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Abstract The cell nucleus is responsible for the
storage, expression, propagation, and maintenance of
the genetic material it contains. Highly organized
macromolecular complexes are required for these
processes to occur faithfully in an extremely crowded
nuclear environment. In addition to chromosome
territories, the nucleus is characterized by the pres-
ence of nuclear substructures, such as the nuclear
envelope, the nucleolus, and other nuclear bodies.
Other smaller structural entities assemble on chroma-
tin in response to required functions including RNA
transcription, DNA replication, and DNA repair.
Experiments in living cells over the last decade have
revealed that many DNA binding proteins have very
short residence times on chromatin. These observa-
tions have led to a model in which the assembly of
nuclear macromolecular complexes is based on the
transient binding of their components. While indeed
most nuclear proteins are highly dynamic, we found
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after an extensive survey of the FRAP literature that
an important subset of nuclear proteins shows either
very slow turnover or complete immobility. These
examples provide compelling evidence for the estab-
lishment of stable protein complexes in the nucleus
over significant fractions of the cell cycle. Stable
interactions in the nucleus may, therefore, contribute to
the maintenance of genome integrity. Based on our
compilation of FRAP data, we propose an extension of
the existing model for nuclear organization which now
incorporates stable interactions. Our new “induced
stability” model suggests that self-organization, self-
assembly, and assisted assembly contribute to nuclear
architecture and function.
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Abbreviations

CB Cajal body

CBP C-AMP response element binding
protein (CREB) binding protein

CT Chromosome territory

CP Continuous fluorescence
photobleaching

FFM Fluorescence fluctuation microscopy

FLIM Fluorescence lifetime imaging

FLIP Fluorescence loss in photobleaching

FRAP Fluorescence recovery after
photobleaching
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FRET Forster resonance energy transfer

FCS Fluorescence correlation spectroscopy

Gem Gemini body

GFP Green fluorescent protein

HA95 Homologous to A-kinase anchoring
protein 95

HSF Heat shock factor

iFRAP Inverse fluorescence recovery after
photobleaching

LAP Lamin-associated polypeptides

LBR Lamin B receptor

MFIS Multiparameter fluorescence lifetime
image spectroscopy

NER Nucleotide excision repair

PcG proteins  Polycomb group proteins

PCNA Proliferating cell nuclear antigen

pRB Retinoblastoma protein

PML Promyelocytic leukemia

RICS Raster image correlation spectroscopy

snRNP Small ribonucleoprotein particle

SPT Single particle tracking

Heterochromatin
Chromosome

territory,

CT intermingling

Chromatin loops
with shared

transcription site
Interchromatin
space
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Fig. 1 Compartmentalization of the mammalian cell nucleus.
The mammalian cell nucleus contains chromatin in the form of
chromosome territories (CTs). CTs may overlap at their
touching borders (intermingling) or create the so-called inter-
chromatin space (white). Constitutive heterochromatin is
mainly found as pericentromeric chromatin in patches through-
out the nuclear volume, at the nuclear periphery, as well as
around nucleoli. Nuclear pore complexes, the double-layered
nuclear membrane (dark green) and the meshwork-like nuclear
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Structure and function in the nucleus

The storage, propagation, maintenance, and expression
of the genetic material is executed by biochemical
activities, namely DNA compaction/decompaction,
DNA replication and segregation, DNA repair, and
RNA transcription/processing, respectively (Diekmann
and Hemmerich 2005). The corresponding machineries
are highly structured, yet dynamic macromolecular
assemblies (Misteli 2007) which must work on
chromatin with high fidelity in a crowded nuclear
environment (Richter et al. 2007). In addition, the
mammalian cell nucleus contains a variety of subnu-
clear domains, nuclear bodies, or subnuclear compart-
ments (Figs. 1 and 2). DNA is wrapped around
nucleosomes and forms individual chromosomes
which are compacted in mitosis (Fig. 2g). In interphase
cells, chromosomes decondense into so-called chro-
mosome territories (CTs), which occupy distinct
volume regions (Figs. 1 and 2h) (Cremer et al. 2006;
Heard and Bickmore 2007; Solovei et al. 2009; Finan

Nuclear
pore complex
l Nucleolus
MNuclear
membrane

Paraspeckle

lamina are structural hallmarks in the periphery of the nucleus.
Chromatin loops with associated transcription factories may
extrude out of chromosome territories within the nucleolus as
well as throughout the nucleoplasm. Transcription (orange),
replication (yellow), and DNA repair processes (light blue)
usually occur in small domains with a diameter below 100 nm.
A diverse set of nuclear bodies, such as speckles, paraspeckles,
the perinucleolar compartment, Cajal bodies, or PML bodies
are found in the interchromatin space
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Fig. 2 Visualization of nuclear compartments. a—f A diverse
set of nuclear substructures, including the nuclear envelope,
centromeres, nucleoli, Cajal bodies, or PML bodies can be
visualized by confocal immunofluorescence microscopy
employing specific antibodies. g, h Visualization of Chromo-
some 1 (CT1) by fluorescence in situ hybridization (FISH) on a
metaphase spread or in an interphase nucleus of MRC-5 cells. i,
j Staining of chromocenters (blue) and associated centromeres
in a mouse cell nucleus demonstrates the clustering of

et al. 2010). Staining of interphase chromatin using
DNA dyes does not reveal CT structures but allows
discrimination between transcriptionally active euchro-
matin and transcriptionally silent heterochromatin
(Fig. 2e). Constitutive heterochromatin is mainly
composed of pericentric DNA, and in this case, the
chromosome’s centromere/kinetochore complex can be
found embedded within or adjacent to this chromatin
region (Fig. 2j) (Probst and Almouzni 2008). The
nucleus obtains structural support through the nuclear
lamina, which is attached to the nuclear double-
membrane, together forming the nuclear envelope
(Fig. 1). The nuclear envelope controls traffic of
molecules between the cytoplasm and the nucleoplasm
but has also emerged as a critical determinant in
genome architecture (Starr 2009).

The most prominent subnuclear domains include
the nucleolus, the perinucleolar compartment, speck-
les, paraspeckles, Cajal bodies, and promyelocytic
leukemia (PML) bodies (Figs. | and 2). In addition, a
variety of other nuclear bodies have been identified
such as PcG bodies, Gemini bodies (Gems), the OPT
domain, cleavage bodies, and the SAM68 nuclear
body (Spector 2001; Handwerger and Gall 2006).
Subnuclear structures are macromolecular complexes
that consist of membrane-less accumulations of
specific sets of functionally related molecules. For
example, components of the ribosome biogenesis

pericentromeric heterochromatin of several chromosomes. k
Telomeres can be visualized by FISH against telomeric DNA
or, as shown here, by immuno-detection of Trfl (green).
1 Nuclear distribution of GFP-tagged heterochromatin protein
1 (green) in relation to chromatin (DNA, red) reveals its
accumulation in chromocenters in the nucleus of a mouse
fibroblast. In addition, GFP-HP1 is distributed diffusely through-
out the euchromatic region as well as in small dots representing
PML nuclear bodies (white arrow). Size bar, 10 um

pathway are predominantly confined to the nucleolus.
First thought to be exclusively devoted to the
synthesis of ribosomal RNA and assembly of ribo-
somal subunits, it has become clear that the nucleolus
serves a variety of additional functions, including
regulation of mitosis, cell-cycle progression, prolifer-
ation, and various stress responses (Raska et al. 2006;
Sirri et al. 2008).

The biochemical function(s) of the other subnuclear
domains are less clear or unknown. PML bodies attract
a selected set of nuclear proteins which are functionally
quiet promiscuous. Therefore, PML bodies have been
implicated in the regulation of diverse cellular func-
tions, such as the induction of apoptosis and cellular
senescence, inhibition of proliferation, maintenance of
genomic stability, and antiviral responses (Bernardi
and Pandolfi 2007). PML bodies are positionally
stable structures at which controlled molecular
traffic and posttranslational modifications may
regulate the activity of specific proteins throughout
the genome and the epigenome in response to
various cellular stresses (Bernardi and Pandolfi
2007; Torok et al. 2009). Speckles, also referred to
as interchromatin granule clusters, are enriched in
pre-mRNA splicing factors. At the microscopic
level, speckles appear as irregular, punctate domains
varying in size and shape (Fig. 2). They are
considered to be the main sites for storage, assembly,
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and/or recycling of the essential spliceosome com-
ponents (Lamond and Spector 2003). Because highly
transcribed genes are found in the periphery of
speckles and also other subnuclear domains, they
may also serve to efficiently integrate and regulate
mRNA transcription and mRNA processing machin-
eries (Zhao et al. 2009). Cajal bodies (CBs) are
involved in the biogenesis of several classes of small
ribonucleoprotein particles (snRNPs) as well as their
modification (Gall 2000; Matera et al. 2009).
Resembling the speckles/gene association mentioned
above, CBs associate specifically with histone and
snRNA genes. This colocalization is transcription-
dependent, requires expression of snRNA coding
regions, and is probably based on an energy-driven
motor activity in the nucleus (Frey and Matera 2001;
Dundr et al. 2007).

In mammalian cell nuclei, DNA replication, RNA
transcription, and repair of damaged DNA occurs in
dot-like structures with a mean diameter of ~100 nm
(Fig. 3). With respect to transcription and replication,
these focal sites have been coined “factories” as each
site contains all of the enzymatic activity required. A

general model was recently suggested for the organi-
zation of all genomes in which the transcription
factories play a central role (Cook 1999; Cook
2010). Notably, the model proposes that active RNA
polymerases do not move along their templates during
elongation but are bound to a factory acting both as
motors that reel in their templates and as fixed
structural entities that hold active chromatin loops in
place (Cook 2010). DNA replication also occurs at
similarly specialized subnuclear sites where the factors
directly or indirectly involved in replication are concen-
trated (Fig. 3b) (Leonhardt et al. 2000). Finally, repair
of damaged DNA at focal sites throughout the genome
is also a dynamic process that requires careful
orchestration of a multitude of enzymes, adaptor
proteins, and chromatin constituents (Fig. 3c) (Lukas
et al. 2005).

Fluorescence fluctuation microscopy

The development of in vivo microscopy techniques
employing the green fluorescent protein (GFP) has

Fig. 3 DNA and RNA metabolism occurs in small foci. a
Transcription can be visualized after brief exposure of living
cells to the nucleotide analog Fluoro-Uridine (F1-U), follwed by
immunodetection of the FI-U epitope. b Bromo-deoxy-Uridine
(BrdU) can be used in a similar incorporation assay to visualize
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nascent DNA during replication. ¢ Sites of DNA double-strand
break repair are detected using antibodies against a phosphor-
ylated form of histone H2AX (y-H2AX). Common to all of
these active foci is the accumulation of many factors required to
perform the biochemical activities. Size bar, 10 pm
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opened the door to probe cellular architecture and
function in living cells (Lippincott-Schwartz et al.
2003). By analyzing macroscopic relaxation after
disturbing the equilibrium state, fluorescence intensity
images can be used to assess diffusion times, inter-
actions, and binding constants of molecules. Fluores-
cence fluctuation microscopy (FFM) approaches have
been developed to investigate a few molecules in small
regions of a cell. These approaches supply dynamic
spatiotemporal information by creating cellular diffu-
sion and concentration maps (Fig. 4). A major
consideration is the accessible resolution as nuclear

) immobile/slow fraction
mathematical

processes can take place on a time scale ranging from
microseconds to hours, and single molecules or huge
macromolecular assemblies in well-defined stoichio-
metries can be involved.

FFM allowed for the first time to not only visualize
protein dynamics and chromatin interactions but also
to quantitatively determine biophysical properties of
proteins in the nucleus of intact cells (Erdel et al.
2010, this volume). FFM approaches include time-
lapse microscopy (Heun et al. 2001), fluorescence
redistribution after photobleaching (FRAP, FLIP,
iFRAP, etc.) (Bancaud et al. 2009; van Royen and
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Fig. 4 Fluorescence fluctuation microscopy. a Upper panel
FRAP experiment in a nucleus expressing GFP-tagged HP1.
Fluorescence was bleached within two circled areas (green) and
fluorescence redistribution was monitored over time. Bottom
panel Quantification of a FRAP experiment. Graphs typically
show mean values from 10 to 20 FRAP experiments as relative
fluorescence intensity (RFI) after normalization to prebleach
levels. The FRAP curve immediately delivers information on
mobile and immobile or slow populations. Ideally, the FRAP
experiment is extended to allow discrimination between
immobile or slowly exchanging populations. Mathematical
modeling can be performed to extract biophysical parameters
such as the diffusion coefficient and binding constants from fit
functions (red dotted line). b RICS. GFP-HP1 was expressed in
HEp-2 cells. For RICS, a time series of GFP fluorescence
images (512x512 pixels) was acquired in a subregion of the

Autocorrelation

j \ Concentration: 37 nM
: _(M{ D = 2.35 um?/s
' 'm\‘k\/N

1 10 102 10% 104 105 108
time (us)

NN
NN

-
(=]

=
-

ot
(3]

£
[
o
e
8
(=
gt
w
£
°

nucleus by confocal microscopy (left panel). Subregions (64 x
64 pixels) within this time series are than extracted and
correlation spectra assessed from these subregions. A diffusion
coefficient map can be generated by fitting with appropriate
diffusion models (middle panel) from which diffusion coef-
ficients of GFP-HP1 can be determined at different subnuclear
positions. ¢ In FCS; a confocal volume is generated by focusing
of a laser beam through an appropriate objective (upper panel).
Fluorescent molecules emit photons during their movement
through the confocal volume leading to a fluorescence
fluctuation over time (middle panel). The fluctuation data are
then subjected to autocorrelation (bottom panel) from which
fluorescent molecule concentration and diffusion coefficients
can be extracted after fitting of the data with appropriate
mathematical diffusion models. Size bar, 5 pm
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Houtsmuller 2010; this volume), fluorescence corre-
lation spectroscopy (FCS) (Haustein and Schwille
2003), CP (Wachsmuth et al. 2003), raster image
correlation spectroscopy (RICS) (Digman and Gratton
2009), SPT (Levi and Gratton 2008), FRET and
FLIM (Wallrabe and Periasamy 2005), and MFIS
(Weidtkamp-Peters et al. 2009). Figure 4 highlights
some of these techniques demonstrating their potential
to study nuclear protein dynamics.

Dynamic and stable interactions contribute
to the assembly and maintenance of subnuclear
compartments

FRAP analyses of subnuclear domains such as
nucleoli, speckles, and Cajal bodies have revealed
that their component parts rapidly exchange with
nucleoplasmic pools (Misteli 2001a, 2008). Typical
residence times of proteins in these compartments are
in the seconds range. Similarly, most (but not all, see
below) factors acting at transcription, replication, and
repair foci show rapid exchange at chromatin
(Houtsmuller et al. 1999; Dundr et al. 2002; Sporbert
et al. 2002). These observations have led to the
conclusion that nuclear proteins undergo repeated
and rapid cycles of association and dissociation
between the nucleoplasm and the compartment they
are mainly working in. As a consequence, nuclear
bodies and factories are in perpetual flux. Their

Fig. 5 (Im)mobilities in the
nucleus. Illustration of sub-
nuclear compartments and
overview of their compo-
nent‘s residence times (fs)
determined by FRAP
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structure is determined by the ratio of on-rate versus
off-rate of its components, clearly suggesting self-
assembly and/or self-organization as the mechanism
of their assembly (Misteli 2001b; Matera et al.
2009). To further test this hypothesis, we have compiled
FRAP data of 264 nuclear proteins collected over the
last 16 years. Data are presented as individual sheets of a
single table (ESM 1) containing: chromatin-binding
proteins, transcription factors, DNA metabolism
(covering replication, repair, recombination), RNA
metabolism (covering speckles, splicing, RNA modifi-
cation), centromeres, nucleolus, nuclear envelope, Cajal
bodies, PML bodies, and “others.” Surprisingly, while
indeed most nuclear proteins are highly dynamic, we
found a small but nevertheless important set of proteins
showing either very slow turnover or complete immo-
bility (ESM 1). Figure 5 provides an overview of the
FRAP data with respect to the various subnuclear
structures. In many cases, very slow FRAP recoveries
probably reflect relatively long residence times on
chromatin. However, it is also possible in principle that
slow recoveries can arise from short residence times if
the average fluorescent molecule undergoes many
binding events as it progresses to the center of the
bleach spot (Sprague et al. 2004). Accurate residence
time estimates require a test for the role of diffusion in
the FRAP and a proper mathematical model for fitting
(Sprague and McNally 2005). This approach should be
considered for the slowly recovering proteins discussed
below.
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Most nucleosomes are stable for long periods of time

FRAP analyses of GFP-tagged core histones have
shown that far more than 50% of H2A, H2B, H3, and
H4 are stably incorporated into chromatin and do not
exchange with soluble pools (ESM 1; Kimura and
Cook 2001; Gautier et al. 2004). These observations
are consistent with the idea of a structural foundation
of genome architecture and maintenance based on stable
nucleosome arrays. The transiently incorporated sub-
fraction of core histones is most likely attributable to
chromatin remodeling events associated with transcrip-
tion, replication or repair. All four core histones are
present in the same nucleosome, yet their stabilities
vary. H3 and H4 are loaded into nucleosomes during
DNA replication, after which >80% remains perma-
nently bound (Kimura and Cook 2001). In contrast,
~50% of H2A and H2B exhibit substantial turnover
(Kimura and Cook 2001; Gautier et al. 2004),
compatible with the assembly properties of nucleo-
somes in vitro and in vivo (Annunziato 2005). While
the immobile fractions might be associated with
heterochromatin, the stability of the central H3 and
H4 coupled with the lability of the outer H2A and H2B
suggest simple ways of maintaining epigenetic marks
(Kimura and Cook 2001). This is consistent with many
posttranslational modifications found at the N-terminal
ends of H3 and H4 providing long-term memories
(Margueron and Reinberg 2010).

Genome maintenance relies on hyper-stable protein
complexes at the centromere

Cell division is a highly dynamic process in which the
chromosomes are segregated in a coordinated fashion.
The centromere is the genetic locus required for precise
and accurate chromosome segregation and provides a
platform on which the kinetochore multiprotein com-
plex assembles (Przewloka and Glover 2009). Accurate
chromosome segregation is essential for cell survival
and genome maintenance. Aberrant mitotic segregation
can result in aneuploidy, cell death, or cancer (Kops et
al. 2005). Intuitively and confirmed by FRAP data,
stable chromatin—protein and protein—protein interac-
tions are required during mitosis when sister chroma-
tids are pulled along microtubules into daughter cells
(ESM 1). However, the kinetochore/centromere com-
plex could in principle disassemble completely during
interphase, since a stable epigenetic mark such as a

unique histone modification would be sufficient to
transmit centromere identity through interphase.
Shortly before mitosis starts, the epigenetic mark
would be used as a landing platform for cell cycle-
regulated factors that initiate de novo kinetochore
assembly. This, however, is not the case as FRAP
of centromeric proteins performed at any time
during cell cycle show that at least Cenp-A and
Cenp-I (ESM 1) stay ably associated with centro-
meres for the complete cell cycle (Hemmerich et al.
2008; Hellwig et al. 2008).

Because there is absolutely no dynamic exchange
of Cenp-A between centromeres and freely diffusible
nucleoplasmic pools, the question arises how the
binding sites created by centromere replication are
occupied. This issue has been addressed by FRAP
experiments which clearly showed that Cenp-A is
assembled during the G1 phase of the cell cycle via a
“loading only” mechanism (Hemmerich et al. 2008):
while the first FRAP experiment showed fluorescence
recovery, a subsequent FRAP showed no recovery of
CENP-A indicating an undetectably small off-rate. This
shows that CENP-A is “loaded only,” without ex-
change at its binding sites. Interestingly, Cenp-A is
incorporated via the “loading only” mechanism exclu-
sively in early G1 (Hemmerich et al. 2008) corrobo-
rating earlier SNAP-tagging results (Jansen et al. 2007).
The epigenetic marking of the centromere is believed to
be conveyed by Cenp-A, because it is required for the
association of probably all other kinetochore proteins
(Buscaino et al. 2010) and because of its sustained
presence at centromeres without dynamic exchange
(Hemmerich et al. 2008; ESM 1). Although Cenp-A
and Cenp-I are stably bound, many rapidly exchanging
centromere components have also been identified
(ESM 1). Taken together, the identification by FRAP
of proteins which bind to the centromeres with
dynamic exchange but also without dynamic exchange
for longer than one cell cycle clearly indicates that in
addition to organization and self-assembly, also hered-
ity mechanisms contribute to centromere structure and
function and hence genome maintenance.

A fraction of stably bound cohesin glues sister
chromatids together

Sister chromatid cohesion after replication is mediated

by the multiprotein complex cohesin which acts as a
topological linker (Wong 2010). Gerlich et al. (2006)

@ Springer



138

P. Hemmerich et al.

performed FRAP analyses identifying two distinct
binding modes of cohesin to chromatin during the cell
cycle. One pool of cohesin dynamically exchanged on
and off chromatin throughout the entire interphase,
moving through the nucleus by diffusion. This pool
was absent in metaphase. About one third of the
subunits SA1 and Sccl are stably fixed to chromo-
somes after replication with a residence time of 6 to
7 h (ESM 1). This pool persisted until just before
chromosome segregation (Gerlich et al. 2006). These
analyses provided the first experimental evidence in
living cells for a permanent and stable link between
sister-chromatids. This stable link may functionally
contribute to homologous recombination repair of
DNA double-strand breaks during the G2 phase of the
cell cycle.

HA95 and lamin A immobility in the nucleoplasm
is consistent with the idea of a stable nuclear matrix

The existence of a nuclear matrix was proposed by
Zbarskii and Debov (1948) based on their observation
that high-salt extractions of purified nuclei produced
microscopically visible lattice-like residual structures.
These observations were confirmed in the Berezney
lab using similar extraction protocols (Berezney and
Coffey 1974). The lack of direct, particularly in vivo
evidence, however, raised considerable skepticism
about the existence of a stable nuclear structure
(Pederson 2000). Homologous to A-kinase anchoring
protein 95 (HA95) is a nuclear protein harboring two
zinc fingers and a putative nuclear localization signal
(Drstavik et al. 2000). HA95 binds to chromatin and
the nuclear lamina network where it has a role in
anchoring nuclear membranes and lamins to chromatin
in interphase and in releasing membranes from
chromatin at mitosis. Astonishingly, bleaching experi-
ments revealed no detectable recovery of the diffusely
localized GFP-tagged HA95 in the nucleus of living
293 T fibroblasts (Martins et al. 2000). Roughly one
quarter of the nuclear pool of lamin A resides outside
the nuclear lamina and distributes as a diffuse veil
throughout the nucleoplasm (Moir et al. 2000). FRAP
analysis of the nucleoplasmic GFP-lamin A pool
revealed a recovery halftime of more than 3 h, clearly
indicating a stable lamin-containing structure in living
cells (Moir et al. 2000). Although overexpression
artifacts of the GFP fusion proteins cannot be ruled
out, the immobile properties of HA95 and lamin A in
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the cell nucleus provide compelling evidence for the
existence of a nuclear matrix in living cells. It has
been suggested that HA95 provides a stable platform
at the chromatin/interchromatin interface that could
regulate nuclear envelope—chromatin interactions dur-
ing the cell cycle (Martins et al. 2003). Recent
evidence suggests that HA95 is also functionally
involved in pre-mRNA splicing (Kvissel et al. 2007).
Thus, HA95 could also serve as a stable platform on
chromatin, linking RNA transcription with RNA
processing. It will be essential to analyze if nuclear
stability and particular nuclear functions are affected in
HA95-depleted cells.

Constitutive heterochromatin: more stable
than initially thought?

The main function of constitutive heterochromatin is to
serve as a kinetochore attachment site in mitosis, where
its particular chromatin structure is thought to ensure
chromosome segregation. Pericentric heterochromatin
also plays important roles in organizing transcription-
repressive compartments of the nucleus and to ensure
regulation of particular genes (Probst and Almouzni
2008). Constitutive heterochromatin is characterized by
three repressive epigenetic marks: tri-methylation
of H3-K9, mono-methylation of H3-K27, and tri-
methylation of H4-K20. The histone methyltrans-
ferases Suv39H1/2 and Suv420H1/2 play crucial roles
in the initial steps of constitutive heterochromatin
formation in mammals. Mice deficient for the Suv
enzyme family members display impaired pericentric
heterochromatin function leading to chromosome mis-
segregation and increase of sister-chromatid ex-
change. H3-K9me3 marks placed by Suv39H
activities stabilize heterochromatin protein 1 (HP1)
binding to heterochromatin. HP1 proteins self-
oligomerize and interact with both Suv39H and
Suv420H (Fodor et al. 2010).

According to its structural function, heterochromatin
had been perceived as a relatively densely packed, rigid,
and inert region. Surprisingly, however, FRAP had
demonstrated that GFP-tagged HP1 isoforms display
dynamic binding properties, suggesting that heterochro-
matin is a dynamic and plastic domain, in which access
to the underlying DNA would not necessarily be
prevented (Cheutin et al. 2003; Festenstein et al.
2003; Schmiedeberg et al. 2004). In contrast to HP1,
Suv39H1 consists of both a mobile and an immobile
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population in heterochromatin where ~30% of mole-
cules do not exchange over a time period of 7 min
(ESM 1; Krouwels et al. 2005). The tight association
of Suv39H1 with chromatin is obviously a more
common feature because a large fraction of Suv420H2
is also tightly bound at pericentric heterochromatin
(ESM 1). FRAP analyses has revealed that more than
90% of GFP-tagged Suv420H2 is immobile at these
domains over several minutes (Souza et al. 2009). It
is, therefore, possible that the residence times of
Suv39H1 and Suv420H2 in heterochromatin are
even in the hours range, indicating that these
enzymes may, in addition to their catalytic activity,
also serve a structural role in chromatin and act as a
stable interaction platform for other heterochromatin
proteins. Further structural support for heterochro-
matin architecture may also be provided by the
heterochromatin-binding protein Ki-67 which, by
FRAP, also shows a cell cycle dependent turnover
in heterochromatin (ESM 1; Saiwaki et al. 2005).
While Ki-67 dynamically binds to mitotic chromatin,
it becomes very tightly bound to peri-nucleolar
heterochromatin during G1 phase. Approximately
60% of GFP-Ki-67 is immobile over 10 min during
FRAP analyses in interphase cells (Saiwaki et al.
2005). These data suggest that Ki-67 may have very
long residence times on chromatin.

Some transcription factors can become stably bound
to chromatin: pRB, E2F, Mdm2, VHL, TFIIH, HSF,
and Gal4

Most of the time, transcription factors diffuse
throughout the cell nucleus, encounter gene promoters
in a random fashion, and bind to them for a very short
time (Misteli 2001b). This, however, does not hold
for all situations.

PRB and E2F The retinoblastoma protein (pRB) is a
key cell-cycle protein that regulates the critical G1-S
phase transition through interaction with E2F family
members. The latter are cell-cycle transcription
factors that repress transcription of genes required
for G1-S checkpoint transition. pRB activity is
regulated through networks sensing intracellular and
extracellular signals which block or permit phosphor-
ylation (inactivation) of the Rb protein (Poznic 2009).
Quite unexpectedly, in bleaching experiments, fluo-
rescence recovery of active (hypophosphorylated)

GFP-RB and E2F is minimal (Angus et al. 2003).
This behavior is in stark contrast to the mobility of
most other transcription factors which are usually
highly mobile (ESM 1). Only after inactivation by
phosphorylation, pRB and E2F become highly mobile
in chromatin. The regulation of the affinity of pRB to
chromatin may constitute a new mechanism of
transcriptional control.

Mdm2 and VHL Complete immobilization, in this
case within the nucleolus, was also observed for the
ubiquitin ligases Mdm2 and VHL in FRAP experi-
ments (ESM 1; Mekhail et al. 2005). Upon an
activation stimulus, the nucleolus rapidly releases
these enzymes from static detention, thereby restoring
their high mobility profiles. These observations
provide strong evidence that cells have evolved
mechanisms to regulate molecular networks by
reversibly switching proteins between mobile and
static states (Mekhail et al. 2005).

TFIIH In tissue-derived primary cells such as post-
mitotic neurons, hepatocytes, and cardiac myocytes,
the transcription factor TFIIH is effectively immobi-
lized on the chromatin for hours during transcription,
whereas in proliferative cells, it has the same highly
dynamic behavior as in cultured cells (Giglia-Mari et
al. 2009). It was proposed that static chromatin
binding of TFIIH may be established during
differentiation- and cell lineage-specific transcrip-
tional programs. Interestingly, stable chromatin
binding was not irreversible in the post-mitotic cells
because induction of local DNA lesions remobilized
TFIIH, probably based on its requirement in DNA
repair (Giglia-Mari et al. 2009).

HSF In Drosophila salivary glands, the heat shock
factor (HSF; the transcription activator of Asp70)
trimerizes and translocates from the nucleoplasm to
chromosomal loci after heat shock (Yao et al. 20006).
FRAP experiments showed a rapid exchange of HSF
at chromosomal loci under non-heat shock conditions
(t1,=15 s) but a very slow exchange after heat shock
(t1,>6 min). Five minutes after the FRAP bleach
pulse, ~50% of HSF was still immobilized on
chromatin. The unbound pool of HSF was found by
FCS to diffuse freely, indicating that this pool was not
able to compete for chromatin binding (Yao et al.
2006).
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Gal4 Nalley and colleagues developed a new variant
of the chromatin immunoprecipitation assay that
allowed a direct time-resolved observation of exchange
between the transcription factor Gal4 and its DNA
binding site on native promoters in yeast (Nalley et al.
2006). The assay revealed that after transcriptional
activation, the Gal4—promoter complex was highly
stable with a half-life of approximately 1 h. Again,
this stability was established although unbound,
competition—competent Gal4 molecules were present
in excess amounts. During immobilization on its
promoter, expression of the reporter gene occurred
indicating that Gal4 functions via long-lived com-
plexes with promoters during transcriptional induc-
tion (Nalley et al. 2006).

The nuclear envelope contains large pools
of immobile proteins

Proteins of the nuclear lamina interconnect chromo-
somes with the nuclear envelope. The lamina harbors
specific integral proteins including the lamin B receptor
(LBR), lamina-associated polypeptides (LAPs), emerin,
nurim, and MANI1. LBR, LAPs, and emerin bind to
lamins A/C and B in vitro while LBR and LAP2b also
bind chromatin via interactions with HP1 and the small
DNA-binding protein BAF (Mekhail and Moazed
2010). Thus, a highly interconnected protein network
provides multiple anchoring sites between chromatin
and the nuclear envelope. Many of these proteins have
meanwhile been subjected to FRAP analyses revealing
stable incorporation of most of them into the nuclear
lamina (ESM 1). Although mathematical modeling has
not been employed yet, the extremely long recovery
halftimes (i.e., more than 3 h for lamin B, Moir et al.
2000) of nuclear lamina constituents suggest residence
times in the hours range. This is particularly true for
the nuclear pore complexes, some components of
which persist for long periods of time (residence times
up to 70 h) within well-defined spatial regions without
dynamic exchange (ESM 1; Rabut et al. 2004).
Because the nucleus also undergoes dramatic morpho-
logical changes, a completely static nuclear lamina is
not beneficial. Transitions between a stable and a
flexible lamina might be regulated by small pools of
the dynamically exchanging lamina constituents
(ESM 1). Posttranslational modifications may serve
as an additional mechanism to alter nuclear lamina
stiffness.
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Nuclear bodies contain stable components

FRAP analysis of subnuclear domains has revealed
that most of their component parts rapidly exchange
with nucleoplasmic pools with residence times in the
seconds range (Misteli 2007; Matera et al. 2009). As a
consequence, it was thought that these structures are
determined by the ratio of on-rate versus off-rate of
their constituents (Misteli 2008). This assembly
mechanism is certainly true for speckles and nucleoli
(ESM 1), which usually form in response to particular
functions (splicing factor assembly and rRNA syn-
thesis, respectively). However, FRAP experiments and
mathematical modeling have revealed residence times
of up to 1 h for Cajal and PML body components
(ESM 1).

There are six nuclear isoforms of the PML protein
in human cells from which PML V showed an
extremely long residence time (48 min) (ESM 1).
All other isoforms show substantially faster exchange,
although they share the same nuclear body-binding
domains with PML V (Weidtkamp-Peters et al. 2008).
When analyzed in nuclei devoid of any endogenous
PML protein (PML ™~ MEFs), fractions of PML II
becomes completely immobile within nuclear bodies
and the residence time of PML IV is extended to 1.5 h
(Brand et al. 2010). These observations indicate that
probably all PML isoforms have the potential to build
a stable scaffold within nuclear bodies, and that
during evolution PML V was selected to execute this
function (Weidtkamp-Peters et al. 2008). In Cajal
bodies, p80 coiling was identified as the component
with the longest residence time both, in human cells
(Dundr et al. 2004) and in Xenopus germinal vesicles
(Handwerger et al. 2003; Deryusheva and Gall 2004).
These data indicate that the architecture of PML
bodies and Cajal bodies may be primarily dictated
by protein interactions forming stable scaffolds
(Handwerger et al. 2003; Deryusheva and Gall
2004; Brand et al. 2010). On the other hand, their
functionality certainly involves stochastic encounter
of specific, fast exchanging components (Dundr et
al. 2004; Weidtkamp-Peters et al. 2008).

Replication and repair factories contain a few stable
components

RNA transcription sites and DNA repair foci have
been visualized in mammalian cells, and initial FRAP
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studies indicated that they are stochastically assembled
de novo in each round of transcription or repair from
freely diffusible components (ESM 1; Houtsmuller
et al. 1999; Dundr et al. 2002). DNA repair factor
recruitment dynamics point towards diffusion-based
DNA lesion recognition by individual components or
small subcomplexes as the primary mode of DNA
repair, instead of the recruitment of large preassembled
holoenzymes (Luijsterburg et al. 2007; Dinant et al.
2009). Nevertheless, FRAP analyses also indicate that
some replication and repair factors can reside on
chromatin for extended periods of time (ESM 1). Data
for ERCCI1 for example suggest that this component is
assembled at sites of DNA damage with other
constituents of the nucleotide excision repair (NER)
machinery into immobile holocomplexes during one
repair event with a mean residence time of 4 min
which is the estimated time of a single repair event
(Luijsterburg et al. 2010). Furthermore, strip-FRAP on
globally irradiated cells showed incomplete recovery of
DDB2 for several hours after 16 J/m> UV exposure,
indicative of a significant immobile fraction over a
period of hours at damaged chromatin (Luijsterburg
et al. 2007). Twenty-four hours after exposure, most
UV-induced lesions have been removed by NER,
suggesting full release of bound molecules when repair
is completed. The UV-induced immobilization was
also shown for the NER proteins TFIIH, XPA, and
ERCCI1-XPF but was not observed for RAD52 group
proteins (ESM 1; Houtsmuller et al. 1999; Essers et al.
2002; Politi et al. 2005). In UV-treated cells, the
fraction of lesion-bound XPA molecules increases to
maximally 35%, and the increase is directly propor-
tional to the DNA damage load. The immobile pool of
XPA at damaged chromatin remains over a period of 2
to 4 h post-UV exposure (Rademakers et al. 2003).
While cells in living tissues may never experience
DNA damage loads comparable to the cell culture
studies, the immobilization of DNA repair factors
ERCCI1, XPA, and DDBI1 on chromatin suggests that
stable protein scaffolds may functionally contribute to
DNA repair pathways.

Proliferating cell nuclear antigen (PCNA) is a
further example of stable chromatin attachment.
FRAP revealed elevated residence times for this
factor at sites of DNA replication and repair (Sporbert
et al. 2002; Solomon et al. 2004a, b; Mortusewicz et
al. 2006; ESM 1). As a consequence, it was proposed
that PCNA does not “bring” other factors to sites of

replication or repair. Instead, PCNA appears to act as
a stationary loading platform that is reused over
multiple DNA synthesis or repair cycles with PCNA-
binding proteins associating transiently and subse-
quently dissociating rather than being part of one
stable, multifunctional, processive replication machinery
(Mortusewicz et al. 2008).

An extension of models for the assembly
of macromolecular structures in the nucleus:
the “induced stability” model

Current models of the functional organization of the
cell nucleus mainly consider short-lived interactions
between freely diffusing components (Misteli 2001b,
2007). Undoubtedly, these events play crucial roles in
gene regulation and genome maintenance (Darzacq et
al. 2005; Lukas et al. 2005; Dinant et al. 2009;
Hiibner and Spector 2010). However, the observation
of many stable interactions in the nucleus (ESM 1),
even at transcription start sites on chromatin (TFIIH,
HSF, Gal4, see above), leads us to propose an
extension of the model for the formation of macro-
molecular complexes in the cell nucleus (Fig. 6).
The revised model is based on initial rapid binding
and unbinding of proteins on DNA. Subsequent
formation of dimers or multimers or interactions with
additional DNA-binding proteins can induce an
increase in the overall residence time of the complex
on chromatin (Fig. 6). A similar effect may be
realized by cooperative binding of several DNA-
binding domains within the same protein, as recently
demonstrated for linker histones (Stasevich et al.
2010). The more stable protein/chromatin complex
may now serve as a platform for further binding
partners. As the complex “grows,” the binding
partners may increase their residence time on chro-
matin through multiplication of binding contacts.
Chaperones may support the addition/incorporation
of specific components as has been shown for the
centromere complex (Foltz et al. 2009; Shuaib et al.
2010) or nucleosome (dis)assembly (De Koning et al.
2007; Park and Luger 2008a, b). Complex-induced
alterations in chromatin structure may also contribute
to increased stability (not shown in the model). All
components, including the initial proteins, may
exchange with short residence times at the stable core
(Fig. 6a), as in chemical self-organizing systems
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(Chaperones?)
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(Chaperones?)
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Fig. 6 Model for the assembly of macromolecular complexes
in the cell nucleus. a Formation of a chromatin-binding protein
complex. Protein A binds transiently to DNA with very short
residence times (/). By dimer formation or interaction with a
second DNA-binding protein the overall residence time
increases (2). Chromatin-association may be further increased
by homo- or hetero-multimerization leading to various degrees
of stability of the complex (3 and 4). The assembly of these
complexes may be supported by chaperones. At these more or
less stable protein/chromatin complexes, further binding part-
ners (X, Y, Z) but also sub-fractions of the endogenous
components (4, B, C) may exchange with short residence times
(5). b Formation of a macromolecular protein complex. Protein
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Intermediates

Stable scaffold

A with homo-oligomerization properties assembles into small
scaffolds (/, 2) which may serve as seeds for attachment of
additional binding partners (3). The resulting intermediates may
consist of the initial scaffolding protein only or may also
contain additional components with scaffolding properties (B, C).
Stable scaffolds may arise through accumulation of additional
binding partners (4). The assembly of intermediates and stable
scaffolds may be supported by chaperones. Stable scaffolds
acquire functional properties by transient retention of a specific
set of nuclear proteins (X, Y, Z) (5). Even a subpopulation of the
scaffold components may exchange rapidly at the macromolec-
ular structure depending on the number and strength of binding
events upon contact (5)
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(Aniansson and Wall 1974; Diekmann 1979). This
model describes active transcription, replication, and
repair complexes but also heterochromatin, cohesin,
telomere, and centromere assembly.

An analogous model may also hold for the
assembly of macromolecular protein complexes in
the interchromatin space. A protein with homo-
oligomerization properties, or interactions between
different proteins, can lead to the assembly into small
scaffolds onto which additional binding partners or
further scaffolding proteins may attach (Fig. 6). The
accumulation of additional binding partners may lead
to larger, more stable scaffolds. These larger structures
could acquire functional properties by transient reten-
tion of a specific set of nuclear proteins. As above, a
subpopulation of scaffold components may exchange
rapidly at the macromolecular structure depending on
number and strength of binding events upon contact
(Fig. 6). This model likely holds for the assembly of
PML nuclear bodies, Cajal bodies, snRNPs, speckles,
pre-nucleolar bodies, and the nuclear envelope includ-
ing nuclear pore complexes. Chaperones may also be
involved in the assembly process. For example, the
survival of motor neurons complex can act as a
chaperone for the assembly of snRNPs (Battle et al.
2006), although in vitro Ul-snRNPs self-assemble
(Hamm et al. 1987). Unlike Cajal bodies where most,
if not all components are part of a large interaction
network capable of Cajal body induction (Kaiser et al.
2008), formation of PML nuclear bodies require PML
protein since typical PML body components are disperse
in PML-negative cells (Ishov et al. 1999). Even
quantitative expression of Sp100 failed to recruit PML
body components to Sp100 nuclear bodies in PML-
negative cells (Schwanitz and Hemmerich, unpublished
observations).

The formation of stable complexes also raises
problems. Immobilization requires tight control because
it can lead to “pathological immobility” as shown for
nuclear inclusions seeded by the polyQ proteins ataxins
or huntingtin, which immobilize not only themselves
but also important nuclear proteins, such as CBP (Chai
et al. 2002; von Mikecz 2009). Therefore, the models
described above raise the fundamental question how
the stability of a complex is controlled. The regulation
of the stability of a complex in the nucleus may be
conducted through posttranslational modifications or a
“stabilizing” factor (Fig. 7). Such alterations of the
complex may be regulated in a cell cycle-dependent

manner as proposed for many components of the
centromere/kinetochore complex (Hemmerich et al.
2008). We, therefore, propose an “induced stability”
mechanism which allows controlled switching between
dynamic and stable complex formation (Fig. 7).

Self-assembly, self-organization, and assisted
assembly in the nucleus

Are the slowly recovering FRAPs for some nuclear
components evidence for self-assembled nuclear
structures? Self-assembly and self-organization are
the main driving forces to create living systems from
single molecules (Kirschner et al. 2000; Fraden and
Kamien 2000; Gabora 2006; Pelesko 2007; Karsenti
2008). With respect to nuclear organization and
function, self-organization was proposed to be the
major underlying mechanism (Misteli 2001a, b, 2009;
Matera et al. 2009; Rajapakse et al. 2010). Self-
assembly and self-organization are often used inter-
changeably and sometimes in association. In current
literature, the boundary between these two mechanisms
is rather elusive and elastic (Bensaude-Vincent 2009).
Self-assembly implies spatial structuring as a result
of free energy minimization in a closed system (John
and Biar 2005; also called “static self-assembly,”
Pelesko 2007). Thus, self-assembly drives the system
towards the thermodynamic equilibrium, as for
example in phase separation of lipids or the stable
assembly of virus particles from coat protein mono-
mers (Makowski 1980). Tobacco mosaic virus can
self-assemble in a test tube starting only with its basic
protein and nucleic acid components (Fraenkel-
Conrat and Williams 1955; Butler and Klug 1978).
Also, the bacterial ribosome self-assembles. However,
the large and the small subunit must be allowed to
assemble separately first. Once both subunits have
assembled in separate test tubes, they can be combined
forming a fully functional ribosome (Nomura 1973).
Self-assembly is a process in which components, either
separate or linked, spontaneously form ordered aggre-
gates (Whitesides and Boncheva 2004; Bensaude-
Vincent 2009), although every single step is reversible.
Nuclear structures that can be generated spontaneously
by self-assembly in vitro include complete nuclei, the
nuclear envelope, nuclear pore complexes, subcom-
plexes of the replication machinery, kinetochore sub-
complexes, Ul-snRNPs, NuMa scaffolds, prenucleolar
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Fig. 7 Switching between dynamic and stable interactions:
induced stability. The binding of proteins to chromatin (a) or
the interaction between proteins (b) usually occurs dynamically.

bodies, and PML bodies (Table 1). In addition to the
classical four forces (H-bonds, van der Waals forces,
hydrophobic, and charge interactions), nonspecific
(entropic) forces also influence these self-assembly
processes. Entropic forces can induce the formation of
human chromosome territories and position them
appropriately in the nucleus (Finan et al. 2010). Since
self-assembled structures form spontaneously and are
stable, FRAP of their components might be expected to
yield slow recoveries.

Table 1 Evidence for self-assembly of nuclear structures
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A posttranslational modification or binding of a “stabilizing”
factor (red dot) may induce high-affinity interactions that allow
stable complex formation

Self-organization requires a situation far away from
thermodynamic equilibrium in a steady state and is
possible only in open systems with an external energy
source (Gerhart and Kirschner 1997; Toussaint and
Schneider 1998; John and Biar 2005; Halley and
Winkler 2008). Self-organization may also be regarded
as “dynamic self-assembly” (Pelesko 2007). Self-
organizing complexes and self-assembly processes
can also be controlled efficiently either by posttransla-
tional modifications or by chaperone action. The

Self-assembled nuclear structure Biochemical assay

Reference

Nucleus-like structures

Nucleosome

Nucleosome
Chromatin fibers
Mitotic chromosomes
Nuclear lamina
Nuclear envelope
Nuclear envelope
Nuclear pore complex
Nuclear pore complex
Replication machinery
Replication factor C
Kinetochore subcomplexes
Daml complex
Mis12 complex
Ul-snRNP

NuMa scaffolds
Prenucleolar bodies
PML-like bodies

Xenopus cell free extract

Biochemically purified comonents

Xenopus cell free extract
Biochemical purification
Xenopus cell free extract
Biochemical purification
Xenopus cell free extract

CHO cell free extracts

Xenopus cell free extract
Bacterially expressed components
Xenopus cell free extract
Bacterially expressed

Bacterially expressed

Purified components

Bacterially expressed components
Xenopus cell free extract
Bacterially expressed

Xenopus cell free extract

Bacterially expressed

Forbes et al. 1983; Zhao et al. 2000
Ruiz-Carrillo et al. 1979

Noll et al. 1980; Daban and Cantor 1982

Newport 1987; Sheehan et al. 1988
Leforestier et al. 2001
Lohka and Masui 1983

Aebi et al. 1986; Glass and Gerace 1990

Newport 1987; Sheehan et al. 1988
Burke and Gerace 1986

Newport 1987; Sheehan et al. 1988
Lutzmann et al. 2002

Blow and Laskey 1986; Newport 1987

Uhlmann et al. 1996
Gestaut et al. 2010
Westermann et al. 2005
Kline et al. 2006
Hamm et al. 1987
Harborth et al. 1999
Bell et al. 1992
Kentsis et al. 2002
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assembly of NuMa scaffolds in the nucleoplasm for
example is tightly controlled by phosphorylation
(Saredi et al. 1997). Similarly, nuclear lamina self-
assembly is regulated by phosphorylation and methyl-
ation of lamins (Gerace and Blobel 1980; Chelsky et
al. 1989). SUMO-attachment to PML (which harbors
three SUMOylation sites) is a requirement for PML
nuclear body assembly (Ishov et al. 1999; Duprez et al.
1999; Shen et al. 20006), and the number of SUMO
modifications regulates the residence time of PML
molecules at nuclear bodies, ranging from seconds to
hours (Weidtkamp-Peters et al. 2008; Brand et al.
2010). Gradients are used in a number of biological
systems to transmit spatial information over a range of
distances. Intracellular gradients utilize intrinsic auto-
regulatory feedback loops and diffusion to establish
regions of activity, for example within the mitotic
cytosol (reviewed in Fuller 2010). These intracellular
gradients bear several hallmarks of self-organizing
biological systems that designate spatial information
during pattern formation. Since self-organized systems
are dynamic, FRAP of their components might be
expected to yield fast recoveries. However, our model
for nuclear assembly discussed in the preceding section
proposes that initially dynamic assemblies can become
more stable over time or during specific phases of the
cell cycle, yielding eventually slower FRAP recoveries
for some components. Thus, slow FRAP recoveries
could also arise from self-organization or a mixture of
self-organization and self-assembly.

In biological systems, it is obviously very difficult to
clearly separate self-assembly from self-organization. In
vitro, self-assembly and self-organization can act in
concert to create functional large molecule aggregates
(Cuccia et al. 2002; Drain 2002). For example, purified
DNA can be assembled in the test tube into structures
that closely resemble cell nuclei. By combining naked
DNA, cytosol, and light membrane fractions from
Xenopus egg extracts, complete nuclei can be formed,
including nuclear membranes with pore complexes,
and these reconstituted nuclei are capable of normal
nuclear processes (Laskey and Leno 1990; Cross and
Powers 2008). The assembled nuclei are morphologi-
cally indistinguishable from normal eukaryotic nuclei.
Nuclear assembly involves discrete intermediate steps,
including nucleosome assembly, scaffold assembly,
and nuclear envelope assembly, indicating that during
reconstitution nuclear organization is assembled one
level at a time (Newport 1987). The nuclear envelope

contains functional, self-assembled nuclear pore com-
plexes (Sheehan et al. 1988). After envelope assembly,
these artificial nuclei are even capable of DNA
replication (Newport 1987). Notably, nuclear lamina
and envelope assembly in vitro do not require energy
(Burke and Gerace 1986), a hallmark of the self-
assembly process. The inherent ability of a primitive
genome to induce its own inclusion in a membrane has
even led to a model of the origin of eukaryotic cells
solely based on self-assembly mechanisms (de Roos
20006).

We suggest that both self-assembly and self-
organization contribute to the formation and function of
nuclear networks (Table 2). The cellular thermodynamic
ground state is dictated by minimizing the free energy
of intracellular matrices based on self-assembly mech-
anisms (Fraden and Kamien 2000). Depletion attraction
may support self-assembly. Depletion attraction occurs
when aggregation of large complexes increases the
entropy of the system through an increase of small
crowding molecules within the system (Marenduzzo
et al. 2006a). It has been demonstrated in vitro, that
depletion attraction can be used to control the self-
assembly of colloidal particles (Yodh et al. 2001).
Theoretical approaches and experimental evidence
suggest that the same mechanism helps to organize
chromatin architecture in living cells (Marenduzzo et
al. 2006b; Misteli 2009; Finan et al. 2010, this issue).
Our proposal is supported by in silico analyses: When
the formation of protein patterns near membranes of
living cells is analyzed by mathematical modeling,
self-assembly and self-organization eventually lead to

Table 2 Potential assembly mechanisms in living cells

Self-assembly Self-organization ~ Assisted
assembly
Nuclear lamina Chromosome Nucleosome
territory
Nuclear pore complex DNA Replication  Centromere
sites

Nuclear envelope
PML nuclear bodies

Prenucleolar bodies

DNA Repair sites
Transcription sites
Heterochromatin
snRNP pre-complexes Telomere
Centromere pre-complexes  Nucleolus
NuMa Cajal bodies

Speckles
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similar patterns (John and Bar 2005). However, their
evolution occurs on different length and time scales.
Self-assembly produced periodic protein accumulations
below 0.1 um in a few seconds followed by extremely
slow coarsening, whereas self-organization resulted in a
pattern of 100 um within a few minutes (John and Bér
2005). These observations support a model in which
both processes contribute to particular nuclear func-
tions depending on size and required activity. Self-
assembly is required for the formation of kinetochore
subcomplexes (Kline et al. 2006; Gestaut et al. 2010),
which are then incorporated into the centromere by
self-organization (Westermann et al. 2005). Similarly,
nucleoporins self-assemble to pre-complexes before
stable incorporation into the nuclear pore (Lutzmann et
al. 2002). Self-assembly in living cells may also be
crucial to create localized sites of specific enzymatic
activity. For example, enzyme self-assembly is observed
in vitro (Gao et al. 2010) as well as in vivo (Noree et al.
2010). Self-assembly may, therefore, control enzymatic
activity depending on the metabolic status. This may
hold for PML nuclear bodies at which SUMO and
ubiquitin pathways locally and, therefore, probably
efficiently merge in the nucleus (Hakli et al. 2005;
Lallemand-Breitenbach et al. 2008; Sharma et al.
2010).

For essential cellular processes which require precise
timing at well-defined locations, stochastic self-
assembly and self-organizing reactions might not be
sufficiently effective. In these cases, assisting or helper

Monomeres H3/H4 Tetramere Tetrasome,
H2A/H2B Dimers H2A/H2B Dimers
=
w] (7]
N R =
|H4||H4| _—T1—— +DNA

Chaperones

Fig. 8 Nucleosome dynamics based on “assisted assembly.”
During replication nascent DNA is loaded with histones into
nucleosomes. The first step involves formation of an H3/H4
tetramer and two H2A/H2B dimers. In the second step ca.
80 bp of DNA stably associates with the H3/H4 tetramer
together forming the tetrasome. Nucleosome assembly is
completed when two H2A/H2B dimers combine with the
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molecules seem to be required to secure function.
Nucleosomes spontaneously self-assemble in vitro from
biochemically purified components (Ruiz-Carrillo et al.
1979). The in vivo assembly of nucleosomes (Corpet
and Almouzni 2009) and the (re)positioning of
nucleosomes at transcriptional start sites and gene
boundaries (Mito et al. 2007; Dion et al. 2007) are
regulated by chaperones, loading factors, chromatin re-
modeling enzymes, and histone modifiers (Fig. 8)
(Park and Luger 2008a, b). Recent research dedicated
to the question how and when histone variants are
deposited into nucleosomes has for example revealed
that Cenp-A incorporation into centromeric chromatin
requires specific loading factors (Furuyama et al. 2006;
Shuaib et al. 2010). In addition, some processes like
the transport of larger proteins through nuclear pores
will not happen stochastically but require molecular
support by helper molecules like importins (Harel
and Forbes 2004). Being mechanistically overlapping
but clearly different from self-assembly and self-
organization we would like to introduce the term
“assisted assembly” for those complex formation
processes in the nucleus that rely on helper molecules
(Table 2). This model, of course, raises fundamental
questions: When do helper molecules attach to their
substrate during the cell cycle? Do they interact in the
nucleoplasm or at the complex where the substrate will
be incorporated in? Will depletion of the helper
molecule destabilize the complex? The first two
questions will be answered by fluorescence fluctuation

Chromatin

Nucleosome

—_—
A —
Remodelers 1 —
Chaperones
ol
ATP P

tetrasome and ca. 40 bp of DNA (Ruiz-Carrillo et al. 1979).
Adjacent nucleosomes then self-assemble to form chromatin
(Noll et al. 1980). The rigid structure of the nucleosome needs
to be dissociated when active biochemistry, such as transcrip-
tion, repair or replication occurs, or if variant histones (H,,)
need to be incorporated. These processes require remodeling
enzymes, chaperones, modifiers, and energy (ATP)
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microscopy of GFP-tagged chaperones in the future.
The third question has been solved already for Cenp-A.
At least one of its chaperones, HITURP, only appears at
the centromere in early G1 when Cenp-A is incorpo-
rated into centromeric chromatin. Depletion of HJURP
by siRNA abrogates Cenp-A incorporation, leading to
kinetochore malfunction (Dunleavy et al. 2009; Foltz
et al. 2009; Shuaib et al. 2010).

Conclusions

Chromatin-binding proteins are highly dynamic; they
roam the nucleus in an energy-independent manner in
search for high-affinity binding sites, and their residence
times on chromatin are typically in the order of several
seconds. This dynamic behavior is thought to play a
major role in generating combinatorial protein com-
plexes on chromatin which provide a mechanism to
fine-regulate transcription, chromatin organization, and
genomic plasticity (Misteli 2001a, b, 2008). By
analyzing FRAP data of about 264 nuclear proteins,
we identified nuclear factors that do not follow this rule
of highly transient interactions, instead some of them
exhibit residence times in the hours range (Fig. 5).
Thus, although dynamic transient interactions are a
general and important property of nuclear proteins,
they are not universal. Stable complexes may arise
from dynamic ones through a mechanism we coined
“induced stability.” The demonstration in living cells of
two proteins (HA95 and lamin B) which are almost
completely immobile throughout the nucleoplasm may
even reanimate research into the nuclear matrix. In
particular cases, helper proteins support correct com-
plex assembly, a phenomenon we have termed “assis-
ted assembly.” The idea of immobile nuclear entities in
the nucleus was already put forward by Bazett-Jones
and colleagues in 2001 (Hendzel et al. 2001). The
combined action of self-assembly and self-organization
processes may lead to nuclear structures which are
stable for hours. It should be considered in the future
that stable interactions also contribute to the outcome
of physiological cues impacting on nuclear structure
and function. Therefore, “immobile populations”
inferred from FRAP experiments should be studied
in more detail. More examples of stable nuclear
protein networks may surface as the community
continues to perform fluorescence fluctuation micros-
copy on hitherto unexplored nuclear components.
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