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ABSTRACT: Absorption and fluorescence spectroscopy techni-
ques provide a wealth of information on molecular systems. The
simulations of such experiments remain challenging, however,
despite the efforts put into developing the underlying theory. An
attractive method of simulating the behavior of molecular systems
is provided by the quantum−classical theoryit enables one to
keep track of the state of the bath explicitly, which is needed for
accurate calculations of fluorescence spectra. Unfortunately, until
now there have been relatively few works that apply quantum−
classical methods for modeling spectroscopic data. In this work, we
seek to provide a framework for the calculations of absorption and
fluorescence lineshapes of molecular systems using the methods
based on the quantum−classical Liouville equation, namely, the
forward−backward trajectory solution (FBTS) and the non-Hamiltonian variant of the Poisson bracket mapping equation (PBME-
nH). We perform calculations on a molecular dimer and the photosynthetic Fenna−Matthews−Olson complex. We find that in the
case of absorption, the FBTS outperforms PBME-nH, consistently yielding highly accurate results. We next demonstrate that for
fluorescence calculations, the method of choice is a hybrid approach, which we call PBME-nH-Jeff, that utilizes the effective coupling
theory [Gelzinis, A.;et al. J. Chem. Phys. 2020, 152, 051103] to estimate the excited state equilibrium density operator. Thus, we find
that FBTS and PBME-nH-Jeff are excellent candidates for simulating, respectively, absorption and fluorescence spectra of real
molecular systems.

I. INTRODUCTION
Spectroscopy experiments remain the most valuable tool for
investigating the properties of molecular systems.1−4 From the
experimental point of view, perhaps the most straightforward
are the absorption and fluorescence measurements, but
theoretical simulation of the outcomes of these experiments,
especially fluorescence, is a challenging task. Several formally
exact methods have been developed to calculate the absorption
and fluorescence lineshapes: the hierarchical equations of
motion (HEOM) approach5,6 and the stochastic path integral
(SPI) method.7 However, these methods require an impracti-
cally large amount of computational resources for simulations
of larger molecular systems, implying the need for simpler and
faster, albeit approximate, schemes. By far the most widely
used approximate approaches are based on the quantum
master equation (QME) and the cumulant expansion.1,3,8−15

Only recently the calculation of optical lineshapes has been
approached using completely different methodsthe time-
dependent variational approach,16,17 the density matrix
renormalization group algorithm,18 the reaction-coordinate
master equation,19 and the quantum−classical theory.20
The main advantage of the quantum−classical approaches is

that they constitute a complete simulation tool, in principle
being applicable to any system observable. In addition, the

quantum−classical theory explicitly accounts for the state of
the bath, which has to be done to simulate fluorescence or
nonlinear spectroscopic experiments. This is contrary to QME-
based approaches, where accounting for the effects of
entanglement between the system and the bath is problem-
atic.21,22 Indeed, current efforts to apply the QME to nonlinear
spectra have to circumvent this issue, e.g., using the frozen
modes scheme for the slow bath degrees of freedom.15 All this
implies that the quantum−classical theory holds great promise
for cases when different spectroscopic experiments (absorp-
tion, fluorescence, etc.) of a particular system have to be
simulated at the same or similar theoretical level to extract
model parameters. However, the quantum−classical theory has
only been applied to calculations of the fluorescence lineshapes
in its simplest formusing the mean-field framework23,24 or
the surface hopping method.25 In search of a method that is
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more accurate than the mean-field theory and is less
computationally demanding than the surface hopping scheme,
we adapt the methods based on the quantum−classical
Liouville equation3,26 (QCLE). Our goal is twofold. First, we
provide a theoretical framework for calculations of both
absorption and fluorescence spectra for the QCLE-based
approaches. Second, we investigate the accuracy of such
methods to provide definite recommendations regarding their
applicability for real molecular systems.
In the first part of this paper, we apply the forward−

backward trajectory solution27 (FBTS) and the non-Hamil-
tonian variant of the Poisson bracket mapping equation28

(PBME-nH) to the calculation of absorption lineshapes of
molecular aggregates. We choose two systems for benchmark-
inga molecular dimer and the well-known Fenna−
Matthews−Olson (FMO) photosynthetic complex, which is
often used as a benchmark system for comparison of
theoretical approaches. We base our calculations of FMO on
a recently proposed structure-based model.29 To obtain
formally exact results for comparison, we rely on the
aforementioned HEOM approach5 and the SPI method.7 We
find that the FBTS and PBME-nH yield very similar lineshapes
of excellent accuracy as long as a dimer is considered.
Calculations of the FMO complex, on the other hand, clearly
indicate that the FBTS is more accurate than PBME-nH for
large systems.
The next part of this work presents the calculations of

fluorescence lineshapes, again for a dimer and the FMO
complex. We propose two hybrid approaches, which we call
FBTS-Jeff and PBME-nH-Jeff, that utilize the effective
coupling theory30 to estimate the excited state equilibrium
density matrix required for fluorescence calculations. The
results imply that for calculations of fluorescence, the method
of choice is PBME-nH-Jeff as it yields accurate results while
remaining effective in terms of computational time. All of the
methods performed quite well when calculating a dimer, but in
the case of the FMO complex, the FBTS and FBTS-Jeff lead to
qualitatively incorrect lineshapes. Meanwhile, PBME-nH tuned
out to be applicable only in the high-temperature regime (T =
300 K), and it required two orders of magnitudes more
computational time than PBME-nH-Jeff.
We therefore propose that for deep investigations of a

particular system, a combination of FBTS for absorption and
PBME-nH-Jeff for fluorescence is recommended.

II. THEORY
II.I. Definition of the System. In this work, we consider

the Frenkel exciton model31 for an electronic subsystem
coupled to a harmonic bath with the following Hamiltonian
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The first line corresponds to the subsystem Hamiltonian ĤS,
while the sums in the second line are the bath Hamiltonian ĤB
and the subsystem−bath interaction Hamiltonian ĤSB. Further,
Nel is the number of electronic states in the subsystem, |n⟩
denotes the state where only the nth site is excited, εn is the
corresponding excitation energy, and Jmn is the Coulombic
resonance coupling between the corresponding excited states.
The bath oscillators are assumed to be uncorrelated, and the

frequency of the vth oscillator interacting with the nth
electronic level is denoted by ωnν. The dimensionless
coordinate and momentum operators of the oscillators are
denoted by R̂nν and P̂nν, respectively, and the double sums are
over all oscillators and electronic levels. Finally, parameter dnν
is the dimensionless system−bath coupling constant deter-
mined from the spectral densities
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The total system−bath coupling strength is measured by the
reorganization energies
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We used two different models for the spectral density in our
calculations, which, for simplicity, is taken to be the same for
all the sites. First, the Debye spectral density1,3
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which is often employed for calculations due to the resulting
exponential correlation function;12,19,32−36 here, γ−1 is the bath
relaxation timescale. Second, we used the B777 spectral density
that was obtained from the fits of the fluorescence line-
narrowing spectrum of the bacteriochlorophyll B777 complex8
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Here, S is the Huang−Rhys factor that has to be chosen
according to the system under consideration. It is related to the

reorganization energy by s s( )S
s s
72
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density has been widely employed by Renger and co-workers
for studies on a number of photosynthetic complexes.37−40

II.II. Quantum−Classical Methods. Combining the
methods of quantum and classical dynamics may be
approached in several ways, and one of them is based on the
quantum−classical Liouville equation3,26 (QCLE)
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Here, {·,·} denotes the Poisson brackets, and the index “W”
refers to the partial Wigner transform3,26 of the corresponding
quantity with respect to the bath degrees of freedom. The
transformed density matrix ρ̂W(Q, P, t) and the Hamiltonian
ĤW(Q, P) act as operators only in the subsystem Hilbert space.
Their elements become functions of the bath phase-space
variablesthe set of coordinates Q and momenta P of the bath
oscillators. It is important to note that the QCLE is exact in the
case of a harmonic bath that interacts linearly with the
subsystem degrees of freedom, as in eq 1.
A large number of bath degrees of freedom required to

simulate a realistic environment precludes solving the QCLE
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directly, therefore, an approximate approach is needed. The
first such approach adopted in the present work is the
forward−backward trajectory solution27 (FBTS) proposed by
Hsieh and Kapral. The FBTS is essentially a path integral-like
solution of the QCLE that utilizes the mapping basis41−43 to
describe the subsystem in terms of fictitious harmonic
oscillators with well-defined coordinates q and momenta p.
Working in the mapping basis allows one to calculate the
(infinite number of) intermediate integrals analytically and
obtain the following result27 (here given for an arbitrary
operator ÂW)
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Here, Amm′
W (Q(t), P(t), 0) is the element (m, m′) of the initial

operator ÂW where the bath coordinates and momenta are
taken at time t. We note that the derivation of the FBTS
requires effectively doubling the subsystem Hilbert space so
that each subsystem state is described by a pair of fictitious
oscillators whose phase-space variables are (q, p) and (q′, p′).
The evolution of the subsystem and bath phase-space
coordinates is calculated using a set of Hamilton’s equations
that are classical in nature and scale linearly with increasing
bath size. We refer the reader to the original works27,44,45 for
the detailed derivation and analysis of FBTS.
Another quantum−classical method applied in our study is a

variant of the Poisson bracket mapping equation28,46−48

(PBME). This method bears a close similarity to the FBTS
as its derivation yields an expression for the evolution of a
partially Wigner-transformed operator similar to the FBTS
formula (eq 8). In the PBME framework, however, each
subsystem state is mapped to only a single fictitious oscillator.
An improvement of the original version46 of PBME has been
proposed in ref 28, whereby Hamilton’s equations for the
evolution of the phase-space variables are complemented with
an additional term. This modified approach, called PBME-nH,
has been shown to provide more accurate results when
calculating the system dynamics than the original PBME in all
of the tested cases.28 The FBTS is also more accurate than the
PBME in most of the cases as demonstrated in our previous
work.49 We therefore applied the PBME-nH variant for
calculating the optical spectra, and the original PBME variant
was not considered.
II.III. Calculation of Absorption Spectra. According to

the response function theory, the absorption lineshape of a
system is given by1,3
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Here, we omit the dimensional prefactor of ω/2ℏϵ0cnr, where
ϵ0 is the electric permittivity of vacuum, c is the speed of light,
and nr is the refractive index of the sample. Further, ⟨·⟩or
denotes the orientational averaging (we assume an ensemble of
molecules randomly oriented with respect to the polarization

of the incident light), and Cd−d(t, t0) is the dipole−dipole
correlation function
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Here, σ is the polarization of the incoming light pulse, and
μ̂I(t) is the dipole moment operator in the interaction picture
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The dipole moment operator describes the optical coupling
between the excited and the ground states, and it may be
expressed as
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where we assume μ0n = μn0. The time evolution of this operator
may be calculated by directly applying the FBTS or PBME-nH
formula.
The initial conditions for our simulations were chosen such

that the subsystem is uncorrelated to the bath at t = t0, when
the absorption experiment starts. Therefore, the initial density
matrix may be factorized into subsystem and bath parts

t t t( ) ( ) ( )0 S 0 B 0ρ ρ ρ̂ = ̂ ̂ (13)

with the same factorization holding for the initial partially
Wigner-transformed density matrix. The subsystem is taken to
occupy the ground state at t = t0, which may be expressed as
ρ00(t0) = 1 and ρmn(t0) = 0 for m, n = 1, ..., Nel. The bath
oscillators are taken to be in thermal equilibrium initially, so
that the canonical energy distribution may be assumed,
resulting in
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where nν is the partition function for the oscillator with
frequency ωnν and β = 1/(kBT). Carrying out the Wigner
transformation, one arrives at the expression1
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In the quantum−classical framework, eq 10 is given by
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Here, the total trace with respect to the bath and the
subsystem is split into a trace with respect to the subsystem
space (denoted by TrS) and integration over the bath phase-
space variables. We note that the FBTS and PBME-nH
expressions for μ̂I(t; Q, P) contain an integration over the
subsystem variables q, p, q′, and p′ (see eq 8); this integration
may be performed together with the integration over Q and P
in eq 16 by means of Monte Carlo (MC) sampling.

II.IV. Calculation of Fluorescence Spectra. The formula
for the stationary fluorescence lineshape may be rigorously
derived from the perspective of quantum electrodynamics,1,50

and the resulting expression is very similar to eq 9 with the
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exception of a different sign in the exponent (neglecting the
dimensional prefactor of ω3/3π2ℏϵ0c

3)
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Parameter t1 appearing in the correlation function denotes the
moment the system has reached the excited state equilibrium
after being excited with an infinitely short laser pulse at some t
= t0 < t1. Calculation of the fluorescence spectrum thus
requires calculating the excited state equilibrium density
operator ρ̂W(Q, P, t1) (see eq 16). However, direct calculation
of this quantity using FBTS or PBME-nH turns out to be
inefficient due to slow convergence.49 This issue may be
circumvented by means of an approximation: We may assume
that the system−bath correlations may be neglected in the
excited state so that eq 13 holds at t = t1 as well. Under this
assumption, we have

Q P t Q t P t t( , , ) ( ( ), ( ), )B
W

1 B
W

1 1 0ρ ρ= (18)

that is, we identify the bath density matrix at time t1 with the
distribution of bath coordinates and momenta propagated
using Hamilton’s equations to time t1. Meanwhile, the
equilibrium subsystem density matrix may be calculated by
propagating projectors |m⟩⟨n| since

n mTr( )mn
S Sρ ρ= | ⟩⟨ | ̂ (19)

The projectors may be propagated efficiently using FBTS or
PBME-nH because they are pure subsystem operators, and no
convergence issues arise.49 The dipole−dipole correlation
function is therefore calculated using the formula
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where we used the fact that ρ̂S
W(t1) ≡ ρ̂S(t1). We note that σ is

understood here as the polarization vector of the emitted light.
It should be noted that factorization of the full density

matrix to a subsystem and bath parts at t = t1 may be
inadequate for strongly delocalized systemssuch as the
bacterial light-harvesting system31 (LH2)as has been
demonstrated in ref 12. On the other hand, the quantum−
classical framework allows one to evolve the bath density
operator until the excited state equilibrium is reached.
Consequently, the subsystem−bath interaction effects are
incorporated into ρB

W(Q, P, t1), which is not the case if we
simply assume a canonical distribution for the bath, ρ̂B(t1) ∝
e−βĤB.
Let us summarize the algorithm for calculating the

fluorescence spectra using FBTS or PBME-nH. First, we
generate a set of variables q, p, q′, p′, Q, and P and propagate
the subsystem projector operators until equilibrium is reached
to obtain ρ̂S(t1). Since the bath oscillators are propagated
simultaneously with the subsystem variables, the bath density
matrix ρB

W(Q, P, t1) is obtained in the process as well. The
propagated bath coordinates Q(t1) and P(t1) are then kept,
whereas the values of the subsystem variables q(t1), p(t1),
q′(t1), and p′(t1) are discarded, and a new set is generated to
prepare for the calculation of the dipole moment operator.
Next, we propagate the dipole moment operator for a set
period of time that ensures that the correlation function will
have decayed considerably by the end of this period. According

to the MC integration method, all of the described operations
have to be repeated numerous times with different initial
conditions, and the results should be averaged. Having
obtained the averaged dipole−dipole correlation function, it
only remains to perform its Fourier transform as given by eq
17 (note that in an actual calculation we may conveniently set
t1 = 0). A detailed description of this algorithm may be found
in the Supporting Information.
Finally, we note that the orientational averaging present in

eqs 9 and 17 may be performed analytically if we assume that
all orientations of the dipole moments with respect to the
polarization are equally probable. The result is just a constant
factor51

t Q P t t Q P t( ( ; , ) )( ( ) )
1
3

( ; , ) ( )I I
1 or

I I
1μ σ μ σ μ μ⟨ ̂ · ̂ · ⟩ = ̂ · ̂

(21)

The source code of the package that we wrote to perform the
calculations is available on Gitlab.52

II.V. Application of the Effective Coupling Theory.
The FBTS and PBME-nH are approximate methods, and
depending on the system parameters they may yield the
equilibrium system density matrix with high error.28,44,49 The
error in the calculation of the fluorescence spectra may
possibly be reduced if we find a more accurate way of
estimating the value of ρ̂S(t1), as was suggested in ref 53. The
equilibrium state of a molecular system has been investigated
in ref 30, where it is shown that, to a good approximation, the
equilibrium subsystem density operator is given by the familiar
Boltzmann distribution

t( )
e

Tr(e )

H

HS 1
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eff
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β

β

− ̂

− ̂
(22)

calculated using the following effective Hamiltonian

H H He eJeff
/6 /6̂ = ̂ − Λ̂ + ̂ε

β β− Λ̂ − Λ̂
(23)

where Ĥε and ĤJ are, respectively, the diagonal and off-
diagonal parts of ĤS, and Λ̂ = diag({λn}). As we can see, the
influence of the bath comes down to a change of the resonance
couplings between subsystem states. Even though formula 23
presents an approximation that breaks down in the limits of
low temperatures, fast baths, or very strong subsystem−bath
interaction strengths,30 its range of applicability is a rather
broad one. In all of the regimes of a dimer model studied
below, this effective coupling theory predicted the values of the
elements of ρ̂S(t1) with an error of less than 5% of the exact
value (calculated using HEOM). We will refer to the basis in
which Ĥeff is diagonal as the global basis (GB).
We may thus come up with the hybrid approaches, which we

will refer to as FBTS-Jeff and PBME-nH-Jeff, whereby the
general algorithm remains largely the same, but ρ̂S(t1) is
calculated using eq 23 rather than FBTS of PBME-nH. Note
that we nevertheless have to propagate Hamilton’s equations
until the excited state equilibrium is reached to obtain ρB

W(Q, P,
t1) (see eq 18). Further testing of these hybrid approaches has
also revealed that the most accurate results are obtained if the
subsystem phase-space variables are not discarded after the
equilibrium is reached, but are kept and continued to be
propagated in the second phase of the algorithm, when the
dipole moment operator is being calculated. The suggestion of
such hybrid approaches is one of the key novelties of the
present work.
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III. RESULTS
In this section, we present the results of calculations of
absorption and fluorescence spectra obtained using the
methods introduced in the previous section. We have
thoroughly investigated the accuracy of these methods in the
case of a molecular dimer. We chose a set of “default”
parameters of a dimer

J

T

100 cm , 100 cm , 60 cm , 100 fs,

300 K, (1, 0, 0) D, (0, 1, 0) D

1 1 1 1

01 02μ μ

ε λ γ= = = =

= = =

− − − −

(24)

and calculated the spectra varying one of the parameters while
keeping others fixed. In eq 24, we defined the energy gap ε ≡
ε2 − ε1, and the corresponding system Hamiltonian is thus
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The energy gap between the lowest excited state and the
ground state was set to 15 000 cm−1, and it was accounted for
by a corresponding shift of the final spectrum.
To investigate a more realistic example, we performed

calculations of the FMO complex of Prosthecochloris aestuarii
for a set of temperatures. The FMO complex, which is found as
a trimer in vivo, acts as an energy conduit between the
chlorosome and the reaction centers in the green sulfur
bacteria.56 We have used a simplified structure-based model
from ref 29 and considered FMO as a monomer, which has a
pigment distribution shown in Figure 1. The energies of the

pigments along with the standard deviations of the Gaussian
energy distributions were taken from ref 29. The resonance
couplings between the pigments were calculated as the charge
interaction energy using atomic coordinates 3eoj PDB
structure54 and the atomic transition charges given in ref 29.
The excited state Hamiltonian elements are listed in Table 1.
We have used the B777 spectral density (eq 5) with S = 0.5 as
in ref 29. The transition dipole moments of BChl molecules,
listed in Table 2, were calculated using atomic coordinates 3eoj
PDB structure54 and the atomic transition charges given in ref

29. Following ref 29, in our calculations of absorption spectra
we assumed that 65% of the FMO complexes present in the
sample consist of seven BChl molecules, and only 35% of the
complexes feature all eight BChls. Our results thus represent a
weighted sum of such calculations.
We used 106 MC samples for the quantum−classical

calculations unless noted otherwise, and the spectral density
was cut off and discretized according to the conclusions of our
previous analysis.49 Other methods that we used for
comparison include the HEOM approach,6 which is formally
exact for the Debye spectral density, eq 4, the approximate ctR
method,14 which was shown to be both fast and accurate, and
the SPI method,7 which allowed us to obtain formally exact
absorption lineshapes for the FMO complex modeled using the
B777 spectral density, eq 5. HEOM calculations were
performed using a sufficient number of exponential terms in
the expansion of the correlation function so that the accuracy
criterion established in ref 58 is satisfied, while the depth of the
equation hierarchy was being increased until convergence.
Note that for calculations of absorption spectra, instead of ctR
we could have used a spiritually similar full-cumulant
expansion (FCE) method,7,59 which can account for coherence
transfer in the system. This is an advantage of FCE over ctR
(the latter being based on the cumulant expansion as well),
although it comes at an increased numerical cost. In our dimer
calculations, no coherence transfer is possible, however, due to
perpendicular transition dipole moments. A brief comparison
of the absorption spectra calculated using FCE and ctR is given
in the Supporting Information.

III.I. Absorption. III.I.I. Dimer. Figure 2 shows the
absorption spectra of a family of dimers calculated using the
Debye spectral density and without energy disorder. Variation
of the energy gap is displayed in Figure 2a. The FBTS and
PBME-nH results are close to being identical, and they are
highly accurate. For smaller energy gaps (ε = 0, 200 cm−1), the
ctR approach is less accurate than the quantum−classical
theory at estimating the intensity in the region around the
saddle point.
Analysis of the different strengths of the resonance coupling

and the coupling with the environment is provided in Figure
2b,c. There, the FBTS yields accurate results even for strong
couplings, although the FBTS has been demonstrated to be
inapplicable for calculations of system dynamics in these
regimes.49 This may be attributed to the fact that the optical
response function of a dimer decays within ∼200 fs in the
mentioned cases, and at such short times, the quantum−
classical theory remains reasonably accurate. The PBME-nH
results are again very similar.
For “faster” baths (γ−1 = 35 fs), the quantum−classical

theory is less accurate compared to when the relaxation time is
greater (γ−1 = 300 fs), but qualitative agreement with the exact
results is ensured in both cases (see Figure 2d). In the former
case, the FBTS captures the positions of the peaks slightly
better than the PBME-nH. For slow baths, both methods yield
almost identical lineshapes, which appear to match the HEOM
results more closely than those calculated using ctR. The
temperature dependence of the accuracy is shown in Figure 2e.
The quantum−classical methods yield rather accurate results
even for T = 100 K, despite this low-temperature regime
already being outside of the range of applicability of FBTS
when calculating system dynamics.49 However, if the bath
temperature is lowered to 20 K, the quantum−classical
methods overestimate the widths of the spectral bands, and

Figure 1. Pigment organization and numbering of the monomeric
FMO complex of P. aestuarii. Structural data taken from the 3eoj PDB
structure.54 The eighth BChl molecule is denoted with a prime
because formally it belongs to another monomer in the FMO trimer.
BChl molecules are depicted as porphyrins for clarity. The figure is
created using UCSF Chimera.55
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quantitative correctness is lost. On the other hand, the ctR
approach leads to a different curve, which is in excellent
agreement with the exact lineshape.
Overall we find that for the dimer system, the FBTS and

PBME-nH yield almost indistinguishable results, and the
accuracy of the quantum−classical methods is very high, on
par with that of the ctR approach. Of all of the studied regimes,
the quantum−classical theory leads to inaccurate results only
in the low-temperature case.
III.I.II. FMO Complex. Calculated absorption spectra (which

include the ω factor omitted in eq 9) of the FMO complex of
P. aestuarii are shown in Figure 3 (the B777 spectral density
was used, and energy disorder was taken into account). The
experimental data provided in Figure 3 is taken from ref 57. As
we can see, the qualitative agreement between the
experimental data and the formally exact SPI results is
reasonable at all temperatures. This is to be expected, having
in mind that the parameters of the structure-based model that
we employ29 have not been adjusted via a fitting procedure.
We observe excellent agreement between the ctR and the exact
stochastic path integral calculations. The FBTS also demon-
strates results that are very close to the exact ones. On the
other hand, the accuracy of PBME-nH is satisfactory only for T
= 300 K, and the difference between the quantum−classical
methods is more pronounced at lower temperatures, as was
also observed when studying a dimer. The FBTS is therefore a
better candidate among the quantum−classical methods for
calculating the absorption spectra of real molecular systems.
III.II. Fluorescence. Now let us consider the fluorescence

lineshapes. Our calculations have shown that the emission
lineshapes calculated using PBME-nH and PBME-nH-Jeff
methods are always blue-shifted by at least λ/2 compared to
the exact results. Based on this observation, we argue that
artificially red shifting the lineshapes obtained using these

methods by λ/2 allows one to partially compensate for the
approximate nature of these methods.
All of the results presented below were obtained using the

Debye spectral density and without energy disorder. When
calculating the spectra of the FMO complex, we used λ = 35
cm−1 and γ−1 = 100 fs.

III.II.I. Dimer. The fluorescence spectra of dimers are
depicted in Figure 4. As noted above, all of the PBME-nH
and PBME-nH-Jeff emission lineshapes have been red-shifted
by λ/2. Starting with the variation of parameter ε shown in
Figure 4a, we indeed notice that the positions of the intensity
maxima are predicted with a minimal error once the shift is
applied. All of the quantum−classical methods yield similar
results, although the FBTS is less accurate for larger energy
gaps (ε = 200, 500 cm−1). In the case of ε = 200 cm−1, the
PBME-nH gives the best results, but its error increases when ε
= 500 cm−1. In the latter case, 108 trajectories were required to
reach fully converged (to visual accuracy) results, but a region
of negative intensity around ε ≈ 15 700 cm−1 nevertheless
remains. Note that two peaks can be observed in the presented
fluorescence spectra as the thermal energy (kBT) is comparable
to the energy gap in all cases.
Considering the variation of the resonance coupling strength

shown in Figure 4b, all of the quantum−classical methods yield
similar results that are rather accurate. The FBTS and FBTS-
Jeff, however, overestimate the width of the spectral band in
the weak resonance coupling regime (J = 30 cm−1). This
deficiency is especially pronounced in the regime of a strong
subsystem−bath interaction, λ = 200 cm−1 (see Figure 4c).
One source of errors is the site-basis coherences of the
equilibrium density operatorthe equilibrium value of ρ12
calculated using FBTS is greater than the correct one by ∼30%
at λ = 200 cm−1. Meanwhile, the PBME-nH predicts this
element of the density matrix with an error of only ∼0.5%,
which in turn allows one to obtain an accurate emission
lineshape, although convergence was achieved using 107

trajectories. The PBME-nH is the most accurate of the studied
methods in the weak subsystem−bath coupling regimes as well.
Returning back to the default value of λ = 60 cm−1 and

varying the bath relaxation time, we again notice that the
spectra calculated using the quantum−classical methods hardly
differ, as demonstrated in Figure 4d. The PBME-nH is once
again better at estimating the width of the bands. However, the
case of γ−1 = 150 fs required using 107 trajectories. Similar
results are seen in Figure 4e, where PBME-nH and PBME-nH-
Jeff consistently outperform the FBTS-based methods at
predicting the bandwidths, especially at lower temperatures.
At T = 100 K, the FBTS overestimates the equilibrium value of
ρ12 by ∼35% and that error causes inaccuracies in the final

Table 1. Excited State Hamiltonian Matrix Elements (in cm−1) and Standard Deviations of Energy Distributions (in cm−1) of
the FMO Complexa

BChl 1 BChl 2 BChl 3 BChl 4 BChl 5 BChl 6 BChl 7 BChl 8′ σ

BChl 1 12 650.70 −109.89 5.46 −6.12 7.10 −19.78 −8.10 26.47 36.9
BChl 2 −109.89 12 414.10 31.64 7.97 1.76 12.38 4.26 4.85 45.4
BChl 3 5.46 31.64 12 195.30 −67.30 −0.13 −9.26 −2.57 0.57 54.6
BChl 4 −6.12 7.97 −67.30 12 394.60 −69.58 −18.73 −63.21 −1.58 39.5
BChl 5 7.10 1.76 −0.13 −69.58 12 557.60 76.43 2.67 4.07 36.5
BChl 6 −19.78 12.38 −9.26 −18.73 76.43 12 527.90 31.82 −9.59 64.3
BChl 7 −8.10 4.26 −2.57 −63.21 2.67 31.82 12 478.50 −11.37 50.4
BChl 8′ 26.47 4.85 0.57 −1.58 4.07 −9.59 −11.37 12 697.40 92.6

aSee the text for details.

Table 2. Transition Dipole Moments of the FMO Complex
in debyea

μx μy μz

BChl 1 −0.037 −1.536 5.279
BChl 2 4.157 −3.147 1.691
BChl 3 5.293 −0.421 −1.863
BChl 4 0.080 −2.253 5.015
BChl 5 4.182 −3.554 −0.282
BChl 6 −4.714 −2.081 2.005
BChl 7 −1.182 0.529 5.380
BChl 8′ −1.884 −5.163 −0.807

aSee the text for details.
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fluorescence lineshapes. On the other hand, PBME-nH and
PBME-nH-Jeff yield reasonably accurate results even at T = 20
K. We note the FBTS and PBME-nH results corresponding to
the cases T = 20 and 100 K were obtained using 107

trajectories.
Overall, these calculations imply that for fluorescence,

PBME-nH is more accurate than FBTS, contrary to the
absorption calculations. Moreover, the use of the effective

coupling theory prevents the appearance of nonphysical
negative features in the lineshapes.

III.II.II. FMO Complex. Figure 5 shows the fluorescence
lineshapes of the seven BChls FMO complex, and Figure 5a
corresponds to the low-temperature case (T = 77 K). First, we
notice that FBTS and PBME-nH results (obtained using 107

trajectories) are inaccurate even at a qualitative level, which
may be explained by the equilibrium density matrix being

Figure 2. Absorption lineshapes of a family of dimers with different parameters. The lineshapes are normalized to unit maximum intensity.
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calculated with considerable error using these methods. This is
illustrated in the lower plot in Figure 5a, where the evolutions
of the populations of the site-basis energy levels are shown.
The PBME-nH even predicts negative populations, which is a
deficiency of this method that has been reported by its
authors.28 This issue is attributed to the zero-point energy
leakage that is a known issue of approximate quantum−
classical methods,28 which is particularly pronounced at low
temperatures. However, this is only a shortcoming of PBME-
nH as an approximate solution of the QCLE, rather than the
quantum−classical theory in general. An exact solution would
yield correct equilibrium populations, and the detailed balance
would not be violated. The accuracy of the effective coupling
theory is also smaller for this seven-level system at T = 77 K
(see the red lines in Figure 5a). Nonetheless, PBME-nH-Jeff
yields an emission lineshape that closely matches the HEOM
result. The FBTS-Jeff method, on the other hand, is not
appreciably more accurate than the FBTS.
As we can see in Figure 5a, the HEOM fluorescence

lineshape calculated using our model of the FMO complex
features two emission bands, positioned at ε1 = 12 120 cm−1

and ε2 = 12 330 cm−1. Let us show that this is to be expected
from the model that we employ. According to the effective
coupling theory,30 the excited state equilibrium populations of
the two lowest energy levels of the global basis (GB) are ρ11

GB =
0.95 and ρ22

GB = 0.026, while the corresponding magnitudes of
the transition dipoles moments are |μ01

GB|2 = 21 D2 and |μ02
GB|2 =

54 D2. The intensity ratio of the two bands is thus on the order
of ρ11

GB|μ01
GB|2/ρ22

GB|μ02
GB|2 = 14, which is consistent with the ratio

of 7.6 observed in Figure 5a. It should be noted that the
emission spectra of real FMO complexes are highly dependent
on the type of organism they come from. For example, the
fluorescence spectrum of the FMO protein of aerobic
phototrophic acidobacterium Candidatus Chloracidobacterium
thermophilum features only a single high-energy peak when
measured at T = 77 K.60 Meanwhile, the experimental data
corresponding to green photosynthetic bacterium Chlorobium
tepidum indicates a more structured fluorescence spectrum at
low temperatures.61

Turning to the room-temperature case (T = 300 K) shown
in Figure 5b, the PBME-nH-Jeff again yields the most accurate
results, and it requires only 106 trajectories to obtain converged
results. By contrast, PBME-nH requires two orders of
magnitudes more trajectories to obtain the converged
lineshape shown in the figure, but this method does not

provide more accurate results. In the lower plot of Figure 5b,
we can see that the effective coupling theory is highly accurate
in this case and that PBME-nH is considerably more accurate
at estimating the equilibrium density matrix (populations) than
the FBTS. This explains the fact that the fluorescence spectrum
calculated using FBTS is much less accurate compared to the
PBME-nH result, with the former being quantitatively
incorrect.
Additional calculations of the same system using the B777

spectral density yielded similar results to those discussed above
(see the Supporting Information), leading to an analogous
conclusion that the PBME-nH-Jeff method is the most
appropriate for calculating the fluorescence spectra.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have demonstrated that the studied
quantum−classical methods, the FBTS and PBME-nH, may
be successfully applied to calculations of optical lineshapes of
molecular systems. For a two-site dimer system, both methods
lead to almost identical absorption lineshapes, which are highly
accurate on the quantitative level. Interestingly, essentially the
same level of accuracy is achieved regardless of the values of
the system parameters, although FBTS is slightly better at
capturing the positions of the peaks for slow baths (γ−1 ∼ 35
cm−1) and at lower temperatures (T ∼ 100 K). However, in
the case of a realistic systemthe eight BChls FMO
complexthe FBTS turned out to be considerably more
accurate than the PBME-nH as the latter method predicted the
positions of the bands, their relative intensities, and widths
with noticeable error. The FBTS results, on the other hand,
produced quantitatively correct results for this system even at
very low temperatures (T = 4 K).
In the second part of this work, we considered the

calculation of fluorescence lineshapes, which has not been
approached using the quantum−classical Liouville equation
before. Apart from directly applying the FBTS and PBME-nH,
we combined these methods with the effective coupling
theory30 that provides an accurate estimate of the excited state
equilibrium density operator. The two resulting methods,
FBTS-Jeff and PBME-nH-Jeff, differ from their original
counterparts in that the equilibrium density matrix is calculated
using the effective coupling theory rather than using the FBTS
or PBME-nH. Additionally, we found an empirical rule that the
fluorescence lineshapes calculated using PBME-nH and

Figure 3. Absorption spectra of the FMO complex (see the text for details) at three different temperatures. The spectra are normalized to unit
maximum intensity. Experimental spectra are taken from ref 57.
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PBME-nH-Jeff should be artificially red-shifted by λ/2 for a
more accurate result. As with the calculations of absorption
lineshapes, all four methods yield similar results in the case of a
dimer system. The dependence of the accuracy of the methods
on the values of the system parameters is again not a
pronounced one, although the FBTS-Jeff and especially the
FBTS overestimate the widths of the bands when the system−
bath coupling is strong (λ = 200 cm−1) or when the

temperature is low (T ≲ 100 K). For a dimer, the most
accurate emission lineshapes are those calculated using PBME-
nH, but the PBME-nH-Jeff results are only slightly less
accurate. However, the application of the effective coupling
theory turned out to be especially beneficial when calculating
fluorescence lineshapes of the FMO complex. At T = 77 K, the
density matrix was calculated using FBTS and PBME-nH with
substantial error, leading to qualitatively incorrect results. The

Figure 4. Fluorescence lineshapes of a family of dimers with different parameters. The lineshapes are normalized to unit maximum intensity.
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FBTS-Jeff provided not much of an improvement over FBTS,
but PBME-nH-Jeff allowed us to obtain the emission lineshape
with excellent accuracy. At T = 300 K, the PBME-nH
performed better than at T = 77 K in terms of both estimating
the equilibrium density matrix and calculating the lineshape,
but it required using 108 MC samples. On the other hand,
PBME-nH-Jeff lead to more accurate results with just 106 MC
samples. We therefore conclude that PBME-nH-Jeff is the best
candidate for calculating the emission lineshapes of real
molecular systems.
The results mentioned above also demonstrate the

importance of benchmarking the computational methods on
realistic systems for which formally exact results may be
obtained. In the case of absorption, we have seen that the
FBTS is almost identical to PBME-nH in terms of accuracy
when studying a dimer, yet for a realistic system the FBTS
turned out to be considerably more accurate. In the case of
fluorescence, the PBME-nH seemed like the most suitable
method as long as a dimer was considered, but calculations of
the FMO complex clearly demonstrate that PBME-nH is
actually not as robust as PBME-nH-Jeff. In the present work,
we judged about the accuracy of the approximate methods by
direct comparison with the exact results, but several additional
accuracy criteria could be used, such as the oscillator strength
sum rule1 or the detailed balance relation.1,7 The latter may in
principle form a basis of a new computational methodology
that would combine the imaginary-time formalism7 with the
quantum−classical framework.
Finally, let us evaluate the amount of computational

resources required to calculate the optical spectra using the
methods that we found most useful. Utilizing 480 CPU cores
of a high-performance computer, the calculation of the
absorption spectrum of the seven BChls FMO complex at T
= 4 K using FBTS with 106 MC samples took ∼5 min.
Naturally, obtaining the fluorescence lineshapes required more

computational time since the system had to be first propagated
until equilibrium is reached. Using PBME-nH-Jeff with 106

MC samples, the emission lineshape of a seven BChls FMO
complex at T = 77 K was obtained within ∼30 min. An
important advantage of the MC integration scheme is that
adding more integration dimensions does not increase the
amount of samples required to reach convergence. In the
present case, this allowed us to include energy disorder in the
system while keeping the calculation time effectively
unchanged. This is to be contrasted with the HEOM or ctR
calculations, whereby the computational time increases linearly
with the number of disorder realizations. The quantum−
classical methods may therefore be used for fitting
experimental data, which generally requires performing multi-
ple program runs to find optimal parameters of the model. We
also note that while the ctR theory allows one to calculate
accurate absorption spectra more than 10 times faster than
using the quantum−classical methods, the former does not
allow one to calculate populations of the energy levels or
fluorescence spectra. Therefore, it seems more natural to apply
quantum−classical approaches when properties of a system
beyond its absorption spectrum are of interest.
To summarize, in this paper we have provided the needed

theoretical framework for calculations of absorption and
fluorescence lineshapes using the QCLE-based approaches.
Moreover, we have successfully incorporated the recently
proposed effective coupling theory that allowed us to
significantly increase the accuracy of fluorescence calculations
with basically no additional computational effort. Even though
the results obtained for a molecular dimer are very similar
among all the considered methods, that is no longer the case
for a real photosynthetic FMO complex. Our results show that
the best accuracy is obtained using FBTS for absorption and
PBME-nH-Jeff for fluorescence, and we therefore suggest this
combination for future work.

Figure 5. Fluorescence lineshapes of the seven BChls FMO complex (upper plots) and the site-basis population dynamics (lower plots) calculated
using the Debye spectral density (λ = 35 cm−1, γ−1 = 100 fs) and no energy disorder at (a) T = 77 K, (b) T = 300 K. The spectra are normalized to
unit maximum intensity. The y-coordinates of the red horizontal lines indicate the equilibrium populations as given by the effective coupling theory,
eq 22.
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(17) Chorosǎjev, V.; Gelzinis, A.; Valkunas, L.; Abramavicius, D.
Benchmarking the stochastic time-dependent variational approach for
excitation dynamics in molecular aggregates. Chem. Phys. 2016, 481,
108−116.
(18) Ren, J.; Shuai, Z.; Chan, G. K.-L. Time-Dependent Density
Matrix Renormalization Group Algorithms for Nearly Exact
Absorption and Fluorescence Spectra of Molecular Aggregates at
Both Zero and Finite Temperature. J. Chem. Theory Comput. 2018,
14, 5027−5039.
(19) Rybakovas, E.; Gelzinis, A.; Valkunas, L. Simulations of
absorption and fluorescence lineshapes using the reaction coordinate
method. Chem. Phys. 2018, 515, 242−251.
(20) Gao, X.; Lai, Y.; Geva, E. Simulating Absorption Spectra of
Multiexcitonic Systems via Quasiclassical Mapping Hamiltonian
Methods. J. Chem. Theory Comput. 2020, 16, 6465−6480.
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