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Abstract

There is increasing recognition of the long-lasting effects of tsunamis on human populations.

This is particularly notable along tectonically active coastlines with repeated inundations

occurring over thousands of years. Given the often high death tolls reported from historical

events though it is remarkable that so few human skeletal remains have been found in the

numerous palaeotsunami deposits studied to date. The 1929 discovery of the Aitape Skull in

northern Papua New Guinea and its inferred late Pleistocene age played an important role

in discussions about the origins of humans in Australasia for over 25 years until it was more

reliably radiocarbon dated to around 6000 years old. However, no similar attention has been

given to reassessing the deposit in which it was found—a coastal mangrove swamp inun-

dated by water from a shallow sea. With the benefit of knowledge gained from studies of the

1998 tsunami in the same area, we conclude that the skull was laid down in a tsunami

deposit and as such may represent the oldest known tsunami victim in the world. These find-

ings raise the question of whether other coastal archaeological sites with human skeletal

remains would benefit from a re-assessment of their geological context.

Introduction

Over the past two decades we have become all too familiar with the devastating effects of large

tsunamis on coastal populations and communities [1, 2], with the most notable being the 2004

Indian Ocean (2004 IOT) and 2011 Japan (2011 J) events, responsible for around 230,000 and

16,000 casualties respectively [1, 3]. However, there is nothing new in such tragedies. The
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history and prehistory of the Pacific region is punctuated by catastrophic tsunamis that have

caused death, abandonment of coastal settlements, movement of people both inland and

uphill, widespread loss of coastal resources, onset of warfare, breakdown of trading routes, and

a rich record of oral traditions [4–8]. Geological and biological (micro- and macro-fossils) evi-

dence has proved invaluable for improving our understanding of these past tsunamis through-

out the region [9]. Interestingly though, while often reported in immediate post-tsunami

surveys, vertebrate remains are rare in older deposits [10, 11], and there are few if any reliable

examples of human skeletal remains [12]. This is somewhat surprising given the recognised

catastrophic impact these events have had on human populations [8, 11]. Indeed, experience

from recent events shows us that while in most cases bodies are removed for burial, there are

inevitably many that are simply “missing” [13].

Here we report on the geological context for the Aitape Skull, which was originally discov-

ered during a geological survey of northern PNG in 1929 at Paniri Creek, a location along the

foothills of the Torricelli Mountains some 12 km inland from Sissano Lagoon, where a major

tsunami struck in 1998 resulting in the deaths of more than 2000 people [14]. The site at Paniri

Creek was revisited in 1962 [15] and later by us in 2014. We determine that the sediment in

which this skull was recovered was deposited during a mid-Holocene palaeotsunami. The skull

may be that of a tsunami victim, a signal of the increasing risk exposure of human populations

as they increasingly settled coastal areas of the Pacific during the mid-Holocene.

Prehistoric human occupation of northern PNG

There is currently little known archaeological evidence for significant settlement on the north

coast of Papua New Guinea prior to about 2000 years BP, although people have occupied the

region for at least the past 35,000 years [16]. Prior to the mid-Holocene, northern PNG’s steep

coastal gradient likely ensured that the rocky coastline comprised of the Bewani-Torricelli-

Barida ranges was relatively impoverished in subsistence resources and presented a significant

barrier to intensive Pleistocene use of the coastline. Recorded archaeological sites of this period

are primarily located in upland rockshelters [16–19].

Rapid coastal progradation following the stabilisation of sea level around 6000–7000 years

ago started to create widespread coastal habitats favourable to human subsistence [20]. In the

lower Sepik-Ramu basin (~230 km east of Paniri Creek) there is evidence of human exploita-

tion of these new estuarine resources around 5,800 years BP [21, 22]. Evidence from the Aitape

trough area indicates that these mid-Holocene estuarine environments were around 12–14 km

inland from the present day coast in places (15). While there were most likely few prehistoric

coastal communities in the region, it is reasonable to assume that they would have taken

advantage of the newly forming lagoons and flat and may have relocated into these areas [20].

In settling the area, communities became exposed to living within a tectonically active envi-

ronment and appear to have rapidly developed wide ranging social links [22, 23] that may

have facilitated survival following natural disasters [20]. Indeed, it has only recently been rec-

ognised in the archaeological community that plate tectonics, geomorphology, and environ-

mental change have likely had a powerful role to play in guiding human settlement and culture

in northern PNG [20, 24]. Precursor events to the 1998 PNG tsunami undoubtedly left their

mark.

Paniri Creek and the Aitape Skull

The Aitape Skull was found in the bank of Paniri Creek, about 12 km inland at an elevation of

around 170 feet (~52 m) [15, 25](Fig 1). The site is immediately inland from Sissano Lagoon
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on the edge of the Barida Range that has uplifted ~52 m over the past 6000–7000 years (~1.00

mm/yr)(Fig 1).

Stratigraphically, the skull fragments were within a scoured hollow of an intertidal mudflat.

The sediment-infilled scour was termed a “Fossiliferous Lenticle” (hereafter referred to as "the

lenticle"), and comprised carbonaceous sandy mud interbedded with coconut shell and fibre,

driftwood, other plant remains, marine, intertidal and terrestrial shells and foraminifera [15,

27] (Fig 2). The lenticle was overlain by further intertidal mudflat sediments, about four metres

of colluvial material of mixed origin, and soil (Fig 2A).

Skull fragments were collected from the lenticle in 1929. It has proven to be of remarkable

palaeontological and archaeological interest. Indeed, it is rather striking that the Aitape Skull

Fig 1. Site location and skeletal remains. (a) Location of New Guinea in the Pacific Ocean; (b) General study area in northern PNG (red square–see Fig

1C) with tectonic setting [26], CP: Caroline plate, MT: Melanesian trench, MTB: Mamberamo thrust belt, NBP: New Bismarck plate, NGT: New Guinea trench

(arrows show approx. direction of plate movement); (c) Site of Aitape Skull where Paniri Creek exits the Barida Range approx. 11 km inland from Sissano

Lagoon. Dashed orange line marks approx. edge of approx. 6000–7000 yr. old coastline [20]; (d) Aitape cranium: The early Holocene Aitape frontal bone

(scale bar at lower right is 2 cm).

https://doi.org/10.1371/journal.pone.0185248.g001
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continues to be one of only two examples (the Watinglo mandible from near Vanimo is dated

to c.10,000 years BP [30]) of human remains recovered from any site earlier than the later

Holocene despite more than a century of work in PNG [28, 31, 32] (S1 and S2 Tables).

The skull is incomplete and comprises four major vault fragments: sections of the frontal

including the nasal process, left and right parietals, and probable parts of the left sphenoid

[23]. The initial description [23] continues to be the most detailed study of its morphology and

affinities. It was concluded that the cranium probably derived from a 45 year old female and

was morphologically most similar to recent Indigenous Australians particularly from the south

of the continent. The lenticle was originally inferred to be of Lower Pleistocene age [14] and as

such the Aitape Skull played an important role in discussions about the origins of humans in

Australasia for the next 25 years [33, 34]. However, its importance diminished significantly

once radiocarbon dating of various materials from the locality suggested it was mid-Holocene

in age and that its antiquity had initially been greatly exaggerated [15, 35] (Fig 2E).

Subsequent work [36] has questioned the earlier sex diagnosis [28], proposing instead that

the Aitape Skull remains might be from a male. Regarding its affinities, it was suggested that

the cranium is lightly built (as is the Watinglo mandible) and shows affinities to recent New

Guineans [37]. More recently, however, a metrical study of the partial calvaria tentatively

Fig 2. Paniri Creek study. (a) Stratigraphy of Paniri Creek section showing the Fossiliferous Lenticle (FL) containing the fragments of the Aitape Skull [15,

27, 28]; (b) Paniri Creek bank exposure stratigraphically correlated with earlier work [29], Units 3 and 4 correspond to Fossiliferous Lenticle and are

highlighted by orange text and lines; (c) Diatom salinity preferences and radiocarbon dates for each unit (black solid arrows from 2b and horizontal black lines

define contacts between units; red dots mark depth of 14C samples; dashed black arrows define upper and lower limits for 2d; orange shading and arrows

define the lenticle; (d) Elemental concentrations for Sulphur and Strontium with the shell-rich component of the lenticle containing skull fragments shown

within orange shaded area; (e) Macro-/micro-fossil and radiocarbon data for the lenticle recorded from past field studies in 1929 and 1962; circled numbers

indicate number of species identified in each category reported by respective authors) (Supporting information is provided in S1–S6 Tables).

https://doi.org/10.1371/journal.pone.0185248.g002
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concluded that it most closely resembled Pleistocene-early Holocene crania from Southeast

Australia rather than recent New Guineans or Indigenous Australians [38].

Tsunamis and geomorphological change on a tectonically active

coastline

The northern coast of PNG has a history of at least seven locally significant tsunamis since

1907 [39], with the 17 July 1998 event being the most well-known along this tectonically

active coastline. In 1998, waves of up to 15 m high (flow depth) inundated the Sissano

Lagoon (hereafter referred to as "the lagoon") area (Fig 1) and penetrated up to 5 km inland

[40]. Initially, tsunamigenesis was considered to be by fault rupture with or without co-seis-

mic subsidence [40, 41], but subsequently a Submarine Mass Failure (SMF) origin was

proven [42].

Local tsunamigenesis in the lagoon area is related to its position adjacent to the New

Guinea trench, an active subduction zone on the leading edge of the Australian tectonic

plate, which is in a geologically rapid oblique collision with a number of micro-plates in the

Bismarck Sea [43] (Fig 1B). In particular, convergence between the North Bismarck and

Australian plates is ~70 mm/year with lateral shear of ~100 mm/year. Not surprisingly,

large earthquakes occur frequently in the zone of deformation between these plates, with

rapid uplift of the Barida Range (~1.0 mm/yr) and subsidence of the lagoon in the seaward

Aitape trough (Fig 1C).

Prior to co-seismic subsidence of 1.8–3.6 m during the 1907 earthquake, the lagoon was

a coastal lake [44]–the now semi-enclosing spit was a complete barrier at that time. Indeed,

the shallow lagoon (~1.0 m deep) can be seen as a transient geomorphological feature repre-

senting a balance between high sediment supply and co-seismic subsidence. High volumes

of sediment input from the Yalangi and Bliri (7 km NW of the lagoon) Rivers produce rap-

idly prograding deltas, maintain and enhance the lagoonal spit/barrier, and introduce large

quantities of unconsolidated material to the narrow inner trench slopes that reach 3500 m

deep about 30 km offshore [40]. Co-seismic subsidence of around 40–70 cm was noted in

1998 [40, 45], reducing the surface expression of the enclosing spit. However, it is not only

the interplay between sediment supply to the spit/barrier and co-seismic subsidence that

drives this process. Cores taken following the 1998 PNG tsunami indicate that the main sed-

iment supply infilling the lagoon was from large tsunamis reworking much of the spit and

nearshore sediments during inundation [40].

Materials and methods

Ethics statement

This study was carried out on private land. Permission to conduct archaeological and geologi-

cal survey work was obtained from the Papua New Guinea National Research Institute, the

Papua New Guinea National Museum and Art Gallery, the Sandaun provincial government

(Vanimo), the Aitape-Lumi district administration, and the Aitape-Lumi West LLG manager

(John Akove). Permission to collect samples was obtained from John Sairi, the owner of the

land on which the Paniri Creek site is located. Field studies did not involve endangered or pro-

tected species.

No new fossil or archaeological specimens were collected as part of this study and the work

is based upon evidence reported from earlier publications. Geological material only was col-

lected during this study and all relevant material is held at the Field Museum of Natural His-

tory in Chicago.
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Paniri Creek studies

In 1929, stratigraphy was interpreted in the field. Macrofossil samples including the Aitape

Skull were taken for visual identification in the laboratory. Foraminifera were processed by

“floatings” with no further details given [14, 27, 28] (S3 and S4 Tables). Macrofossils and fora-

minifera sampled in 1962 were processed by the same methods [15] (S5 Table).

In 2014, samples were taken at around 2 cm intervals throughout the streambank section at

the immediate juncture of the Kiyen and Kangkonggalle Creeks where they flow into Paniri

Creek, estimated to be within 200–300 meters of the original skull site [15] (Fig 1, p. 162: “The
soft fossiliferous mudstone that contained the human remains outcrops in most of the creeks
where they leave the hills and enter the plains”). Organic matter content (LOI) was determined

on a dry weight basis by ashing at 550˚C for 4 h [46]. Samples for grain size analysis were first

treated with hydrogen peroxide to remove organic matter and then analysed by laser diffrac-

tion using a Malvern Mastersizer 2000. A suite of grain size parameters were calculated using

GRADISTAT software [47], including percentages of sand, silt and clay, graphic mean, skew-

ness and kurtosis [48]. LOI and grain size data were analysed specifically to help determine

that nature of deposition, a useful indicator in helping to differentiate between storm and tsu-

nami sediments [5].

Semi-quantitative geochemical analysis was conducted using a Niton Goldd+ handheld

XRF unit. Samples were dried and then finely powdered using an agate mortar and pestle.

For each sample, 5 gm of the resulting powder was weighed into an XRF sample cup, firmly

tamped down and measured twice using the instrument’s “Mining Cu/Zn” mode for a total

of 110 seconds per sample (varying beam energy and voltage to measure low, medium, and

high mass elements). The resulting averaged fundamental parameters values were then cal-

ibrated against a set of 12 USGS and NIST certified powdered rock and sediment standards

as well as New Ohio Red Clay, a powdered commercial clay widely utilized in archaeo-

metric studies with well measured concentrations. Two powdered standards (NIST679

‘Brick Clay’ and USGS SDC-1 ‘mica-schist’) were run with each batch of samples to moni-

tor instrument performance. 21 elements were consistently measured in the samples (Al,

Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, and Pb; with relevant S

and Sr data produced in Fig 2). When used in conjunction with other analyses, variations

in elemental geochemistry can be a key indicator of not only marine, but more specifically,

tsunami inundation [5].

Diatom samples were prepared following standard methods [49]. The identification of spe-

cies was based on standard diatom floras [50–52]. Diatom assemblages in coastal sediments

vary depending upon the depositional process involved. These data coupled with sedimentary

and geochemical evidence help to better identify the nature of such events.

AMS dating was conducted at the University of Georgia Center for Applied Isotope Studies

(CAIS). Dates were calibrated in OxCal v. 4.2 using the SHInt13 Southern Hemisphere calibra-

tion curve (Fig 2C). Little if any macroscopic organic material was identified in the Paniri

Creek samples, with the exception of a handful of small shell and charcoal fragments embed-

ded directly in the face of unit 4, profile 1. These materials returned recent dates that likely

reflect embedding during flooding of the stream bed and as such have not been included in the

main text. All other C-14 measurements reflect bulk carbonate extraction from sediment (S1

Table). Four earlier radiocarbon samples collected in 1962 were analysed at DSIR Institutes of

Nuclear Sciences, New Zealand (three) and Gakushuin University, Japan (one). No further

details are provided [15, 25] (S2 Table).
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Paniri Creek and the Aitape Skull—Analysis and interpretation

Three sets of micro- and macrofossil assemblages were collected and examined by original

team members, two in 1929 and one on a later visit in 1962 [14, 15, 28] (Fig 2E; also refer to SI

for details of all gathered material). Macrofossils and vegetation were typically of Indo-Pacific

lagoonal origin, with none of the common shallow water Indo-Pacific foraminifera present.

The remaining foraminiferal species were mostly characteristic of nearshore waters with one

from the deeper continental shelf. The interpretation was of deposition in a coastal mangrove

swamp inundated by water from a shallow sea [15].

Our recent resampling from near the original skull find site [29], has provided an opportu-

nity to better understand the depositional environment and context for the lenticle through

grain size, geochemistry and diatom analyses (Fig 2; S3 Table). This finer resolution study

extends that of earlier work [15]. The lenticle represents a higher energy, markedly marine

incursion into an alternating coastal lake/river system with little or no saltwater influence (sim-

ilar to the pre-1907 lagoon). This incursion precipitated an environmental change leading to a

more open lagoonal system. The change was most likely caused by erosion of the coastal barrier

as noted in more recent events [40]. Subsequent colluvial activity and uplift gradually isolated

the site from the sea (Fig 2). Of particular note within the lenticle is a multi-proxy record includ-

ing sediments and a diatom assemblage remarkably similar to those of the 1998 PNG tsunami

[32, 40, 53], a geochemical signature indicative of downward leaching of saltwater elements (S,

Sr) into the underlying sediments [54], and a record of deep benthic foraminifera (Fig 2). This

unique combination of shallow- and deep-water sediments and intact microfossils points to a

tsunami as opposed to a storm origin [5]. As a tsunami moves through the deep ocean, it can

disturb and entrain material from as much as 1-km depth [55], well below any storm wave base.

As such the multi-proxy evidence presented here is indicative of sediments laid down by a tsu-

nami [5].

The oldest tsunami victim in the world?

The ultimate interpretation of the general depositional setting for the Aitape Skull from earlier

studies (using primarily bivalve, gastropod and foraminiferal data; S3–S5 Tables) was that of a

coastal mangrove swamp, probably exposed at low tide and inundated at intervals by water

from a shallow muddy protected sea [15]. More specifically, the skull was found in “a lenticle

representing sedimentation in a scour in a mangrove swamp”, with an age of around 5335–

6180 years BP [15, 25] (S2 Table). A recent re-analysis of the original data, coupled with addi-

tional material from grain size, diatom, geochemical and radiocarbon data (S1 and S6 Tables)

has highlighted the unique nature of the lenticle in that it represents a notably high energy

marine incursion into an essentially freshwater coastal lake as opposed to lagoon. Further

radiocarbon dating places the age around 6300–7000 years BP.

Comparison with the known geomorphological history of Sissano Lagoon suggests that initial

post mid-Holocene progradation of northern PNG occurred across the edge of the Aitape trough

and this undoubtedly affected the coastal lake/lagoonal environment of the Aitape Skull. Indeed,

the transformation from lake to lagoon around 6000 years ago mirrors that reported for the

lagoon in 1907. We were unable to determine any subsidence associated with the skull setting,

but the unique introduction of marine sediments that encased the Aitape Skull is consistent with

conditions reported following the 1998 PNG tsunami [40, 53]. Subsequent environmental condi-

tions diverge from those experienced on the Aitape trough, with rapid ongoing uplift starting

possibly immediately during (co-seismic) or sometime after inundation.

We seek to modify the original interpretation [15] that the site was “probably exposed at

low tide and inundated at intervals by water from a shallow muddy protected sea” to “a coastal
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brackish/freshwater lake inundated on at least one occasion by a high-energy marine incursion

across a shallow sea”. Given the active tectonics of the region and the historical record of fault

rupture/SMF tsunamigenesis [40, 42, 45], and similarities with evidence from the 1998 PNG

event [40, 53, 56] we consider that the marine incursion represents inundation by a tsunami

around 6000–6500 years ago.

Our reinterpretation of the environmental context at Paniri Creek thus warrants a reinter-

pretation of how the Aitape Skull arrived at its place of final deposition. Three possible mecha-

nisms may be proposed. Firstly, the Aitape Skull could represent a victim killed during

palaeotsunami inundation itself. While victims of recent tsunamis including the 2004 IOT

have typically been recovered largely intact, and therefore would enter the archaeological

record in an articulated state, there are reasons to believe that similar events on the north coast

of PNG might produce scattered and disarticulated remains.

During the 1998 PNG event, the resulting tsunami wave was largely clean of sediment until

it reached the beach and only had 200 m of low-lying spit to traverse before entering the

lagoon [40]. It was consequently moving more rapidly than many other recent tsunamis (~40

mph at 200 m inland and probably faster at the beachfront [57, 58],–for similar distances

inland, tsunami speeds have been: ~15 mph—2004 IOT in India and Thailand [59, 60], ~20

mph– 2011 J [61], ~10 mph– 2009 Samoa [62]), and at an unusually sustained speed that on

land adjacent to the lagoon was still ~25 mph some 600 m inland [58]. Once on land, the wave

was able to entrain a considerable quantity of sand, building debris and trees, causing death by

sand blasting, dismemberment, impact and drowning [40, 63, 64].

In such environments, many bodies become buried in sediment sinks (the lagoon) and are

unlikely to be retrieved [65]. Following the 1998 PNG event, attempts to retrieve victims from

the lagoon were called off a week after the tsunami because crocodiles were feeding on the

corpses, but dismembered bodies continued to be found in subsequent days [66, 67]. A similar

set of events during the mid-Holocene could account for the Aitape Skull. It should be noted

also that Hossfield spent only four hours at the Aitape Skull site, and notes that the search for

further human remains was “not exhaustive” [27].

Secondly, past mortuary tradition in the Aitape area included such practices as dismember-

ment, curation of skulls after defleshing, and above ground ossuaries [68]. The skull may there-

fore represent the remains of a near-contemporaneous burial of an individual previously

buried or exposed on the incipient coastal flats north of the Paniri Creek site. However, it is

notable that following the 1998 PNG event, one of the authors (JG) observed that bodies buried

in a modern cemetery were not entrained even though all the sediment above them had been

removed by the tsunami.

A third alternative is that the skull represents either a more recently emplaced individual

(i.e., within the last few hundred years), or a much older burial that was washed out during the

Paniri tsunami event. We hold both of these possibilities to be unlikely. While units 3–4 in our

2014 profile did produce two relatively recent dates on organic material from near the profile

face (see supplemental material), these units are bracketed by a consistent set of dates placing

this overall part of the 2014 Paniri sequence firmly in the mid-Holocene. As the deposit is cur-

rently 12 km inland, it is unlikely that the tsunami represented in these units is of later age.

Given the rapid rate of deposition evident in the Paniri sequence, if the individual in question

had been buried far earlier than the tsunami event preserved at Paniri Creek, it is less likely

that they would have been washed out during the event.

Therefore, on balance, we would argue that the individual in question was either directly

killed in the mid-Holocene tsunami, or redeposited from a burial dating to slightly earlier than

the Paniri event. Given that the skull is not fossilized [38], it might be possible to directly
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radiocarbon date it in the future to demonstrate or refute a chronological assignment to the

mid-Holocene, assuming diagenetic effects [69] can be accounted for.

It seems reasonable to suggest that as people in the SW Pacific began to occupy coastal envi-

ronments during the mid-Holocene, they would have been increasingly impacted by environ-

mental risks including tsunamis like the one we have documented at Paniri Creek. Coupled

with other risk factors such as intensification of the El Niño/Southern Oscillation (ENSO)

cycle that also occurred during this time [70, 71, 72], tsunamis may have contributed to a

much more dynamic world of community and individual mobility and an increasing reliance

on risk-mitigation strategies including the fostering and maintenance of wider-ranging social

ties, and therefore likely played a significant role in the spread of materials and new ideas and

practices throughout the SW Pacific as documented in the mid-Holocene archaeological

record.

While it may never be possible to definitively assign the Aitape Skull as the earliest tsunami

victim in the world, this reassessment of the existing work indicates that the Sissano Lagoon

region may well contain an extensive Holocene record of human interactions with catastrophic

events such as tsunamis. Further research is therefore needed to determine that nature and

extent of these interactions.
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