
and potential hot spots for R. parkeri rickettsiosis (130, 131). The distinct geographical distri-
butions of Amblyomma species may have contributed to the phylogenetic differentiation
and evolutionary adaptation of multiple R. parkeri species (132). However, R. parkeri infec-
tions caused by various Amblyomma vectors do not cause significant differences in clinical
outcomes (133).

The identification of genes required for the rickettsial intracellular life cycle is an essential
step toward understanding the molecular basis of tick-borne rickettsiosis (134). Further-
more, information on the essential molecular mechanisms will assist in deducing vaccine
antigens and therapeutic drug targets. Over the last decades, several genetic tools have
been developed to create bacterial variants that carry insertional, deletional, or point muta-
tions and to study the consequences of mutations using in vitro and in vivo infection mod-
els. However, the genetic intractability of obligate intracellular bacteria, including Rickettsia,
has set a significant barrier to genetic tools readily available for free-living bacteria. Despite
numerous technical limitations, recent work described the stable transformation of Rickettsia
with plasmid DNA in the presence of antibiotic selection and established random transpo-
son mutagenesis systems for R. prowazekii, R. rickettsii, R. parkeri, and R. conorii (2, 135–137).
Using R. parkeri insertional mutants, Welch and colleagues demonstrated that (i) Sca2 and
RickA mediate actin-based motility in a time-dependent manner in tissue culture cells, (ii)
Sca2 is required for R. parkeri pathogenesis and dissemination from the inoculation site to
internal organs in Ifnar12/2 Ifngr12/2 mice, (iii) Sca4 associates with vinculin and mediates
the cell-to-cell spread of R. parkeri, and (iv) OmpB (Sca5) blocks the ubiquitylation of rickett-
sial surface antigens to promote autophagy evasion in immune cells and contributes to
eschar formation in Ifnar12/2 Ifngr12/2 mice (70, 108, 138–140). These studies demonstrate
the usefulness of transposon mutagenesis for the study of rickettsial pathogenesis. However,
the obstacles to creating a saturated Rickettsiamutant library remain due to low transforma-
tion efficiency and the use of long-term cultivation to recover, isolate, and determine the
genetic lesions of clonal variants in the tissue culture system.

R. africae. Genetic analysis of R. africae identified a circular chromosome (1.28 Mbp;
32.4% G1C content) and a circular pRA plasmid (12.3 kbp; 33.4% G1C content), with
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1,260 chromosomal and 11 plasmid open reading frames (ORFs) predicted (20). The R.
africae and R. conorii chromosome sequences displayed almost perfect collinearity
except for an ;88.5-kbp inversion that harbors tra gene orthologs encoding compo-
nents of a T4SS for conjugal DNA transfer present in R. africae but not R. conorii (20).
The contributions of the T4SS to R. africae (or SFG Rickettsia) pathogenesis, survival in
mammalian and arthropod hosts, and transmission remain unclear (27). R. africae
causes ATBF and infects multiple species of Amblyomma (A. hebraeum and A. variega-
tum as the main tick vectors), Hyalomma, and Rhipicephalus ticks in areas of endemicity
in sub-Saharan Africa (141–144). Transstadial and transovarial transmissions of R. afri-
cae have been reported for A. hebraeum (145, 146). A recent PCR analysis identified
that most Amblyomma ticks (up to 100%) collected from cattle in south and central
Mozambique are infected with R. africae (143). Similarly, R. africae infection was preva-
lent in A. variegatum ticks (87%) on cattle in Madagascar (147). In the coastal region of
the Eastern Cape, PCR amplification and sequencing analysis of the gltA, ompA, ompB,
sca4, and 17kDa genes identified the presence of R. africae in A. hebraeum (63% adults
and 62% nymphs) and blood from cattle (22%) (144). A previous serosurvey of cattle in
Zimbabwe identified antibodies cross-reactive to R. africae, implying that cattle may
play an important role in R. africae maintenance in Africa (148). In contrast, a recent
study determined that only a small number of A. variegatum, Rhipicephalus decoloratus,
and R. evertsi mimeticus ticks collected from domestic cattle in Angola were infected
with R. africae and found no R. africae DNA in bovine blood (149). R. africae infections
of A. hebraeum ticks on goats in Mpumalanga Province (eastern South Africa) and A.
variegatum ticks on goats, sheep, and cattle in Kenya suggest that other ruminants
may serve as alternative hosts for R. africae transmission and amplification in nature
(142, 150). Additional molecular detection and serosurvey studies are necessary to
define mammalian hosts for R. africae and their implications for human infections in
different geographical areas of Africa.

Most reported cases of ATBF are from international travelers in African countries. In
fact, R. africae is the second most frequent etiological agent of febrile diseases, after
malaria, among tourists returning from southern Africa with a history of travel to grass-
lands and game parks (estimated infection rate of ;5%) (151, 152). This is partly due to
the lack of scientific and public health infrastructures for prompt molecular diagnosis
and disease surveillance in these areas of endemicity. Previous seroprevalence studies
reported high rates of antibody cross-reactivity to SFG Rickettsia in many African popu-
lations (153–155). In studies performed in Cameroon, seroprevalence studies identified
rates of positivity for antibodies reactive with R. africae of 27 to 32%, suggesting that
ATBF is common in African countries of endemicity (156, 157). Recent environmental
changes, international travel, and shipments contribute to the expansion and invasion
of ticks into new geographical habitats. The recent identification of R. africae-infected
A. variegatum on cattle in Corsica, France, and on sheep in Sardinia, Italy (two islands
located in the Mediterranean Sea), illustrates the importance of sustained surveillance
for the expansion of ticks and the occurrence of associated tick-borne pathogens of
veterinary and medical significance (158, 159). Infections with R. africae produce non-
specific flu-like clinical signs, including headache, fever, eschars, rash, lymphadenopa-
thy, myalgia, chills, malaise, and arthralgia. Patients often report multiple eschars
formed at the tick bite sites on the lower extremities, as the main tick vectors, A. varie-
gatum and A. hebraeum, display aggressive host-seeking behavior, and patients are of-
ten bitten by multiple infected ticks simultaneously (152). While R. conorii causes MSF
in similar geographical areas of Africa, MSF is often associated with a history of contact
with R. sanguineus and severe clinical outcomes compared to ATBF (160). Most R. afri-
cae infections cause mild and self-limiting disease, but some severe manifestations,
such as cardiomyopathy, neuropathy, cellulitis, retinitis, and chronic fatigue, have been
reported in elderly patients (161–163).

R. heilongjiangensis. R. heilongjiangensis, first isolated in 1982 from Dysmicoccus
sylvarum ticks in Suifenhe, a city in the Heilongjiang Province of China, is comprised of
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a 1.28-Mbp (32.3% G1C content) circular chromosome and no plasmid DNA (164, 165).
Comparative genomics analysis suggests that R. heilongjiangensis is closely related to R.
japonica and causes Far-Eastern spotted fever transmitted by Haemaphysalis japonica, H.
concinna, H. longicornis, and D. sylvarum in China, Siberia, the Russian Far East, and Japan
(25, 39, 166–170). Clinical evaluations revealed common symptoms associated with tick-
borne rickettsiosis without significant complications and mortality (39, 166). Patients with
a history of a tick bite developed nonspecific clinical symptoms, including sudden onset
of fever, chills, and headache, along with maculopapular rash, eschar at the tick bite sites,
subcutaneous lymphangitis, and regional lymphadenopathy (39, 166). Mouse infection
models have been explored to study the pathological potential of R. heilongjiangensis.
Intravenous injection of 105 viable R. heilongjiangensis cells induced hematogenous dis-
semination, interstitial pneumonia, systemic infection, and multifocal inflammatory
lesions with immune cells in multiple organ tissues but failed to cause lethal disease in
BALB/c mice (171). Other studies demonstrate that high infectious doses (up to 108 cells)
of R. heilongjiangensis are required to induce nonlethal acute disease when intraperitone-
ally injected into C3H/HeN or C57BL/6 mice, corroborating clinical observations of mild
cases in patients infected with R. heilongjiangensis (171–174).

R. honei. R. honei causes Flinders Island spotted fever (FISF) in patients bitten by the
reptile tick B. hydrosauri in Australia and Thai tick typhus in those exposed to Ixodes granu-
latus bites in Thailand (175–178). Whole-genome sequencing of R. honei strain RBT revealed
a 1.26-Mbp chromosomal DNA (32.4% G1C content) predicted to harbor 1,284 genes
closely related to the genes present in R. rickettsii, R. conorii, and R. slovaca and no plasmid
DNA (179). In B. hydrosauri, R. honei was present in multiple organs, including salivary
glands and oocytes, potentially facilitating transstadial and transovarial transmission (178).
However, a recent tick survey failed to detect by PCR the presence of R. honei in B. hydro-
sauri ticks harvested from skinks (Tiliqua rugosa) in southern Australia, where confirmed
cases of FISF have been reported (180). Thus, active surveillance of ticks present in areas
where FISF is endemic is needed to reveal the primary reservoirs of R. honei among differ-
ent geographical regions (181). R. honei subsp. marmionii infects H. novaeguineae ticks and
causes Australian spotted fever (ASF) (182, 183). Clinical symptoms of FISF and ASF are
mild and similar to those of other tick-borne rickettsioses and include fever, headache,
arthralgia, myalgia, maculopapular/petechial rash, and eschar formation in some cases
(176, 177, 182, 183). Of note, atypical chronic and severe infections have been reported in
some patients (182, 183). A recent case report described the first probable death of a mid-
dle-aged patient infected with R. honei, potentially due to delays in diagnosis and doxycy-
cline treatment (184). Cases of FISF and ASF have also been confirmed in a U.S. traveler
returning from India and a patient in Nepal, suggesting the broader existence of R. honei in
multiple geographical areas (185, 186). While previous work described moderate pathoge-
nicity of R. honei in guinea pigs and gerbils, additional studies are required to characterize
the pathologies associated with R. honei infections in animal infection models that reflect
FISF and ASF, compare immunopathological features to those of other SFG Rickettsia spe-
cies, and study their role in tick infection and transmission in reptile populations (187).

R. amblyommatis. The genome of R. amblyommatis GAT-30V consists of a single chro-
mosome (1.41 Mbp; 32.4% G1C content) and three circular pRM plasmids (32 kbp, 18 kbp,
and 23 kbp). Compared to pathogenic SFG Rickettsia species (R. rickettsii and R. conorii), the
chromosomal DNA sequence of R. amblyommatis displayed high degrees of sequence
identity, multiple genetic rearrangements, and regions undergoing gene decay (34).
Bioinformatics identified putative virulence genes present with 86 to 95% amino acid
identity, but their biological roles in R. amblyommatis pathogenesis, transmission, and rep-
lication in ticks remain unresolved (30). R. amblyommatis frequently infects Amblyomma
americanum ticks (up to 64%) (188). In recent years, A. americanum has rapidly expanded
its habitats into the Northeast and Midwest and has become the dominant tick species,
contributing to an increased number of patients with tick-borne febrile illnesses of an
unknown etiology (189–191). On the other hand, the current prevalence of R. rickettsii
(RMSF) in D. variabilis is estimated to be less than 1% (188). Seroprevalence studies
suggest that domestic and wild small mammals (dogs and cats) may contribute to

Minireview Infection and Immunity

September 2022 Volume 90 Issue 9 10.1128/iai.00621-21 10

https://journals.asm.org/journal/iai
https://doi.org/10.1128/iai.00621-21


R. amblyommatis transmission and amplification, with humans as an accidental host
(192, 193). However, a definitive mammalian host with systemic R. amblyommatis infec-
tion as a source of R. amblyommatis infection of ticks has not been identified and may
vary by geographical location. Nonetheless, A. americanum ticks display nondiscrimina-
tive and aggressive biting behavior and pose a significant public health concern as
they can frequently cause R. amblyommatis rickettsiosis and other tick-borne diseases
such as ehrlichiosis, Southern tick-associated rash illness, and tularemia (194). In addi-
tion, Amblyomma tick bites are associated with an unusual life-threatening allergic
reaction to oligosaccharide galactose-a-1,3-galactose (a-Gal), also known as meat
allergy, but the underlying cause remains unknown (195–197).

A previous case report described a patient bitten by an A. americanum tick who developed
amacular rash at the tick bite site and had a positive PCR test for R. amblyommatis and the ab-
sence of Borrelia, Ehrlichia, Anaplasma, Babesia, Bartonella, and other pathogenic Rickettsia spe-
cies (198). Other studies reported that patients diagnosed with probable RMSF developed
R. amblyommatis-specific antibodies and presented typical clinical manifestations of tick-borne
rickettsioses such as fever, headache, and myalgia, suggesting that R. amblyommatis is a pre-
sumptive etiological agent for mild rickettsiosis (199–201). Recent and previous investigations
studied the virulence potential of R. amblyommatis using in vitro and in vivo infection model
systems and largely corroborated the current clinical evidence that R. amblyommatis may
cause self-limiting mild tick-borne rickettsiosis. In vitro tissue culture infection of HMEC-1 cells
showed that R. amblyommatis displays defective host cell attachment and replicates within
host endothelial cells at a lower rate than R. conorii (34). Guinea pigs infected with intradermal
and intraperitoneal injections of 106 cells of R. amblyommatis North Texas (isolated from A.
americanum) did not show any clinical illness but seroconverted by 14 days postinfection
(202). In a separate study, intraperitoneal injection of 4� 106 cells of R. amblyommatis 9-CC-3-
1 (isolated from Amblyomma cajennense) caused vascular inflammation in guinea pigs (203).
Of note, both studies demonstrated that guinea pigs infected with R. amblyommatis gener-
ated cross-reactive immunity that protected the animals against a lethal challenge with R. rick-
ettsii (202, 203). A recent comparative analysis of disease severity in guinea pigs infected with
R. rickettsii or R. amblyommatis determined that R. amblyommatis infections caused much
milder clinical manifestations than R. rickettsii (204). Similarly, significantly higher infectious
doses of R. amblyommatis were required to cause sublethal and lethal diseases in C3H/HeN
mice than in those infected with R. conorii (34). While these studies corroborate clinical evi-
dence that R. amblyommatis may cause mild tick-borne rickettsiosis in some patients, future
studies need to utilize tissue culture-based and molecular-based diagnostic approaches to
evaluate skin biopsy samples from patients bitten by A. americanum ticks, establish a causal
relationship for R. amblyommatis rickettsiosis, and perform comparative analyses to determine
the genetic diversities of R. amblyommatis strains present in A. americanum ticks in traditional
and new habitats in the Americas.

CONCLUDING REMARKS

Several advances have been made within the last decade toward understanding ba-
sic Rickettsia biology (e.g., genomics, pathogenicity, and vector competence and trans-
mission) and developing molecular tools for Rickettsia. Yet some deficiencies (e.g.,
transmission mechanisms, epidemiology, species diversity, and tick biology) continue
to hinder investigative advances for this universal emerging pathogen, highlighting
significant research opportunities for discovering novel molecular mechanisms associ-
ated with the obligate intracellular life cycle of SFG Rickettsia species.
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