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Abstract

FLASH (FLICE-associated huge protein or CASP8AP2) is a large multifunctional protein that is involved in many cellular
processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that
depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of
FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown
followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid
cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular
disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis.
Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short
isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated
apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some
circumstances, FLASH suppresses apoptosis.
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Introduction

FLASH (CASP8AP2) is a large multifunctional protein that has

been implicated in many different cellular processes including

apoptosis, histone mRNA processing, S-hase progression, NF-

kappa B activation and the regulation of transcription. In 1999,

Imai et al. [1] discovered a 220 kDa protein, which they

designated FLICE associated huge protein or FLASH, since it

associates with caspase-8 and promotes Fas induced apoptosis.

There are two major apoptotic pathways. The binding of ligands

to the FAS receptor, a member of the TNF family of plasma

membrane receptors, triggers the assembly of the death inducing

signaling complex (DISC) (Figure 1). Imai et al. [1] showed that in

293 T cells, FLASH associates with the adaptor protein, FADD,

recruiting caspase-8 to the activated DISC. Oligomerization of

FLASH results in the proteolytic cleavage and activation of

caspase-8. Caspase-8 in turn activates other caspases including the

executioner protease, caspase-3.

In the intrinsic or mitochondrial apoptotic pathway several

intra- and extracellular apoptotic signals induce the release of

proteins from the mitochondria including cytochrome c (Figure 1).

Cytochrome c associates with the apoptotic protease activating

factor 1 (APAF-1) to form the apoptosome. The recruitment of

pro-caspase-9 molecules to the apoptosome promotes its proteo-

lytic activation which leads to the activation of the downstream

executioner, caspase-3. The mitochondrial apoptotic pathway also

serves to amplify the apoptotic response triggered by the activation

of the Fas receptor [2].

The response to stimulation of the Fas receptor differs according

to cell type [3]. Type I cells such as SKW6.4 and H9 cells quickly

assemble large amounts of DISC upon binding of the Fas ligand

with the rapid activation of caspase 8 and caspase 3. Very little

DISC is formed upon stimulation of Type II cells such as CEM

and Jurkat cells. However, sufficient caspase-8 is activated to

cleave the cytoplasmic protein, Bid. Truncated Bid, tBid,

relocalizes to the mitochondria where it binds to Bak/Bax which

together with Bad promote the formation of mitochondrial pores

and the release of cytochrome C. The loss of the mitochondrial

membrane potential occurs prior to the activation of caspase-3 and

caspase-8. Thus, the mitochondrial pathway is indispensible for

type II cells to undergo apoptosis.

FLASH was originally thought [1] to be exclusively a

cytoplasmic protein but more recent studies showed that it is

primarily nuclear and that it is localized within a variety of discrete

nuclear bodies. FLASH was identified [4] as an indispensible

component of Cajal bodies, small nuclear organelles involved in

numerous cell functions. RNA interference showed that depletion

of FLASH resulted in disruption of Cajal body structure and

relocation of its components. In other studies, FLASH was found

[5,6] to be primarily localized in promyelocytic leukemia nuclear

bodies which are involved in apoptosis, the regulation of

senescence and tumor suppression. FLASH associates with
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Sp100 [5,7], an essential PML component. Although PMLs are

distinct nuclear bodies, they are often found in association with

Cajal bodies and other nuclear organelles. Immunofluorescence

microscopy [8] showed that FLASH was 100% coincident with

NPAT, the nuclear protein localized near histone locus bodies [9]

on chromosome 6 and 12. HLBs are often associated with but are

not identical to the coilin containing Cajal bodies, although the

two organelles co-localize during the S phase of the cell cycle.

These authors [8,10] did not find FLASH in other nuclear bodies

such as nuclear speckles or PML bodies.

In 2007, Milovic-Holm et al. [7] made the intriguing

observation that activation of the Fas receptor triggers the

translocation of FLASH from the PML nuclear bodies to the

cytoplasm, where it associates with caspase-8 at the mitochondrial

surface, thereby activating the mitochondrial apoptotic pathway.

Leptomycin B, an inhibitor of Crm1-dependent nuclear export,

blocked egress of FLASH from the nucleus and prevented

mitochondrial damage. Caspase-8 was nevertheless still activated,

albeit to a lesser extent, presumably at the DISC assembly.

FLASH depletion by siRNA interference followed by induction of

the Fas receptor with anti-Fas antibodies for 7 hours resulted in a

57% decrease in apoptosis. A recent study [11] may provide

insight into the translocation mechanism. FLASH was shown to

form a complex with Ro52, an E3 ubiquitin ligase that moves

along cytoplasmic microtubular networks. Simultaneous overex-

pression of Ro52 and FLASH induces the relocation of another

apoptotic protein, DAXX, from the nucleus to the cytoplasm.

Barcaroli et al. [8,10] discovered that depletion of FLASH by

RNA interference abolished histone biosynthesis and induced cell

cycle arrest in S phase. It was subsequently shown [12] that

FLASH is necessary for proper processing of the 39-end of the

histone pre-mRNA. FLASH also plays a significant role in the

transcriptional regulation of histone genes. The FLASH binding

partner, NPAT (p220), is an activator of histone gene transcription

[9,13] under the control of cyclin E/Cdk2 kinase. Moreover,

CHIP assays demonstrated that FLASH interacts with histone

gene promoter sequences [8]. The interaction of FLASH with the

arsenite resistance protein, Ars2, a protein involved in the

formation of microRNA, was shown [14] to be indispensible for

cell cycle progression. Similar results [15] were observed during

embryogenesis where FLASH cooperates with the transcription

factor p73 to regulate histone gene transcription and cell cycle

progression. These authors also found that FLASH knockout is

lethal in embryonic mice.

FLASH is also a co-activator of c-Myb, a transcription factor

normally associated with growth and survival. Both proteins

colocalize at active transcription loci [16,17]. The enhancement of

transcriptional activity by FLASH is comparable with that

obtained with the c-Myb co-activator, P300. The E3 SUMO-

protein ligase, PIAS1, was also found to interact with FLASH and

enhance its transcriptional activity and the expression of genes

under control of c-Myb [17]. In some instances, FLASH was

found to repress transcription. It binds to and inhibits the activity

of the p160 nuclear receptor coactivator (GRIP 1) thus suppressing

the expression of the glucocorticoid receptor [18] in human colon

carcinoma cells. In contrast, it enhances transactivation of both the

glucocorticoid and mineralocorticoid receptors in mouse hippo-

campal cells but had only a small repressive effect in neuroblas-

toma cells [19]. FLASH also modulates the activity of the

transcription factor NF-kappa B via a TRAF-2 dependent

pathway [20,21] Depletion of FLASH by RNA interference

abolishes the activation of NF-kappa B, while overexpression of

FLASH activates its activity in a dose dependent manner.

Thus, FLASH is involved in several pathways related to cell

death, growth and survival. Those studies [1,7] that specifically

examined its role in cell death, suggest that it promotes apoptosis.

We report here that under certain circumstances, it can also

effectively suppress apoptosis.

Materials and Methods

Antibodies and Reagents
Antibodies used for this study were rabbit anti-FLASH (Bethyl

Laboratories, Montgomery, TX), mouse anti-caspase-8 (9746),

rabbit anti-caspase-3 (9662), rabbit anti-cleaved caspase-3 (9664),

rabbit anti-poly (ADP-ribose) polymerase, PARP (9542), rabbit

anti-cleaved PARP (5625), rabbit anti-MCL-1 (5453) (Cell

Signaling, Beverly, MA); mouse monoclonal b-tubulin (sc-5274),

mouse monoclonal anti-p53 (sc-126), rabbit anti-FLASH M300

(sc-9088), mouse anti-NPAT (sc-136007) and mouse anti-PML (sc-

966), mouse anti-FLIPS/L (sc-5276), rabbit anti-IKKa (sc7607)

(Santa Cruz Biotechnology, Santa Cruz, CA); rabbit anti-histone

H3 (21137) (Signalway Antibody, Pearland, TX), rabbit anti-

HDAC1(10197-1-AP), rabbit anti-coilin (10967-1-AP) and rabbit

anti-p21(10240-1-AP) (Proteintech Group, Inc). A panel of caspase

inhibitors (FMKSP01) and recombinant human Fas Ligand/

Figure 1. The role of FLASH in the apoptotic pathways. In the
extrinsic pathway, the Fas ligand (FasL) binds to the Fas receptor and
triggers the assembly of the DISC complex. FLASH binds pro-caspase 8
and translocates to the DISC complex where it associates with FADD.
Active caspase-8 is formed at the DISC by proteolytic cleavage. The
active caspase then cleaves and activates the executioner protease,
caspase-3. c-FLIP short is also part of the DISC and inhibits the
activation of caspase-8. Caspase-3 is also activated in the intrinsic or
mitochondrial pathway triggered by a variety of apoptotic signals that
culminate in the formation of pores that allow the release of
cytochrome c. Cytochrome c associates with Apaf-1 forming the
apoptosome which recruits and activates pro-caspase 9, which in turn
activates pro-caspase 3. The translocation of FLASH from the nucleus to
the mitochondria is thought to be one of the signals that initiate the
mitochondrial apoptotic pathway. The extrinsic and intrinsic pathways
are linked by Bid, a cytoplasmic proapoptotic protein that is cleaved by
caspase-8 generated at the DISC complex. Once cleaved, the truncated
Bid (tBid) migrates to the mitochondria where it interacts with Bax and
Bad, proteins that promote mitochondrial permeability and cycto-
chrome c release. FLASH also binds to the histone gene locus where it
participates in processing the histone mRNA that is necessary for S-
phase progression. FLASH is also a coactivator of c-Myb which controls
the expression of several proteins that play a role in proliferation,
including the anti-apoptotic protein, BCL-2. P53 down regulates the
expression of BCL-2 and another pro-apoptotic protein, MCL-1.
doi:10.1371/journal.pone.0032971.g001
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TNF9SF (126-FL-010) were purchased from R&D (Minneapolis,

MN). MG132, cycloheximide (CHX), actinomycin D were from

Sigma and adriamycin was from Santa Cruz. Staurosporine (STS)

was from Invitrogen (Carlsbad, CA).

Cell Culture and Induction of Apoptosis
HT1080 cells (wild type p53) and HT1080-6TG (mutant p53) (a

gift of Dr Eric J Stanbridge, Department of Microbiology and

Molecular Genetics, University of California, Irvine, CA) and

HeLa cells (ATCC) were cultured in DMEM containing 10% fetal

bovine serum, 100 units/ml penicillin, 100 mg/ml streptomycin, in

5% CO2 at 37uC. The MCF10A cell line, obtained from Drs.

Santner and Pauley (Karmanos Cancer Institute, Wayne State

University, Detroit, MI), was cultured according to the original

publications [22,23]. For the induction of apoptosis, the cells were

incubated with 100 ng/ml of the recombinant Fas ligand (R&D,

Minneapolis, MN) or 1 mg/ml of the agonist mouse monoclonal

anti-human CD95 (Fas) antibody (Invitrogen, AHS9552) for the

indicated periods of time in 5% CO2 at 37uC. Alternatively,

apoptosis was induced by incubating the cells with 1 mM

staurosporine. The progression through apoptosis was monitored

by measuring the activation of the caspases and the cleavage of

PARP. The distribution of cells in different phases of the cell cycle

was measured using a Becton-Dickinson FACScan cytofluorom-

eter at the Wayne State University, Karmanos Cancer Institute,

Flow Cytometry Facility.

SiRNA Interference
HT1080 cells were grown in 6 well plates to 20–30% confluence.

Cells were transfected with siRNA directed against the FLASH

mRNA and, as a negative control, with a scrambled siRNA, using

RNAi Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA),

according to the manufacturer’s protocol. The oligonucleotides

used for these studies were purchased from Invitrogen (Carlsbad,

CA). 1) FLASH Stealth RNAiTM siRNA HSS115171: GAAACA-

GAAUGAACCAAAGACUGAU; 2) FLASH Stealth RNAiTM

siRNA HSS115172: GAAAGCUGAGAGUGGUCCAAAUGAA;

3) FLASH Stealth RNAiTM siRNA HSS115173: CCUGUG-

GUAAUGGAUGUAUUACAAA. To assess the extent to which

the expression of FLASH was suppressed, cell extracts were isolated

at various times following transfection and the cell lysate was

analyzed by Western blotting. Equivalent amounts of total protein

were analyzed as determined by the Lowry method using bovine

serum albumin (BSA) as a standard. Immunoblotting of b-tubulin or

b-actin was used to verify that equal amounts of total protein had

been loaded on the gel. The same procedure was used to suppress

p53 expression using a commercial siRNA of proprietary sequence

(Santa Cruz, sc-29435) and siRNA against coilin was purchased

from Invitrogen (HSS112012).

Western blot Analysis
Total cell extracts were prepared in a lysis buffer containing

20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 1% Triton X-100,

10% glycerol, 0.2 mM PMSF supplemented with a 16cocktail of

phosphatase and protease inhibitors (Sigma). Protein samples were

heated at 95uC for 10 min and separated by SDS-PAGE using 4–

12% gradient gel and transferred onto a nitrocellulose membrane.

Western blots were developed using the Western Lighting Plus-

ECL reagent (NEL104001EA, Perkin Elmer, Waltham, MA).

Cell Fractionation
Cytoplasmic and nuclear fractions were isolated using the

Qproteome Nuclear Protein Kit (Qiagen) according to the

manufacturer’s protocol. The purity of the fractions was confirmed

by Western Blotting using anti-PARP, anti-HDAC1 (nuclear

markers) and anti-b-tubulin (cytoplasmic marker) antibodies.

Immunofluorescence microscopy
Cells grown on cover slips in 6-well plates were fixed with cold

methanol at 220uC for 10 min and then blocked with 3% BSA in

PBS for 1 h at room temperature. Cells were incubated with the

primary antibody, rabbit anti-FLASH M-300, mouse anti-NPAT

monoclonal antibody or mouse anti-PML monoclonal antibody,

alone or in combination, overnight at 4uC. The cells were then

incubated with chicken anti-rabbit IgG antibody conjugated with

Alexa Fluor 594 (1:2,000) and a chicken anti-mouse IgG antibody

conjugated with Alexa Fluor 488 (1:2,000) (Molecular Probes,

Invitrogen, Carlsbad, CA) as secondary antibodies for 1 h at room

temperature. After extensive washing with PBS, the cells were

counterstained with Hoechst 33342, mounted and visualized using

a Leica TCS SP5 Laser Scanning Confocal Microscope

(Karmanos Cancer Institute Imaging and Cytometry Resources

Core Facility). The images were analyzed using the Leica LAS AF

Imaging software.

Results

Intracellular localization of FLASH
In agreement with previous studies [6,7,10], cell fractionation

showed that FLASH was localized exclusively in the nuclear

extract (Nuc) in the absence of apoptotic signals (Figure 2A). The

purity of the cell fractions was assessed by Western blotting of the

nuclear marker proteins, poly ADP-ribose polymerase (PARP), the

nuclear protein ataxia-telangiectasia locus (NPAT) and histone

deacetylase I (HDAC1) and the cytoplasmic marker b-tubulin.

There was little or no cross contamination of nuclear and cytosolic

fractions.

Within the nucleus, FLASH has variously been reported to be

associated with Cajal bodies [4], PML bodies (Promyelocytic

leukemia nuclear bodies) [6,7] and in histone gene clusters [8]. In

Figure 2. FLASH was found in the nucleus co-localized with
NPAT. (A) HT1080 cells (56106) were fractionated into cytoplasmic
(Cyt) and nuclear (Nuc) fractions (Materials and Methods). The fractions
were analyzed by immunoblotting using antibodies directed against
FLASH, NPAT, PARP, HDAC1 and b-tubulin. (B) immunofluorescence co-
localization (Materials and Methods) of FLASH and PML or NPAT. HT1080
cells were fixed with cold methanol for 10 minutes, blocked, and
incubated with rabbit anti-FLASH and mouse anti-PML antibodies or
mouse anti-NPAT antibodies at 4uC overnight. Cells were then washed 3
times and incubated at room temperature for 1 hour with a 1/2000
dilution of the secondary antibodies, Alexa Fluor 594–conjugated anti-
rabbit IgG (red) and an Alexa Fluor 488–conjugated anti-mouse IgG
antibody (green). The cells were also stained with Hoechst 33342 (blue).
doi:10.1371/journal.pone.0032971.g002
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HT1080 cells, immunofluorescence microscopy showed

(Figure 2B) that FLASH was concentrated in a relatively small

number of discrete foci within the nucleus. In agreement with the

cell fractionation results, no FLASH could be detected in the

cytoplasmic compartment. When the cells were co-stained with

antibodies directed against PML, there was little colocalization of

FLASH and PML. In contrast, staining the cells with antibodies

directed against, NPAT, a major component of the histone cluster

loci, there was 100% overlap. Each of the 2–4 NPAT histone gene

loci also contained FLASH, although there were additional non-

overlapping FLASH foci present in other nuclear bodies.

Three oligonucleotides complementary to different regions of

the FLASH mRNA were used to silence the expression of FLASH.

All three reduced the intracellular concentration of FLASH by at

least 90% as determined by Western blotting of whole cell extracts

(Figure 3A). Cells subjected to RNA interference with each siRNA

exhibited the same phenotype with no detectable off target effects.

Immunofluorescence microscopy (Figure 3B) showed that a

comparable percentage of the cells lacked FLASH. In contrast,

there was no effect on the number or distribution of nuclear PML

bodies, as detected with anti-PML antibodies, when the expression

of FLASH was suppressed.

FLASH is necessary for cell cycle progression in HT1080
cells

As reported previously [8] in other cell lines, depletion of

FLASH also caused cell cycle arrest in S phase (Figure 3C) in

HT1080 cells, presumably due to the reduction of histone gene

expression. In cells transfected with the scrambled siRNA control

for 72 hours, 69% were found in G0–G1 and 16% in S phase. In

contrast, 10% are in G0–G1 phase and 60% of the cells are in S

phase in cells transfected with FLASH siRNA. Thus, the cells can

progress through the G1/S check point, but cannot exit S phase.

Similarly, FLASH knockdown resulted in S-phase arrest in HeLa,

MCF10A and MCF-7 cells (data not shown).

Silencing FLASH gene expression accelerates the onset of
apoptosis

RNA interference of FLASH expression did not induce

apoptosis in HT1080 cells in the absence of apoptotic signals at

all times tested up to 72 hours. However, apoptosis in the FLASH

depleted cells proceeded much more rapidly when the Fas

receptor was activated as compared to the cells transfected with

control siRNA. A time course over six hours following stimulation

of the Fas receptor (Figure 4A) clearly showed that both caspase 8

and the executioner caspase, caspase 3, are activated by

proteolytic cleavage much more rapidly than the control cells.

Similar results were obtained for caspase 8 when the receptor was

activated by the recombinant human Fas ligand (Figure 4B).

Quantification of the bands on the gel (Figure 4B) indicated that

after three hours, there was an approximately eleven fold increase

in the activation of caspase 8 in cells depleted of FLASH. After six

hours, there was still an approximately three fold higher caspase-8

activity when FLASH was knocked down. There appeared to be a

slight depletion of coilin six hours post stimulation of the receptor

when FLASH expression was suppressed, an observation that may

suggest that a fraction of the FLASH may be associated with coilin

containing Cajal bodies. The significantly more rapid degradation

of the anti-apoptotic protein, poly ADP-ribose polymerase

(PARP), a hallmark of the early stages of apoptosis, in cells

lacking FLASH was a further indication that FLASH depleted

cells are more sensitive to Fas mediated apoptosis (Figure 4C).

Immunofluorescence micrographs of cells stained with antibodies

directed against cleaved caspase-3 (Figure 4D) were taken 6 hours

following stimulation of HT1080 cells with Fas antibodies. The

micrographs showed that caspase-3 activation had progressed

more rapidly in cells depleted of FLASH. After 16 hours, most of

the cells lacking FLASH had either died or were in advanced

stages of apoptosis (Figure 4E). Similar results were obtained for

MCF-10A cells (data not shown).

The Intracellular level of FLASH decreases during
apoptosis

Anti-apoptotic proteins are usually rapidly degraded once

apoptosis has been initiated. The stability of FLASH was

monitored during apoptosis under conditions where proteasomal

degradation was blocked. MG132 is a potent proteasome inhibitor

and significantly augments the rate at which many cell types

progress through apoptosis perhaps as a consequence of blocking

the proteasomal degradation of pro-apoptotic proteins [24]. The

accelerated cleavage of caspase-8 indicated that MG132 also

promotes apoptosis of HT1080 cells (Figure 5A). Moreover, the

intracellular level of P21, a protein which turns over very rapidly,

significantly increased confirming that proteasomal degradation

had been inhibited.

The intracellular level of FLASH, like the anti-apoptotic

protein, PARP, rapidly decreased during apoptosis in cells

stimulated by FasL and MG132 (Figure 5B). The extensive

cleavage of pro-caspase-3 served as a marker of apoptosis.

However, the degradation of FLASH was completely arrested by

the potent caspases 3, 8 and 10 inhibitors (Figure 5B), indicating

that FLASH, like PARP, was degraded by caspases once apoptosis

was underway. Similar results were obtained when apoptosis was

Figure 3. siRNA silencing of FLASH expression. (A) HT1080 cells
were transfected with FLASH siRNA and scrambled siRNA (Control)
(Materials and Methods). After 72 hours, the extracts of the transfected
cells were analyzed by immunoblotting using FLASH antibodies and as
a loading control, b-tubulin antibodies. (B) HT1080 cells were
transfected with either a scrambled siRNA (left, Control) or a specific
siRNA directed against FLASH (right). The cells were fixed with cold
methanol for 10 minutes after 72 hours transfection, blocked, and
incubated with rabbit anti-FLASH and mouse anti-PML at 4uC overnight.
After washing three times, the cells were incubated with the secondary
antibodies as described in the legend to Figure 3. The cell nucleus was
stained with Hoechst 33342. (C) Flow cytometry analysis showed that
after FLASH knockdown, cells were blocked in S phase. HT1080 cells
were transfected with siRNA against FLASH or scrambled RNAi for
72 hours. The cells were trypsinized, washed with cold PBS, fixed with
70% ethanol, treated with RNase A and stained with 50 mg/ml
propidium iodide. The DNA content was analyzed using a Becton-
Dickinson FACScan cytofluorometer.
doi:10.1371/journal.pone.0032971.g003
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initiated with staurosporine (Figure 5C). The time course following

exposure to staurosporine showed that FLASH and PARP, as well

as the Cajal body component, coilin, rapidly disappeared from the

cell extract as apoptosis progressed. In this experiment, IKK and

b-actin served as negative controls. FLASH was also degraded

during apoptosis resulting from exposure to UV light (Figure 5D).

DNA damage was confirmed by immunoblotting of phospho-p95/

NBS1, a protein that is part of a complex that is phosphorylated by

ATM in response to DNA breaks [25]. Thus, FLASH is rapidly

degraded during the early stages of apoptosis independent of the

induction method.

FLASH mRNA (Figure 5E) was found to be relatively stable

with a half-life of approximately 6 hours as indicated by exposing

the cells to the transcriptional inhibitor, actinomycin D. In

contrast, exposure of the cells to cycloheximide, an inhibitor of

protein synthesis (Figure 5F) suggests that the FLASH protein

turns over rapidly (half-life 2–3 hours) raising the possibility that

down-regulation of FLASH levels could be due to proteasomal

degradation. However, since in the presence of MG132, FLASH

degradation was blocked by the specific caspase inhibitors

(Figure 5B), it is more likely that FLASH is degraded by caspases

during apoptosis.

Anti-apoptotic proteins were down regulated when
FLASH was depleted

The effect of silencing FLASH gene expression on several

proteins implicated in apoptosis was assessed in HT1080 and

MCF-10A cells. Both coilin siRNA and scrambled siRNA served

as controls and three different FLASH siRNAs were tested. None

of the proteins tested were affected by coilin siRNA or scrambled

siRNA. Histone H3 levels were clearly reduced in FLASH

depleted cells consistent with the result showing that FLASH

Figure 4. Effect of FLASH knockdown on apoptotic progression. (A) HT1080 cells transfected with control siRNA or with siRNA directed
against FLASH were stimulated with mouse anti-Fas antibody (1 mg/ml) following the standard protocol (Materials and Methods) for the indicated
times. The cell lysates were subjected to western blotting using anti-FLASH, anti-caspase 8, anti-cleaved caspase 3 and as a loading control, anti-b-
tubulin antibodies. (B) HT1080 cells were transfected with two different FLASH siRNAs (FLASH-1 and FLASH-2) and the scrambled siRNA (Control) for
48 hours and then treated with 100 ng/ml FasL for the indicated times. The cell lysates were subjected to immunoblotting using FLASH, PARP,
caspase 8, coilin and Fas antibodies. The developed blot was scanned to determine the relative levels of active caspase-8 shown in the bar graph. (C)
A time course showing the progression of apoptosis by immunoblotting of PARP and PARP cleavage products in control and FLASH knockdown cells
following the procedure outlined in panel B. (D) Immunofluorescence assay of caspase-3 activation (Materials and Methods) in HT1080 cells
transfected with FLASH or control siRNA for 48 hours with additional 6 hours treatment with 100 ng/ml FasL. (E) Light micrographs of HT1080 cells
transfected with FLASH and control siRNA for 72 hours and then stimulated with FasL for 16 hours.
doi:10.1371/journal.pone.0032971.g004
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knockdown causes cell cycle arrest (Figure 6A) by down regulating

the synthesis of histones [8]. FLASH knockdown significantly

reduced the intracellular levels of two anti-apoptotic proteins,

MCL1 and the short isoform of c-FLIP, but not c-FLIP long, in

HT1080 (Figure 6A). MCL-1 levels were also decreased by

FLASH knockdown in MCF-10A cells (Figure 6B), but the level of

BCL-XL was unaffected.

Suppression of apoptosis by FLASH is p53 dependent
RNA interference was used to reduce the level of p53 in

HT1080 cells by approximately 80%. As expected, p53 knock-

down (Figure 7A, lane 1) did not induce significant apoptosis

judging from the observation that PARP was not degraded.

Similarly, depleting the cells of FLASH or both FLASH and p53

(lanes 3 and 4) did not result in apoptosis. However, FLASH knock

down cells with wild type 53 rapidly progressed through apoptosis

following stimulation with the Fas ligand (lane 5). In contrast,

stimulation of cells in which both FLASH and p53 were knocked

down did not undergo apoptosis (lane 6), suggesting that a

functional p53 is essential.

To confirm the involvement of p53 in promoting apoptosis

upon FLASH knockdown, the expression of the anti-apoptotic

protein MCL-1 was assessed in mutant HT1080 cells, 6TG-p53,

which over express inactive p53. As shown previously [26],

exposure of the cells to adriamycin, which produces double

stranded breaks in DNA, results in up-regulation of p53 and as a

result the up-regulation of its target, P21 (Figure 7B). These results

confirm that although 6TG-p53 cells overproduce p53, the protein

lacks transcriptional activity.

Stimulation of the Fas receptor in FLASH depleted wild type

cells with a functional p53 gene resulted in down-regulation of

MCL-1 (Figure 6 and 7B). However, in the 6TG-p53 cells,

transfection with FLASH siRNA did not alter the intracellular

level of MCL-1. Collectively, these results indicate that the
Figure 5. The Intracellular level of FLASH decreases during
apoptosis. (A) The proteasome inhibitor MG132 potentiates caspase 8
activation induced by FasL in HT1080 cells. HT1080 cells were treated
with the indicated concentration of FasL with or without 10 mM MG132
for 4 hours. The activation of caspase-8 was monitored by immuno-
blotting of the total cell lysates using caspase 8 antibodies. b-tubulin
served as a loading control and p21, a protein with a short half-life, was
a control showing that MG132 effectively blocks proteasomal activity.
(B) FLASH was down-regulated following induction of apoptosis.
HT1080 cells were either pretreated with the vehicle (DMSO) or caspase
3, 8 and 10 inhibitors for 30 minutes and then induced into apoptosis
by exposure to 100 ng/ml FasL and 10 mM MG132 for 4 hours. The
relative intracellular levels of FLASH, PARP, intact and cleaved, and
caspase-3 were determined by immunoblotting. b-tubulin served as a
loading control. (C) FLASH was also downregulated following induction
of apoptosis in HeLa cells by exposure to 1 mM staurosporine for the
indicated times. The cell lysates were analyzed by immunoblotting of
FLASH, caspase-9, IKK, coilin and b-actin. (D) Apoptosis was induced by
exposure to UV light (Materials and Methods). The cells were harvested
12 hours and 24 hours following a 5 minute UV exposure. The relative
levels of FLASH, phospho-p95/NBS1, an indicator of DNA damage, P21
and b-tubulin were determined by immunoblotting. (E) Protein
synthesis was blocked by incubating HT1080 cells with 50 mg/ml
cycloheximide (CHX) for the indicated times and the relative level of
FLASH, coilin, b-actin and p53 was determined by immunoblotting. (F)
The relative levels of the same proteins as in panel (E) were determined
by immunoblotting following inhibition of RNA transcription by
exposure of HT1080 cells to 1 mg/ml actinomycin D for the indicated
times.
doi:10.1371/journal.pone.0032971.g005

Figure 6. Effect of FLASH knockdown on the level of anti-
apoptotic proteins. (A) HT1080 cells were transfected with 3 different
FLASH siRNAs for 72 hours. Coilin and the scrambled siRNA served as
controls. The intracellular level of FLASH, coilin, MCL-1, histone H3 and
the long and short isoforms of cFLIP, cFLIP (L) and cFLIP (S), respectively,
were determined by immunoblotting using the corresponding anti-
bodies. b-tubulin served as a loading control. (B) Following the same
protocol, MCF-10A cells were transfected with siRNA directed against
FLASH or with control siRNA. Cell extracts were prepared 72 hours
following transfection and the cell lyates were subjected to immuno-
blotting using antibodies directed against the indicated proteins.
doi:10.1371/journal.pone.0032971.g006
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suppression of apoptosis by FLASH is dependent on transcrip-

tionally active, p53.

Discussion

In accord with previous studies [10], we find that FLASH is a

nuclear protein localized within nuclear bodies, primarily but not

exclusively within histone gene clusters, where it co localizes with

NPAT. A fraction of FLASH was associated with other nuclear

bodies although colocalization with PLM bodies appeared to be

minimal. We also found that depletion of FLASH lead to a

decrease in histone H3 in the cell and arrest in the S phase of the

cell cycle.

An unanticipated result of this study was that FLASH was found

to be anti-apoptotic, whereas previous work indicated that it

promotes apoptosis. Imai et al [1] observed that over expression of

FLASH resulted in an approximately 25% increase in apoptosis as

judged by the altered morphology of the cells. It may be significant

that our studies were conducted with the Type II cells in which

activation of the mitochondrial pathway is paramount [3].

Similarly, Milovic-Holm et al. [7] found that FLASH was pro-

apoptotic although the mechanism proposed was quite different

than that suggested by Imai et al. [1]. They found that depletion of

FLASH by siRNA interference followed by induction of the Fas

receptor with anti-Fas antibody for 7 hours resulted in an

approximately 57% decrease in apoptosis. They proposed that

activation of the receptor resulted in translocation of FLASH from

nuclear bodies to the mitochondria where it activates caspase-8.

These authors also conducted their studies with HT1080 cells, the

same cells we used in this study. However, there may be

differences in strain, P53 status, growth conditions, and methods

of induction or antibody titer that could account for the differences

in the results. In assessing the effect of FLASH knockdown on

apoptosis, these authors [7] induced with the anti-Fas antibody but

with far lower concentrations than we employed in our studies

(0.025 mg/ml versus 1 mg/ml). Although differences in antibody

titer cannot be ruled out, it is perhaps significant that these authors

found that the suppression of apoptosis resulting from FLASH

depletion was significantly impaired at higher concentrations of

the Fas antibody.

The evidence presented here that FLASH, can also suppress

apoptosis is compelling. The acceleration of FasL induced

apoptosis by FLASH depletion was observed with three different

siRNAs that targeted different regions of the FLASH mRNA.

Transfection with FLASH siRNA did not induce apoptosis unless

the Fas receptor was stimulated but growth was arrested in S

phase. However, when FLASH was depleted, activation of the Fas

receptor resulted in 1) more rapid activation of caspase 8 and

caspase 3, 2) rapid degradation of PARP, 3) nuclear disintegration

and DNA fragmentation and 4) the characteristic morphological

changes of the cell. Moreover, like most anti-apoptotic proteins,

FLASH was rapidly degraded once apoptosis has been irreversibly

initiated. The current study is not the only report indicating that

FLASH suppresses apoptosis. A siRNA screen identified 37

proteins essential for cell division [27]. FLASH is one of six

proteins that when knocked down results in rapid cell death upon

entry into mitosis.

There is precedence for apoptotic proteins playing a dual role.

For example, DAXX, a nuclear protein that, like FLASH, is

involved in both apoptosis and repression of gene expression has

been variously reported to be both pro- and anti-apoptotic. Over

expression of Daxx promotes Fas induced apoptosis by direct

interaction with the Fas receptor [28] or via a nuclear pathway

[29] suggesting that it is pro-apoptotic. The opposite conclusion

Figure 7. The effect of FLASH knockdown on apoptosis was
dependent on p53. (A) HT1080 cells were transfected with scrambled
siRNA (siControl), FLASH siRNA (siFLASH) and p53 siRNA (siP53) or co-
transfected with both FLASH siRNA and p53 siRNA for 48 hours.
Apoptosis was then induced by incubation with 100 ng/ml FasL for an
additional 4 hours. Immunoblotting using p53 antibodies showed that
p53 was effectively knocked down with siP53 in the presence and
absence of siFLASH. Upon stimulation with the FasL, the increase in
apoptosis in cells lacking FLASH was abolished in cells depleted of both
FLASH and p53. (B) The effect of DNA damage incurred by exposure to
adriamycin on the relative intracellular level of p53 and p21. Two
isogenic cell lines, HT1080 (wildtype p53) and HT1080-6TG (p53
mutant), were treated with 200 ng/ml adriamycin for the indicated
times. The intracellular level of p53 and p21 was determined by
immunoblotting. The level of p-Histone H2A.X (Ser139) was used to
monitor the progressive DNA damage induced by adriamycin
treatment. b-actin served as a loading control. (C) The wild type
HT1080 and HT1080-6TG cells (p53 mutant) were transfected, as in
panel B, with siRNA against FLASH and the scrambled siRNA (Con) for
72 hours. The intracellular levels of FLASH and MCL-1 were determined
by immunoblotting. b-tubulin served as a loading control.
doi:10.1371/journal.pone.0032971.g007
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was drawn from studies of Daxx-knockout embryos and

embryonic stem cell lines [30] and by siRNA suppression of Daxx

expression [31,32]. These latter studies showed that depletion of

Daxx resulted in an increased sensitivity to Fas mediated or stress

induced apoptosis, suggesting an anti-apoptotic function. Whether

Daxx promotes or suppresses apoptosis may be dependent on its

modification by other signaling pathways. It was recently shown

[33] that phosphorylation of Daxx by CK2 kinase promotes the

binding of SUMO-1 and stress-induced apoptosis by down-

regulation of anti-apoptotic regulatory proteins.

The involvement of FLASH in the activation of caspase-8 at the

DISC [1] and at the mitochondria [7] is pro-apoptotic, but there

are other functions ascribed to FLASH that would be expected to

protect against entry into apoptosis.

Stimulation of TNF-a receptor elicits two opposing effects,

apoptosis and activation of the anti-apoptotic transcription factor,

NF-kappa B [34]. Suppression of FLASH expression has been

shown to abolish TNF-a induced activation of NF-kappa B via a

TRAF2 dependent pathway in HEK293 cells [21], an effect that

would be expected to stimulate apoptosis. While the relationship

between FLASH and Fas signaling has not been investigated, it

has been shown that the stimulation of the Fas receptor also

activates NF-kappa B in human bladder carcinoma T24 and

Jurkat cells [35] and in SK-Hep1 hepatocellular carcinoma cells

[36], so it is likely that FLASH has a comparable role in the Fas

receptor signaling that would lead to suppression of apoptosis

(Figure 1).

Another FLASH function consistent with an anti-apoptotic role

is that it serves as an important coactivator of cMyb [16,17], a

transcription factor generally considered to promote growth and

survival (Figure 1). c-Myb is a major target of glycogen synthase

kinase 3b (GSK3b). Inhibition of GSK3b results in ubiquitin

mediated degradation of cMyb and the induction of apoptosis by

inhibiting the expression of BCL2 and survivin [37]. Survivin, a

caspase inhibitor [38], may not be relevant since it is expressed

primarily during G2 and FLASH knockdown arrest cell cycle

progression in S phase [39]. BCL-2 is a potent inhibitor of

apoptosis that blocks the function of the death inducing protein

Bak at the mitochondrial membrane. However, we did not find a

significant decrease in the BCL-2 levels when FLASH was

depleted suggesting that it also does not play a role in the

suppression of apoptosis by FLASH.

In agreement with Barcaroli et al [8], we found that FLASH

colocalizes with NPAT in histone gene clusters. Moreover, the

intracellular level of histone H3 is dramatically reduced upon

FLASH depletion and the cells accumulate in S phase. Normally,

cell cycle arrest in S-phase is not sufficient to induce apoptosis.

However, the failure to assemble functional nucleosomes to

protect the newly synthesized DNA may accelerate the onset of

apoptosis when the cells are stimulated by FasL.

Suppression of apoptosis by FLASH was found to be dependent

on the transcription factor, p53. In cells depleted of endogenous

p53 by siRNA interference, knock down of FLASH had an

appreciably smaller stimulatory effect on apoptosis when the Fas

receptor was activated (Figure 5B). Similarly, in HT1080 cells

harboring a mutant p53, FLASH knockdown did not significantly

enhance the apoptotic response. P53 is known to regulate the

expression of several pro- and anti-apoptotic proteins [40].

Previous studies suggested that P53 down-regulates the expression

of the anti-apoptotic protein, MCL-1 up to 30-fold [40]. In this

study, depletion of FLASH resulted in significant reduction in the

level of MCL-1 in the cell. The lower concentration of MCL-1

would be expected to relieve its inhibitory effect on the formation

of the mitochondrial channel and promote apoptosis.

The other anti-apoptotic protein that we found down regulated

by FLASH depletion is the short isoform of c-FLIP (cellular

FLICE inhibitory protein) which acts directly at the Fas death-

inducing DISC complex inhibiting caspase-8 activation and Fas

receptor mediated apoptosis [41]. In hepatocellular carcinoma

cells, c-FLIP is the major regulator of cell death and survival. In

addition to inhibiting caspase activation, c-FLIP is a potent

inhibitor of apoptosis by inhibiting the activation of NF-kappa B

[42]. The function of the long isoform c-FLIP has been

controversial, but recent studies indicate that it can be either

pro- or anti-apoptotic depending on the circumstances [41,43].

The precise role that FLASH may play regulation of

intracellular level of MCL-1 and c-FLIP short remains to be

determined. Previous studies showed that FLASH promotes both

activation and repression of gene expression depending on the

specific gene under consideration [8,15,16,17,18,19,20,21] and

thus it may modulate the level of these anti-apoptotic proteins.

Alternatively, both MCL-1 and c-FLIP short are short lived

proteins [44,45], so the reduced intracellular levels of these

proteins upon FLASH depletion may result from the destabiliza-

tion of these proteins as a consequence of cell cycle arrest in S

phase.

While there are several functional connections between FLASH

and various key factors in the apoptotic pathways, the mechanism

by which FLASH suppresses apoptosis remains to be deciphered.

Of particular interest, is the identification of the switch that

determines whether FLASH functions to promote or suppress

apoptosis. Very little is known regarding the regulation of FLASH

function, however, FLASH has been shown to interact with the

SUMO-conjugation enzyme, Ubc9 [46]. Sumoylation attenuates

the transcriptional activity of FLASH as measured by the Gal4

tethering assay. Given the size and complexity of FLASH, other

regulatory mechanisms are likely to be discovered.
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