
polymers

Article

Heteronuclear Dirhodium-Gold Anionic Complexes:
Polymeric Chains and Discrete Units

Estefania Fernandez-Bartolome 1, Paula Cruz 1, Laura Abad Galán 1 , Miguel Cortijo 1 ,
Patricia Delgado-Martínez 2, Rodrigo González-Prieto 1,* , José L. Priego 1 and
Reyes Jiménez-Aparicio 1,*

1 Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de
Madrid, Ciudad Universitaria, E-28040 Madrid, Spain; estefania.fernandez@imdea.org (E.F.-B.);
paula.cruz@urjc.es (P.C.); laura.abad-galan@ens-lyon.fr (L.A.G.); miguelcortijomontes@ucm.es (M.C.);
bermejo@ucm.es (J.L.P.)

2 Unidad de Difracción de Rayos X, Centro de Asistencia a la Investigación de Técnicas Físicas y Químicas,
Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain;
patriciadelgado@ucm.es

* Correspondence: rodgonza@ucm.es (R.G.-P.); reyesja@quim.ucm.es (R.J.-A.)

Received: 31 July 2020; Accepted: 17 August 2020; Published: 19 August 2020
����������
�������

Abstract: In this article, we report on the synthesis and characterization of the
tetracarboxylatodirhodium(II) complexes [Rh2(µ–O2CCH2OMe)4(THF)2] (1) and [Rh2(µ–O2CC6H4–
p–CMe3)4(OH2)2] (2) by metathesis reaction of [Rh2(µ–O2CMe)4] with the corresponding ligand
acting also as the reaction solvent. The reaction of the corresponding tetracarboxylato precursor,
[Rh2(µ–O2CR)4], with PPh4[Au(CN)2] at room temperature, yielded the one-dimensional polymers
(PPh4)n[Rh2(µ–O2CR)4Au(CN)2]n (R = Me (3), CH2OMe (4), CH2OEt (5)) and the non-polymeric
compounds (PPh4)2{Rh2(µ–O2CR)4[Au(CN)2]2} (R = CMe3 (6), C6H4–p–CMe3 (7)). The structural
characterization of 1, 3·2CH2Cl2, 4·3CH2Cl2, 5, 6, and 7·2OCMe2 is also provided with a detailed
description of their crystal structures and intermolecular interactions. The polymeric compounds
3·2CH2Cl2, 4·3CH2Cl2, and 5 show wavy chains with Rh–Au–Rh and Rh–N–C angles in the ranges
177.18◦–178.69◦ and 163.0◦–170.4◦, respectively. A comparative study with related rhodium-silver
complexes previously reported indicates no significant influence of the gold or silver atoms in the
solid-state arrangement of these kinds of complexes.

Keywords: dirhodium(II) compounds; dicyano-aurate complexes; heteronuclear; one-dimensional;
rhodium-gold anionic chains; coordination polymers

1. Introduction

Dirhodium(II) tetracarboxylato complexes with formula [Rh2(µ–O2CR)4] (R = alkyl or aryl)
are an important part of the huge family of complexes with metal–metal bonds. They display
a paddlewheel structure and a single metal–metal bond order due to their background electronic
configuration is σ2π4δ2δ*2π*4, which is responsible for their diamagnetic nature [1–3]. The properties
and reactivity of these complexes and their derivatives make them very interesting compounds for
the scientific community. Due to their potential applications, they have been studied in fields like
catalysis [4–12], bioinorganic chemistry [13–17], metal organic frameworks (MOFs) [18,19], or gas
absorption [20,21]. Metal-organic aerogels [22,23] and liquid crystals [24,25] can also be obtained using
them as building blocks.

The structural diversity found in many of this kind of complexes must be also
highlighted [12,20,21,26–33]. The axial sites of the paddlewheel structure are easily occupied
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by monodentate ligands, which has allowed the preparation of a large number of molecular
compounds [1,2,34–37]. One-dimensional polymers [1,2,38–41] can be obtained by means of bridging
ligands between the dirhodium(II) cores.

Several approaches can be found in the literature to obtain heterometallic one-dimensional
polymers where different metal complexes connect the dirhodium units [42–50]. The valuable
physicochemical properties of some of them, like paramagnetism [42,47], modulation of their electronic
structures [43], or luminescence [49], turn this kind of polymers into very promising materials. However,
the number of heterometallic coordination polymers based on rhodium(II) carboxylates is still scarce.

Moreover, there is also an extensive bibliography about the use of cyanidometallate complexes
to construct heteronuclear coordination polymers. This interest is explained due to their structural
variety and interesting properties such as magnetism or luminescence [51–58]. Following this strategy,
our research group has reported the synthesis and characterization of several heterometallic complexes
based on cyanidometallate ligands coordinated to the axial positions of the Rh2

4+ paddlewheel
unit [59–61].

The reaction of the corresponding paddlewheel tetracarboxylatodirhodium with cyanidometallate
complexes in solution at room temperature allowed the synthesis of polymeric chains with formula
Kn{Rh2(µ–O2CR)4[Au(CN)2]}n (R = Me, Et) [59], and, very recently, (PPh4)n[Rh2(µ–O2CR)4Ag(CN)2]n

(R = Me, Ph, CH2OEt) [60] and (PPh4)2n[{Rh2(µ–O2CMe)4}{M(CN)4}]n (M = Ni, Pd, Pt) [61].
A similar reaction led also to the formation of the non-polymeric complex (PPh4)2{Rh2(µ–
O2CCMe3)4[Ag(CN)2]2} [60]. The presence of [Au(CN)2]− in these kind of complexes opens the
possibility of aurophilic interactions [62] as it is found in compound Kn{Rh2(µ–O2CEt)4[Au(CN)2]}n

which displays luminescence with a broad intense emission at 475 nm upon excitation at 360 nm [59].
However, in spite of their easy synthesis and their potential luminescent properties, the complexes
Kn{Rh2(µ–O2CR)4[Au(CN)2]}n (R = Me, Et) [59] are, to our knowledge, the only two examples of
polymers based on dirhodium tetracarboxylates with dicyanidoaurate(I) as axial bridge. Moreover,
differences in the supramolecular structures of these complexes cause also differences in the luminescent
properties, as the methyl derivative do not show this feature due to its long Au· · ·Au distances. This fact
highlights the importance of increasing the number of this type of polymers that allow the study of
the influence of the solid state arrangement in their properties. Additionally, the counterion plays
also an important role on the crystal structure and possible supramolecular interactions. For example,
the bulky tetraphenylphosphonium cation can form supramolecular architectures by means of
phenyl–phenyl embraces [63,64].

Taking into account the antecedents mentioned above, in this article we report the synthesis,
characterization, and structural description of three heterometallic dirhodium-gold polymeric
complexes with the formula (PPh4)n[Rh2(µ–O2CR)4Au(CN)2]n (R = Me (3), CH2OMe (4), CH2OEt
(5)). The structure of the starting complex [Rh2(µ–O2CCH2OMe)4(THF)2] (1) is also described.
The same reactions conditions starting from [Rh2(µ–O2CCMe3)4(HO2CCMe3)2] and [Rh2(µ–O2CC6H4–
p–CMe3)4(OH2)2] (2) led to the non-polymeric complexes (PPh4)2{Rh2(µ–O2CR)4[Au(CN)2]2}
(R = CMe3 (6), C6H4–p–CMe3 (7)), respectively. The structural characterization of compounds 6
and 7 is also provided in this work. The comparison of complexes 3, 5, and 6 with their silver
derivatives [60] allows the study of the influence of gold or silver atoms in the crystal structures.
Intermolecular interactions have been carefully surveyed in order to find possible phenyl embraces
between the phenyl rings or short Au· · ·Au distances.

2. Materials and Methods

2.1. Materials

[Rh2(µ–O2CCH2OEt)4(HO2CCH2OEt)2] [60] and [Rh2(µ–O2CCMe3)4(HO2CCMe3)2] [65,66] were
prepared following published procedures. PPh4[Au(CN)2] was synthesized following the published
method to obtain PPh4[Ag(CN)2] [60]. A solution of 0.2 mmol (0.06 g) of K[Au(CN)2] in 4 mL of water
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was mixed with a solution of 0.2 mmol (0.08 g) of PPh4Br in 8 mL of water and stirred for 5 min at
room temperature. The white precipitate obtained was collected by filtration and washed with 15 mL
of water and 10 mL of diethyl ether (10 mL). Yield: 0.082 g (70%). The rest of the reagents and solvents
were acquired from commercial sources and used as received without further purification.

2.2. Physical Measurements

The elemental analysis measurements were carried out at the Microanalytical Services of the
Complutense University of Madrid. FTIR measurements were carried out in the 4000 to 650 cm−1

spectral range with a Perkin–Elmer Spectrum 100 equipped with an universal ATR accessory
(PerkinElmer, Inc., Shelton, CT, USA).

2.3. Crystallography

Single-crystal X-ray diffraction measurements were carried out at room temperature using
a Bruker Smart-CCD diffractometer (Bruker Corporation, Billerica, MA, USA) with a Mo Kα

(λ = 0.71073 Å) radiation and a graphite monochromator. CCDC 2015497–2015501 and 2015886 contain
the crystallographic data for the compounds described in this article. These data can be obtained free
of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif .

2.4. Synthesis

2.4.1. Synthesis of [Rh2(µ–O2CCH2OMe)4(THF)2] (1)

A mixture of 0.68 mmol (0.30 g) of [Rh2(µ–O2CMe)4] and 29.85 mmol (2.69 g, 2.29 mL) of
methoxyacetic acid was stirred and heated at 120 ◦C for 30 min under nitrogen atmosphere. The mixture
was allowed to cool and the sticky product obtained was triturated and washed with 2 × 25 mL of
a 3:2 hexane/diethyl ether mixture to obtain a green solid. Single crystals of 1 were obtained after 3
days by slow diffusion of hexane into a solution of the solid in THF. Yield: 0.25 g (52%). Anal. Calcd.
(%) for [Rh2(µ–O2CCH2OMe)4]: C, 25.64; H, 3.59. Found (%): C, 25.88; H, 3.53. FT-IR (cm−1): 2935w,
2829w, 1600vs, 1431m, 1407s, 1330s, 1278w, 1197m, 1158w, 1130m, 1093s, 1016w, 939m, 898m, 731s.

2.4.2. Synthesis of [Rh2(µ–O2CC6H4–p–CMe3)4(OH2)2] (2)

[Rh2(µ–O2CMe)4] (0.09 mmol (0.04 g)) and 40.00 mmol (7.13 g) of 4–tert–butylbenzoic acid were
mixed and heated under nitrogen atmosphere until the latter melted (~165 ◦C). The reaction was kept
for 30 min and then let to cool down to room temperature. The turquoise solid obtained was collected
from the bottom of the flask and washed with several 60 mL fractions of a 1:5 diethyl ether/petroleum
ether mixture. Yield: 0.02 g (23%). Anal. Calcd. (%) for 2: C, 55.59; H, 5.94. Found (%): C, 55.52; H,
5.74. FT-IR (cm−1): 3416w, 2963m, 2906w, 2869w, 1607m, 1589m, 1546m, 1466w, 1391s, 1268m, 1192m,
1148w, 1109w, 1016m, 856m, 781m, 731m, 712m.

2.4.3. Synthesis of (PPh4)n[Rh2(µ–O2CMe)4Au(CN)2]n (3)

A 7 mL THF solution of 0.18 mmol (0.08 g) of [Rh2(µ–O2CMe)4] was mixed with a 12 mL THF
solution of 0.19 mmol (0.11 g) of PPh4[Au(CN)2] and stirred for 1 day at room temperature obtaining
a purple precipitate. The solid was filtered and washed with THF. Yield: 0.08 g (43%). Anal. Calcd.
(%) for 3: C, 39.63; H, 3.13; N, 2.72. Found (%): C, 39.78; H, 3.16; N, 2.79. FT-IR (cm−1): 3083w, 2173w,
1598s, 1484w, 1409s, 1342m, 1163w, 1109s, 1042m, 997m, 753m, 721s, 688s.

The solid was dissolved in dichloromethane and THF was slowly added on top of the solution.
Violet single crystals of 3·2CH2Cl2 were obtained after 2 days.

2.4.4. Synthesis of (PPh4)n[Rh2(µ–O2CCH2OMe)4Au(CN)2]n (4)

The synthesis was similar to the synthesis of 3 although in this case a solution of 0.11mmol (0.08 g)
of [Rh2(µ–O2CCH2OMe)4(THF)2] (1) in 5 mL of methanol and a solution of 0.12 mmol (0.07 g) of
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PPh4[Au(CN)2] in 8 mL of THF were employed. The mixture was stirred for 30 min obtaining a purple
solution. The solvent was evaporated and the solid obtained was washed with cold THF. Yield: 0.05
g (40%). Anal. Calcd. (%) for 4: C, 39.67; H, 3.50; N, 2.43. Found (%): C, 40.03; H, 3.62; N, 2.31.
FT-IR (cm−1): 2822w, 2139w, 1608s, 1484w, 1435m, 1412m, 1330m, 1189w, 1162w, 1109vs, 1027w, 996w,
924w, 849w, 752w, 732vs, 687s.

Single crystals of 4·3CH2Cl2 suitable for X-ray diffraction were obtained after 4 days by slow
diffusion of hexane into a solution of the compound in 4 mL of dichloromethane.

2.4.5. Synthesis of (PPh4)n[Rh2(µ–O2CCH2OEt)4Au(CN)2]n (5)

The synthesis was analogous to that of 3 using 8 mL of a THF solution of 0.07 mmol (0.06 g) of
[Rh2(µ–O2CCH2OEt)4(HO2CCH2OEt)2] and 0.10 mmol (0.06 g) of PPh4[Au(CN)2] in 12 mL of THF.
The purple solid obtained was washed with THF. Yield: 0.07 g (83%). Anal. Calcd. (%) for 5: C, 41.81;
H, 4.01; N, 2.32. Found (%): C, 41.58; H, 3.98; N, 2.39. FT-IR (cm−1): 3074w, 2966m, 2925m, 2161m,
1612s, 1485m, 1433s, 1407s, 1363m, 1320s, 1260m, 1163m, 1135s, 1107s, 1032m, 1008m, 998m, 894w,
851m, 756m, 724s, 694s.

Purple single crystals of 5 were obtained after 2 days by slow diffusion of diethyl ether in
a dichloromethane solution of the compound.

2.4.6. Synthesis of (PPh4)2{Rh2(µ–O2CCMe3)4[Au(CN)2]2} (6)

The synthesis was analogous to that of 3 using a solution of 0.10 mmol (0.08 g) of
[Rh2(µ–O2CCMe3)4(HO2CCMe3)2] in 10 mL of diethyl ether and a solution of 0.10 mmol (0.06 g) of
PPh4[Au(CN)2] in 8 mL of acetone. Yield: 0.034 g (38%). Anal. Calcd. (%) for 6: C, 48.39; H, 4.29; N,
3.14. Found (%): C, 47.58; H, 4.20; N, 3.16. FT-IR (cm−1): 3061w, 2968w, 2932w, 2866w, 2148w, 1576s,
1482s, 1458m, 1439s, 1412s, 1373m, 1361m, 1220s, 1107s, 997m, 935s, 894w, 802w, 781w, 763m, 723s, 690s.

Purple single crystals of 6 were obtained by slow evaporation of a solution of the solid in a 1:1
acetone/diethyl ether mixture.

2.4.7. Synthesis of (PPh4)2{Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2} (7)

The synthesis was analogous to that of 3 but using dichloromethane solutions of the reactants
0.10 mmol (0.09 g) of [Rh2(µ–O2CC6H4–p–CMe3)4(OH2)2] (2) and 0.10 mmol (0.06 g) of PPh4[Au(CN)2].
A solution was obtained after the reaction, the solvent was evaporated, and a purple solid was obtained
and washed with a dichloromethane/petroleum ether mixture. Yield: 0.07 g (67%). Anal. Calcd. (%)
for 7·2CH2Cl2: C, 52.05; H, 4.28; N, 2.25. Found (%): C, 52.58; H, 4.75; N, 2.48. FT-IR (cm−1): 3058w,
2961m, 2906w, 2866w, 2161w, 1595s, 1556m, 1484w, 1474w, 1462w, 1437m, 1393s, 1268m, 1190m, 1149w,
1107s, 1017m, 997w, 855m, 780m, 755w, 722s, 712s, 689s.

Single crystals of (PPh4)2{Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2}·2OCMe2 (7·2OCMe2) were
obtained after 7 days by slow diffusion of hexane into a solution of the compound in acetone in
the fridge.

3. Results and discussion

3.1. Synthesis of the Complexes

Complexes 1–7 have been obtained following the routes indicated in Scheme 1.
The metathesis reaction of [Rh2(µ–O2CMe)4] in methoxyacetic acid led to the formation

of [Rh2(µ–O2CCH2OMe)4(THF)2] (1) after the removal of the excess ligand, washing with
hexane and diethyl ether and crystallization process in THF. A similar reaction with melted
4–tert–butylbenzoic acid yielded complex [Rh2(µ–O2CC6H4–p–CMe3)4(OH2)2] (2) after washing
with a mixture of diethyl ether and petroleum ether to eliminate the huge excess of solid ligand. The low
solubility of the 4–tert–butylbenzoic acid in the washing mixture made necessary the use of
a large volume of solvent. This synthetic method using the ligand as the reaction solvent
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is similar to the one used for the synthesis of [Rh2(µ–O2CCH2OEt)4(HO2CCH2OEt)2] [60] and
[Rh2(µ–O2CCMe3)4(HO2CCMe3)2] [65,66]. Slow diffusion of different solvents into solutions of the
complexes 1 and 2 was tested in order to get single crystals to allow the structural determination of
these compounds. Single crystals of 1 were obtained using hexane and a solution of the solid obtained
in THF. Unfortunately, all the attempts to obtain single crystals of 2 were unsuccessful. Nevertheless,
the paddlewheel structure of complex 2 with four 4–tert–butylbenzoate bidentate ligands is proved in
the crystal structure of complex 7 (see below).
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One-dimensional polymeric complexes, (PPh4)n[Rh2(µ–O2CMe)4Au(CN)2]n (3), (PPh4)n[Rh2(µ–
O2CCH2OMe)4Au(CN)2]n (4), and (PPh4)n[Rh2(µ–O2CCH2OEt)4Au(CN)2]n (5), were obtained
by stirring at room temperature solutions of the corresponding tetracarboxylato dirhodium
complex with a solution of PPh4[Au(CN)2] in THF. For compounds 3 and 5, THF solutions
were employed and these compounds were obtained as precipitates from the reaction mixture.
For compound 4, the chosen solvent was methanol and the solid was obtained after removal of
the solvent mixture. Single crystals of the three complexes were obtained from slow diffusion
of different solvents into dichloromethane solutions of the solids. In this way, THF was
used to obtain single crystals of {(PPh4)[Rh2(µ–O2CMe)4Au(CN)2]·2CH2Cl2}n (3·2CH2Cl2), hexane
for {(PPh4)[Rh2(µ–O2CCH2OMe)4Au(CN)2]·3CH2Cl2]}n (4·3CH2Cl2), and diethyl ether for (PPh4)
n[Rh2(µ–O2CCH2OEt)4Au(CN)2]n (5). Single crystals of compound 5, with the same unit cell, were also
obtained by slow diffusion of diethyl ether in an acetone solution of the compound.

Similar reactions at room temperature were employed to obtain the non-polymeric complexes
(PPh4)2{Rh2(µ–O2CCMe3)4[Au(CN)2]2} (6) and (PPh4)2{Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2} (7).
An acetone solution of PPh4[Au(CN)2] was stirred with a solution of [Rh2(µ–O2CCMe3)4(HO2CCMe3)2]
in diethyl ether to obtain compound 6. Dichloromethane solutions of PPh4[Au(CN)2] and 2
achieved compound 7 after evaporation of the solvent. Single crystals of 6 were formed after
evaporation of a solution of the complex in acetone/diethyl ether, whereas layering hexane
on top of an acetone solution of 7 and kept in the fridge (7 days) yielded single crystals of
(PPh4)2{Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2}·2OCMe2 (7·2OCMe2).

The reaction conditions used for the synthesis of compounds 3–7 are analogous to those employed
for the synthesis of the polymeric complexes (PPh4)n[Rh2(µ–O2CR)4Ag(CN)2]n (R = Me, Ph, CH2OEt)
and the non-polymeric compound, (PPh4)2{Rh2(µ–O2CCMe3)4[Ag(CN)2]2} recently reported by
our research group [60]. This lead to crystals structures showing numerous structural similarities
(see below).

3.2. IR Characterization

The IR spectrum of each compound shows the characteristic bands of the carboxylate ligands
coordinated to the dimetallic unit. Thus, the infrared spectra of the seven compounds show the
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corresponding bands of the antisymmetric and symmetric stretching modes of the carboxylate groups:
ν(COO)a (1612–1576 cm−1) and ν(COO)s (1412–1391 cm−1). The separation between the symmetric
and antisymmetric bands indicates the symmetrical bridging coordination mode of the equatorial
carboxylate ligands [67].

For complexes 3–7, an additional band corresponding to the ν(C≡N) vibration is also visible in
the 2173 to 2139 cm−1 range, indicating the presence of the [Au(CN)2] in the complexes.

3.3. Crystal Structures and Refinement Data

A summary of some crystal and refinement data obtained for complexes 1, 3·2CH2Cl2, 4·3CH2Cl2,
5, 6, and 7·2OCMe2 is shown in Table 1. More detailed information can be found in Tables S1–S6 and
Figures S1–S6 in the Supporting Information.

Table 1. Crystal and refinement data for compounds 1, 3·2CH2Cl2, 4·3CH2Cl2, 5, 6, and 7·2OCMe2.

1 3 2CH2Cl2 4 3CH2Cl2 5 6 7 2OCMe2

Formula C20H36
O14Rh2

C36H36Au
Cl4N2O8PRh2

C41H46Cl6Au
N2O12PRh2

C42H48Au
N2O12PRh2

C72H76Au2
N4O8P2Rh2

C102H104Au2
N4O10P2Rh2

fw 706.31 1200.22 1405.25 1206.58 1787.06 2207.59
Space group P-1 P-1 P-1 P21/c P-1 P-1

a/Å 8.0729(19) 13.0075(13) 12.9715(16) 13.180(2) 12.1505(10) 13.284(3)
b/Å 12.380(3) 13.0075(13) 13.806(2) 22.270(4) 12.4592(10) 14.299(3)
c/Å 14.900(4) 13.7398(15) 15.990(3) 16.901(3) 14.1408(12) 14.785(3)
α/◦ 112.271(4) 87.339(2) 79.123(16) 90 70.0030(10) 99.189(4)
β/◦ 90.008(4) 78.375(2) 86.132(15) 112.224(3) 69.4540(10) 110.244(3)
α/◦ 92.332(4) 80.295(2) 71.808(18) 90 69.8730(10) 110.982(3)

V/Å3 1376.7(6) 2351.3(4) 2671.5(7) 4592.3(13) 1821.6(3) 2327.8(8)
Z 2 2 2 4 1 1

d calc/g cm−3 1.704 1.695 1.747 1.748 1.629 1.575
µ/mm−1 1.262 4.112 3.735 3.993 4.557 3.585

R indices R1 = 0.0351
wR2 =0.0855

R1 = 0.0459
wR2 = 0.1559

R1 = 0.0557
wR2 = 0.1771

R1 = 0.0433
wR2 = 0.1171

R1 = 0.0253
wR2 = 0.0622

R1 = 0.0659
wR2 = 0.1334

GooF on F2 0.918 0.993 0.992 0.989 1.045 0.997

[Rh2(µ–O2CCH2OMe)4(THF)2] (1), {(PPh4)[Rh2(µ–O2CMe)4Au(CN)2]·2CH2Cl2}n (3·2CH2Cl2),
{(PPh4)[Rh2(µ–O2CCH2OMe)4Au(CN)2]·3CH2Cl2]}n (4·3CH2Cl2), (PPh4)2{Rh2(µ–O2CCMe3)4

[Au(CN)2]2} (6), and (PPh4)2{Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2}·2OCMe2 (7·2OCMe2) crystallize
in the triclinic P-1 space group, while (PPh4)n[Rh2(µ–O2CCH2OEt)4Au(CN)2]n (5) crystallizes in
the monoclinic P21/c space group. Compounds 3·2CH2Cl2 and 5 crystallize in the same space
groups with similar cell parameters than the related dicyanidoargentate(I) complexes {(PPh4)
[Rh2(µ–O2CMe)4Ag(CN)2]·2CH2Cl2}n and (PPh4)n[Rh2(µ–O2CCH2OEt)4Ag(CN)2]n [60]. However,
6 crystallizes in a different space group than (PPh4)2{Rh2(µ–O2CCMe3)4[Ag(CN)2]2}, which crystallizes
in the orthorhombic Pnma space group [60].

The asymmetric unit of 1 contains two halves of two different paddlewheel units with inversion
centers placed in between the M–M axis (Figure S1). Similarly, the asymmetric unit of both complexes
6 and 7·2OCMe2 contains only one half of a paddlewheel unit and the other half is generated in the
unit cell by an inversion center located in the center of the M–M axis. A tetraphenylphosphonium
cation in both structures and one acetone molecule in 7·2OCMe2 complete the asymmetric unit of
these compounds (Figures S5 and S6).

The asymmetric unit of 3·2CH2Cl2 and 4·3CH2Cl2 and 5 is formed by a tetraphenylphosphonium
cation and a negatively charged tetracarboxylatodirhodium(II) unit with a dicyanidoaurate(I) ligand
in one axial position. Additionally, dichloromethane molecules complete the asymmetric unit of
3·2CH2Cl2 and 4·3CH2Cl2 (see Figures S2–S4). The quality of the data allowed to model isotropically
two and three dichloromethane molecules in 3·2CH2Cl2 and 4·3CH2Cl2, respectively. The Platon
Squeeze Routine [68] was used to remove additional disordered electron density in the structure
of 3·2CH2Cl2.
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All the Rh(II) ions display a slightly distorted octahedral geometry, with the four equatorial
positions occupied by oxygen atoms of the carboxylate ligands and the axial positions occupied by
another Rh(II) ion, and the oxygen atom of a THF molecule in the case of 1, and a nitrogen atom of
a dicyanidoaurate(I) ligand in the case of 3·2CH2Cl2, 4·3CH2Cl2, 5, 6, and 7·2OCMe2. Rh-Oequatorial

distances are in the 1.989(1) to 2.063(5) Å range. Octahedra are axially elongated with Rh-Oaxial

distances of 2.256(3) and 2.258(3) Å for 1, Rh-Naxial distances of 2.221(7) and 2.223(7) Å for 3·2CH2Cl2,
2.209(8) and 2.187(9) Å for 4·3CH2Cl2, 2.249(6) and 2.238(5) Å for 5, 2.226(4) Å for 6 and 2.291(11)
Å for 7·2OCMe2, and Rh-Rh distances of 2.3787(8) and 2.3810(8) Å for 1, 2.3981(9) Å for 3·2CH2Cl2,
2.4096(11) Å for 4·3CH2Cl2, 2.4133(8) Å for 5, 2.4002(6) Å for 6 and 2.3969(19) Å for 7·2OCMe2. All the
Rh-Rh distances are indicative of a single bond between Rh(II) ions. Rh-Rh and Rh-N distances are
similar to those found in other related compounds such as (PPh4)2n[{Rh2(µ–O2CCH3)4}{M(CN)4}]n

(M = Ni, Pd, Pt) [61], Kn[Rh2(µ–O2CR)4Au(CN)2]n (R = Me, Et) [59], (PPh4)n[Rh2(µ–O2CR)4Ag(CN)2]n

(R = Me, Ph, CH2OEt) [60], (PPh4)2{Rh2(µ–O2CCMe3)4[Ag(CN)2]2} [60], [K(18–crown–6)
(H2O)]2n[K(18–crown–6)(H2O)2]n[Rh2(µ–O2CPh)4Fe(CN)6]n·8nH2O [69], and K3n{[Rh2(µ–O2CCH3)

4]2Co(CN)6}n [70].
The structure of 3·2CH2Cl2, 4·3CH2Cl2, and 5 is formed by chains constructed, respectively, by the

following repetitive anionic units; [Rh2(µ–O2CMe)4Au(CN)2]−, [Rh2(µ–O2CCH2OMe)4Au(CN)2]−,
and [Rh2(µ-O2CCH2OEt)4Au(CN)2]−. A representation of the polymeric structure observed in
3·2CH2Cl2 is shown in Figure 1a as an example. On the other hand, the structure of 1, 6, and 7·2OCMe2

is formed by discrete [Rh2(µ–O2CCH2OMe)4(THF)2], {Rh2(µ–O2CCMe3)4[Au(CN)2]2}2−, and
{Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2}2− units, respectively. The anionic paddlewheel unit of
the structure of 6 is shown in Figure 1b. The crystal structure of complex 6 is similar to its analogous
compound (PPh4)2{Rh2(µ–O2CCMe3)4[Ag(CN)2]2}, whose molecular nature has been explained by
a higher solubility of the branched trimethylacetate group in acetone, favoring the formation of
a molecular complex due to a slower crystallization [60]. This fact is also corroborated by the obtaining
of discrete anionic {Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2}2− units in complex 7, due to the also
branched 4–tert–butylbenzoate ligand. A view of the packing of the discrete dirhodium units of 6 and
7·2OCMe2 is shown in Figures S7 and S8 in the Supporting Information.
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Figure 1. Representation (50% probability ellipsoids) of the chain formed by [Rh2(μ-
O2CMe)4Au(CN)2]− repetitive units that is observed in the structure of 3·2CH2Cl2 (a) and the {Rh2(μ-
O2CCMe3)4[Au(CN)2]2}2− units present in the structure of 6 (b). Rhodium: turquoise; oxygen: red; 
carbon: grey; nitrogen: purple; gold: yellow. Hydrogen atoms are omitted for clarity. 

Figure 1. Representation (50% probability ellipsoids) of the chain formed by [Rh2(µ-O2CMe)4

Au(CN)2]− repetitive units that is observed in the structure of 3·2CH2Cl2 (a) and the
{Rh2(µ-O2CCMe3)4[Au(CN)2]2}2− units present in the structure of 6 (b). Rhodium: turquoise; oxygen:
red; carbon: grey; nitrogen: purple; gold: yellow. Hydrogen atoms are omitted for clarity.

The anionic chains of 3·2CH2Cl2, 4·3CH2Cl2, and 5 have a wavy structure with Rh-Au-Rh angles
of 178.69(1), 177.99(2), and 177.18(1), respectively, and Rh–N–C angles of 169.8(8) and 170.2(8) for
3·2CH2Cl2, 170.4(10) and 167.7(10) for 4·3CH2Cl2 and 164.2(7) and 163.0(6) for 5. This wavy structure
is analogous to those found in the related compounds (PPh4)n[Rh2(µ–O2CR)4Ag(CN)2]n (R = Me,
Ph, CH2OEt) [60] with very similar values for the Rh-M-Rh (M = Ag, Au) and Rh–N–C angles when
complexes with the same equatorial ligand are compared. These angles make that the wavy structures
for compounds with R = CH2OEt are more pronounced that for those with R = Me.
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The anionic chains of 3·2CH2Cl2 and 4·3CH2Cl2 are packed parallel to each other along the a axis
with the tetraphenylphosphonium cations and dichloromethane molecules between them. The chains
of 3·2CH2Cl2 are arranged in pairs with each pair surrounded by other four pairs of chains (Figure 2a) in
a similar way than the structure found for {(PPh4)[Rh2(µ–O2CMe)4Ag(CN)2]·2CH2Cl2}n [60], while the
chains are arranged in rows in the structure of 4·3CH2Cl2 (Figure 2b). The anionic chains of 5 are
packed in a parallel disposition, with tetraphenylphosphonium cations between them, in an alternating
fashion as shown in Figure 2c. This chain packing is comparable to that found in the silver derivative,
(PPh4)n[Rh2(µ–O2CCH2OEt)4Ag(CN)2]n [60].
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n−, respectively, shown in black.

The supramolecular interactions between dirhodium units of the compounds are summarized in
this paragraph. Several CH· · ·O contacts between dirhodium molecules are observed in the structure
of 1. Each Rh1Rh1 unit is connected to four neighbor molecules and each Rh2Rh2 unit is connected to
six neighbor molecules through this type of contacts (Figure S9). Two CH· · ·O contacts link couples
of neighbor chains in the structure of 4·3CH2Cl2 (Figure S10), and two CH· · ·N contacts connect the
dirhodium discrete units in one direction in the structure of 7·2OCMe2 (Figure S11). There is no
significant interaction between dirhodium units in the structure of 3·2CH2Cl2, 5, and 6. Moreover,
the presence of tetraphenylphosphonium cations surrounding the dirhodium units does not allow the
existence of Au–Au interactions in any structure. Thus, the shortest Au· · ·Au distances are 8.7190(8),
9.747(2), 8.452(2), 7.8186(7), and 7.155(2) Å for 3·2CH2Cl2, 4·3CH2Cl2, 5, 6, and 7·2OCMe2, respectively.
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There are also several weak interactions between dirhodium units and tetraphenylphosphonium
cations and solvent molecules in the structures of 3·2CH2Cl2, 4·3CH2Cl2, 5, 6, and 7·2OCMe2.
Each dirhodium unit of 3·2CH2Cl2 is connected to four tetraphenylphosphonium cations and two
dichloromethane molecules through CH· · ·O contacts. Moreover, an additional CH· · ·N contact is
established with another tetraphenylphosphonium cation (Figure S12). Similarly, each dirhodium unit
of 4·3CH2Cl2 is connected to three tetraphenylphosphonium cations and three dichloromethane
molecules through CH· · ·O and CH· · ·N contacts (Figure S13). Each dirhodium unit of 5
is connected to four tetraphenylphosphonium cations through CH· · ·O contacts (Figure S14).
Additionally, CH· · ·π interactions are established with two neighboring tetraphenylphosphonium
cations (Figure S15). The main cation-anion interactions in the molecular complex 6 are two CH· · ·N
contacts between the dicyanidoaurate(I) ligands in the axial positions of the paddlewheel units and
two tetraphenylphosphonium cations (Figure S16). In the structure of 7·2OCMe2 each dirhodium unit
is connected to two acetone molecules through CH· · ·O contacts and two tetraphenylphosphonium
cations through CH· · ·O and CH· · ·N contacts (Figure S17).

The most remarkable interactions between tetraphenylphosphonium cations are pairs of weak
CH· · ·π interactions established between couples of cations in the structure of 3·2CH2Cl2 (3.127 Å)
and 5 (3.146 Å) (Figures S18 and S19).

4. Conclusions

Complexes (PPh4)n[Rh2(µ–O2CR)4Au(CN)2]n (R = Me (3), CH2OMe (4), CH2OEt (5)) show
crystal structures formed by anionic wavy chains of [Rh2(µ–O2CR)4Au(CN)2]− repetitive units in
which the dicyanidoaurate(I) group acts as bridging ligand between the paddlewheel dirhodium(II)
units. The formation of discrete anionic units, instead of anionic polymeric chains, in the complexes
(PPh4)2{Rh2(µ–O2CR)4[Au(CN)2]2} (R = CMe3 (6), C6H4–p–CMe3 (7)) has been attributed to the increase
of the solubility in acetone due to the branched equatorial trimethylacetate and tert–butylbenzoate
ligands. Significant intermolecular Au· · ·Au interactions and, therefore, luminescent properties,
are prevented due to the presence of the bulky tetraphenylphosphonium counterions, which are
also involved in several CH· · ·O and CH· · ·N intermolecular contacts. The many similarities found
in the crystal structures of 3·2CH2Cl2, 5, and 6 with their silver analogous indicate that silver and
gold atoms do not play a substantial role in the crystal structures of this type of complexes when the
same crystallization conditions are used. The structural description of these complexes contribute to
increase the family of polymers of dirhodium carboxylates with [Au(CN)2]−. This knowledge could be
useful for the design of future polymers with potential applications in several areas as catalysis or
bioinorganic chemistry.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/9/1868/s1,
Figure S1: Representation of the asymmetric unit of [Rh2(µ–O2CCH2OMe)4(THF)2] (1). Table S1: Selected
bond lengths and angles for [Rh2(µ–O2CCH2OMe)4(THF)2] (1). Figure S2: Representation of the asymmetric
unit of {(PPh4)[Rh2(µ–O2CMe)4Au(CN)2]·2CH2Cl2}n (3·2CH2Cl2). Table S2: Selected bond lengths and
angles for {(PPh4)[Rh2(µ–O2CMe)4Au(CN)2]·2CH2Cl2}n (3·2CH2Cl2). Figure S3: Representation of the
asymmetric unit of {(PPh4)[Rh2(µ–O2CCH2OMe)4Au(CN)2]·3CH2Cl2}n (4·3CH2Cl2). Table S3: Selected
bond lengths and angles for {(PPh4)[Rh2(µ–O2CCH2OMe)4Au(CN)2]·3CH2Cl2}n (4·3CH2Cl2). Figure S4:
Representation of the asymmetric unit of (PPh4)n[Rh2(µ–O2CCH2OEt)4Au(CN)2]n (5). Table S4: Selected
bond lengths and angles for (PPh4)n[Rh2(µ–O2CCH2OEt)4Au(CN)2]n (5). Figure S5: Representation of
the asymmetric unit of (PPh4)2{Rh2(µ–O2CCMe3)4[Au(CN)2]2} (6). Table S5: Selected bond lengths and
angles for (PPh4)2{Rh2(µ-O2CCMe3)4[Au(CN)2]2} (6). Figure S6: Representation of the asymmetric unit of
(PPh4)2{Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2}·2OCMe2 (7·2OCMe2). Table S6: Selected bond lengths and
angles for (PPh4)2{Rh2(µ–O2CC6H4–p–CMe3)4[Au(CN)2]2} 2OCMe2 (7·2OCMe2). Figure S7: 3 × 3 × 3 packing
along the c axis of the structure of 6. Figure S8: 3 × 3 × 3 packing along the b axis of the structure of 7·2OCMe2.
Figure S9: View of the CH· · ·O contacts between Rh1-Rh1 (top) and Rh2-Rh2 (bottom) dirhodium units and
neighboring units in the structure of 1. Figure S10: View of the CH· · ·O contacts between neighbor chains in
the structure of 4·3CH2Cl2. Figure S11: View of the CH· · ·N contacts between neighbor dirhodium units in the
structure of 7·2OCMe2. Figure S12: View of the CH· · ·O and CH· · ·N contacts between dirhodium units and
tetraphenylphosphonium cations and dichloromethane molecules in the structure of 3·2CH2Cl2. Figure S13:
View of the CH· · ·O and CH· · ·N contacts between dirhodium units and tetraphenylphosphonium cations and
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dichloromethane molecules in the structure of 4·3CH2Cl2. Figure S14: View of the CH· · ·O contacts between
dirhodium units and tetraphenylphosphonium cations in the structure of 5. Figure S15: View of the CH· · ·π
interactions between dirhodium units and tetraphenylphosphonium cations in the structure of 5. Figure S16:
View of the CH· · ·N contacts between dirhodium units and tetraphenylphosphonium cations in the structure of 6.
Figure S17: View of the CH· · ·O and CH· · ·N contacts between dirhodium units and tetraphenylphosphonium
cations and acetone molecules in the structure of 7·2OCMe2. Figure S18: View along the a axis of the closest
tetraphenylphosphonium cations and the CH· · ·π interactions between them in the structure of of 3·2CH2Cl2.
Figure S19: View along the a axis of the closest tetraphenylphosphonium cations and the CH· · ·π interactions
between them in the structure of 5.
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