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Air pollution mitigation can reduce 
the brightness of the night sky 
in and near cities
Miroslav Kocifaj1,2* & John C. Barentine3,4

Light pollution is a novel environmental problem whose extent and severity are rapidly increasing. 
Among other concerns, it threatens global biodiversity, nocturnal animal migration, and the integrity 
of the ground-based astronomy research enterprise. The most familiar manifestation of light pollution 
is skyglow, the result of the interplay of outdoor artificial light at night (ALAN) and atmospheric 
scattering that obscures views of naturally dark night skies. Interventions to reduce night sky 
brightness (NSB) involving the adoption of modern lighting technologies are expected to yield the 
greatest positive environmental consequences, but other aspects of the problem have not been fully 
explored as bases for public policies aimed at reducing light pollution. Here we show that reducing 
air pollution, specifically aerosols, decreases NSB by tens of percent at relatively small distances 
from light sources. Cleaner city air lowers aerosol optical depth and darkens night skies, particularly 
in directions toward light sources, due to relatively short path lengths traversed by photons from 
source to observer. A field experiment demonstrating the expected changes when transitioning from 
conditions of elevated turbidity to cleaner air validated our hypothesis. Our results suggest new policy 
actions to augment and enhance existing light pollution reduction techniques targeting lighting 
technology and design.

The usual approach to reducing skyglow, both over cities as well as seen from distant sites such as protected 
landscapes and astronomical observatories, is focused on making changes to outdoor lighting; in other words, 
if the source of the problem is addressed, we expect that symptoms of the problem such as skyglow will respond 
proportionately1–7. We recently confirmed this causality in two lighting experiments conducted in the city of 
Tucson, U.S. When Tucson modernized its municipally owned street lighting system in 2016–2017, it reduced 
total system light emissions by 63%. As a consequence of this change, the upward-directed optical radiance of 
Tucson detected from Earth orbit decreased by approximately 7% and the zenith NSB at distant sites (~ 50 km 
from the city center) declined by an average of about 15%7. More recently, we arranged a test with the Tucson 
municipal government involving its actively controlled white light-emitting diode (LED) street lights that were 
installed during the modernization project. On nights when most city street lights were simultaneously dimmed 
by a factor of 2/3, we detected location-dependent changes in the zenith NSB due to the light dimming of − 6% 
to 0% over radial city-center distances ranging from 5 to 50 km8.

However, reducing skyglow over cities through lighting interventions has limited utility for two reasons. One 
is that modernization of lighting is seen as a once-per-generation opportunity, and once installed, solid-state 
lighting (SSL) products are expected to operate reliably in field conditions for 20–30 years. Another reason is that 
world cities continue to grow as the global population urbanizes, and that growth is happening most quickly in 
developing economies. Given recent history in other aspects of technology, it is likely that cities in those places 
will “leap over” earlier outdoor lighting technologies and proceed directly to SSL. In this sense, SSL represents 
both challenge and promise in terms of its impact on skyglow. World demand for ALAN is increasing, and that 
demand appears to be fueled by the availability of cheap, reliable and energy-efficient SSL2; however, the pro-
liferation of blue-rich white light sources such as white LED technology threatens to vastly increase skyglow1,9. 
Therefore, in addition to making changes to sources of light, we must consider other points of leverage on the 
problem in order to manage the growth of skyglow globally.

We considered aspects of the problem of skyglow formation other than light source characteristics because 
skyglow is the combination of light sources on the ground plus the light-processing effect of the atmosphere10. 
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Although the physics of skyglow formation is well understood, the application of that knowledge as an inter-
vention to reduce its prevalence does not seem to have been suggested in the literature. We hypothesized that 
persistent declines in atmospheric aerosols resulting from successful iniatives to reduce air pollution would also 
reduce NSB if all other influences were held fixed. Cleaner air not only has obvious public health benefits11, but 
it could further reduce diffuse artificial light in the night sky and improve astronomical viewing after the utility 
of other methods such as lighting changes has been exhausted.

The lives of photons emitted by artificial ground-based sources can be manifold due to highly variable atmos-
pheric conditions. Aspects of the light-emitting environment such as the number and spatial distribution of light 
sources are relatively stable in time, but the type and variability of atmospheric aerosols both show large regional 
diversity on relatively short time scales. Depending on the concentrations, nature, and sizes of aerosol particles, 
as well as their transport from air pollution sources, the mean free path of photons can change, potentially 
shortening the average distance between consecutive scattering events. The more aerosol particles contained in 
the atmosphere, the more photons tend to scatter downwards, which in turn causes NSB increases as seen from 
the ground. This effect is strongest near the light sources9. At the same time, the concentration of aerosols in the 
air above cities is in many cases greater than ever. Highly populated regions of the world increasingly confront 
the problem of rising air pollution. The situation is especially acute in China, where atmospheric aerosol loading 
has increased by a factor of 10 or more compared to what has been identified in Europe12,13.

Results and discussion
Of various aerosol properties, the wavelength-dependent aerosol optical depth (AOD) is known to correlate well 
with the total concentration of particles in the air14. AOD is commonly used to characterize the attenuation of 
light beams as they traverse the atmosphere, and it relates to the cross section of particles in a particular way. We 
therefore expect a diversity of optical effects with a wide range of amplitudes from aerosol mixtures suspended in 
air. To demonstrate this effect, we simulated the angular distribution of the intensity of light scattered by a mixture 
of aerosol components characteristic of the air over cities (Fig. 1). Even for the same number concentration of 
aerosol particles, the figure shows that the number of photons scattered toward the ground can vary over an order 
of magnitude or more for particle populations that differ significantly in size distribution or chemical composi-
tion. By increasing the size of particles we simulate the range of changes to the NSB that we may expect from 
processes of particle coagulation or aggregation (see Fig. 1A). The aggregated particulate materials can also differ 
in chemical composition and mean refractive index, resulting in a wide range of backscattering features (Fig. 1B).

The intensity of scattered light as a function of particle size changes steeply when transitioning from the 
small-particle limit to its large-particle counterpart15,16. Scattered intensity from very small particles is propor-
tional to the sixth power of the particle size, but particles that are large compared to the wavelengths of light 
typically scatter proportionally to their geometric cross section. The composition of particles relates to their 
complex refractive index, which in turn predetermines the phase shift or amplitude decay that a light ray suffers 
when passing through a particle. The latter phenomenon, in combination with the effect of different particle 

Figure 1.   Angular distribution of scattered light intensity for light of wavelength (λ) 530 nm computed for a 
mixture of urban-dominated aerosol components (details are discussed in “Methods”). The number of scattered 
photons proportional to the differential scattering cross section39 is shown on y-axis relative to the number 
concentration of urban aerosols36. (A) Black crosses in the left plot indicate results for the baseline conditions. 
The plot demonstrates that an increase of the particle size by 20% (solid blue triangles), 50% (solid green circles), 
and 100% (hollow red squares) over baseline while holding the number concentration constant enhances the 
scattered light intensity in all directions. (B) The range of backscattering features due to the varying complex 
refractive index ( m = n+ iκ ). The baseline conditions are for a mean refractive index m = 1.5 + 0.05i (solid 
black line with cross symbols). The scattered intensity drops when lowering n to 1.4 (blue stars) and increases 
when n is raised to 1.6 (green squares). Highly absorbing elements in the aerosol mixture flatten the scattering 
phase function at large angles (long dashed black line for κ = 0.2), which is contrasted by the results for non-
absorbing particles (short dashed black line for κ = 0.0).
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sizes, causes the total amount of power scattered by a particle in different directions to increase or decrease due 
to constructive or destructive interference. Therefore, the probability that photons will traverse specific angles 
after a scattering event is expected to vary largely according to the aerosol population.

Aerosols produced by nearby sources typically dominate local air pollution because the majority of the par-
ticles settle to the ground during long-range transport from more distant sites17. Excellent filtration and proper 
regulation of local air pollution sources is therefore an effective way to better control the particulate matter in a 
local atmosphere. For instance, the size of aerosol particles and the magnitude of AOD in the city of Bratislava, 
Slovakia, are both large compared to what is observed in Vienna, Austria18, although these cities are separated 
by only ~ 55 km and thus share local weather conditions in common. A modification of the light-scattering 
properties of the local atmosphere through active intervention may therefore have great potential as a new tool 
to control NSB beyond the limits achieved by streetlight modernization. This is particularly true for air-pollution 
treatments in developing regions with many local pollution sources such as heavy industrial activities.

To verify this hypothesis we performed detailed computations of NSB using a highly accurate model that 
includes the contributions to night sky radiance from many orders of scattering19. We performed simulations 
for an observer located at a range of distances from ~ 1 km to approximately 15 km from a light source. For 
all computed models, the peak contributions from individual scattering orders to the total diffuse irradiance 
at ground level are identified at 15 km from the source of light, and they do not exceed 18% for second-order 
scattering, 4% for third-order, 0.5% for fourth-order and 0.06% for fifth-order. The contribution of scattering 
orders higher than first to skyglow in a polluted atmosphere is a strong function of radial distance from the light 
source and tends to increase with optical path length. Therefore, the above values we found for an observer at a 
distance of 15 km will be significantly reduced closer to the light source. Other modeling results are available in 
the Supplementary Information (Supplementary Information Fig. S1).

The computations are reported relative to baseline conditions characterized by AOD530nm = 0.3, aerosol Ång-
ström exponent α = − 1.3, aerosol asymmetry parameter ASY = 0.6, aerosol single scattering albedo SSA = 0.95, 
and aerosol scale height ASH = 2.2 km. These values are representative of typical urban atmospheres20 for a 
nominal wavelength of 530 nm, simulating average conditions for the middle of the visible spectrum. 530 nm was 
chosen in particular because it approximates the peak wavelength sensitivity of the Sky Quality Meter, a widely 
used, commercially available NSB measurement device21. We performed similar computations for λλ = 450 nm 
and 650 nm, to demonstrate the aerosol impacts on NSB for the B and R bands of the Johnson-Cousins photo-
metric system (see Supplementary Information for further details). AOD values > 0.3 for the middle of visible 
spectrum are very often found in Eastern Asia, especially in highly polluted areas of China22. Especially in South-
east Asia, AOD increased by more than 130% between 1980 and 2006, so proper control of source emissions can 
improve the situation significantly. Air pollution reduction programs in Chinese cities aim to lower the number 
concentration of particles with sizes < 2.5 μm by several tens of percent through reducing anthropogenic sulfate 
emissions that dominate AOD in industrial regions23. Although it is highly unlikely that air pollution can be 
eliminated completely, it is realistic to imagine that air pollution can be reduced substantially through effective 
public policy, and indeed it already has been in various parts of the world. It is therefore an important challenge 
to find out which NSB changes we may expect when transitioning from the aforementioned ’baseline’ turbidity 
conditions to those in a cleaner atmosphere up to the theoretical limit in which AOD approaches zero.

For a light source at a distance of 1.3 km from an observer emitting 10% of its photons directly upward, a 
change from polluted air (AOD530nm = 0.3) to a clean atmosphere results in zenith NSB reduction by a factor of 
3.2; i.e., NSB drops to ~ 30% of its initial level (leftmost plot in Fig. 2A). Increasing the AOD for a given fixed 
distance from the light source to the observer causes the flux density of the light beam to decay rapidly. Therefore, 
the zenith NSB in clean air conditions increases to 40% of that obtained in turbid air if the distance to the light 
source approaches 3 km; 60% at the distance of about 7 km; and even 140% for an observer situated 15 km from 
the light source (see leftmost plots in Fig. 2B–D). The NSB for truly zero AOD determined relative to NSB for 
AOD = 0.3 is a good indicator for air pollution control policy impacts; however, an inverse relationship between 
zenith NSBAOD = 0/NSBAOD = 0.3 and the ground distance from the light source should be interpreted in context 
along with the significantly reduced number of photons detected in the zenith at large source distances. As the 
source distance increases from 1.3 km to 3 km, 7 km, and 15 km, the zenith NSB in a turbid atmosphere falls 
to 26%, 5% and 0.4% of its starting value, respectively; however, the corresponding trend in a clean (‘Rayleigh’) 
atmosphere is less pronounced, with corresponding rates of 33%, 9%, and 2%. So even if the ratio NSBAOD = 0/
NSBAOD = 0.3 in the zenith tends to increase with source distance, the amplification factor of 1.4 found for the 
distance of 15 km from the light source is negligible compared to the general exponential decay of NSB values 
with increasing distance. In a clean atmosphere the total sky brightness in the zenith 15 km from the source of 
light is 50 times smaller than that obtained at a distance of 1.3 km. Therefore, an increase of NSBAOD = 0 relative 
to NSBAOD = 0.3 by a factor of 1.4 is very small in view of the low values of total NSB we found at distant places 
compared to those near the light source. A large decrease in NSB from backscattered light is noticed in the sky 
direction opposite to the azimuthal direction of the light source (see middle and rightmost columns in Fig. 2).

It is evident that air pollution control critically influences NSB near a light source, while potentially increased 
values of NSBclean-air/NSBturbid-air far from a light source are not a sufficient reason to invoke actions to mitigate 
NSB. The findings are important for observatories near or even inside cities very often intended for astronomy 
education and/or public outreach, like those traditionally located in the peripheries of European cities. In pro-
fessional astronomy, narrow-band photometry suppresses the negative impacts of light source spectral power 
distributions prevailing on local scales; however, enhanced emissions in blue wavelengths, predominately from 
white LED sources, may induce significant impacts to visual astronomy9 (see Extended Data Figs. S2, S3 for 
blue light and red light).

To test our hypothesis concerning the link between air pollution and skyglow, we validated the predictions of 
our models using experimental data obtained in short-term circumstances simulating the systematic reduction 
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of air pollution. For this experiment we identified two dates in spring 2019 when local weather conditions over 
the city of Vienna, Austria, allowed for the comparison of nighttime conditions during which AOD was relatively 
high and low. AOD500nm measured at the AERONET (aeronet.gsfc.nasa.gov) station in Vienna declined rapidly 
during this period, from 0.4 on 6 April to 0.06 on 9 April. The position of the Institute for Astrophysics (IFA) 
measuring station relative to the center and edges of the Vienna conurbation is shown in Fig. 3A. The 5-km 
vector indicates the radial distance from IFA to the Vienna city center, and the 1.8-km vector represents the 
mean distance to the continuously built edge of the city. The data shown in the top panel represent the March 
2019 monthly cloud-free composite radiance obtained from remote sensing measurements made by the Visible 
Infrared Imaging Radiometer Suite in its Day/Night Band24,25. The map follows the usual cartographic convention 

Figure 2.   Aerosol-induced changes to NSB at a set of discrete distances, d, from a light source for λ = 530 nm. 
From (A) to (D): d = 1.3 km, 2.9 km, 6.7 km and 15.4 km. The leftmost column is the ratio NSBAOD = 0/
NSBAOD = 0.3, shown on the same linear scale to make valid comparisons possible. The middle and rightmost 
columns are false-color representations of the all-sky NSB distributions (in arbitrary units on the logarithmic 
scale) for ‘polluted’ (AOD = 0.3) and ‘clean’ atmospheres (AOD = 0.0), respectively. The zenith and horizon are in 
the center and at the edge of each plot, respectively. A source of light is at an azimuth angle of 294°. The results 
in the leftmost column indicate that eliminating air pollution completely reduces NSB most at small distances 
from light sources, but at a distant place the NSB under clear-air conditions is relatively higher than that in 
turbid air. Far from the light source (D) we observe a decrease of total NSB by one to two orders of magnitude 
compared to what is obtained for (A) in the middle and rightmost columns, so the relative impact of AOD on 
NSB is probably not critical for either a measuring device or a human observer.
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of north at top and east at right, and a 2-km scale bar is provided in the lower left corner. The zenith night sky 
brightness shown in the bottom panel are taken from lightpollutionmap.info (Map by Jurij Stare; Microsoft 
product screen shot reprinted with permission from Microsoft Corporation).

These two dates in April 2019 were chosen not only for their large difference in AOD, but also because the 
other aerosol parameters varied only slightly between them: the single scattering albedo (SSA) was 0.98 on the 
first date and 0.97 on the second date; the absorption AOD was 0.006 on both dates; and the aerosol asymmetry 
parameter (ASY) changed from 0.71 to 0.61. We measured the change in zenith NSB on the two nights at the 
same time shortly before local midnight using a Sky Quality Meter operated at IFA (https://​astro.​univie.​ac.​at/​
ueber-​uns/​licht​versc​hmutz​ung/). During the high-turbidity event on 6 April it was (4.30 ± 0.12) mcd m−2, while 
under clear-air conditions on 9 April it was (2.47 ± 0.07) mcd m−2. The ratio of the zenith brightness values, 
NSBAOD = 0.06/NSBAOD = 0.4, was therefore 2.47/4.30 = 0.57 ± 0.04. To estimate the uncertainty, we used the known 
instrumental scatter of the SQM device, which averages to about ± 3% (± 0.03 magnitudes per square arcsecond).

We computed models of NSB for the same distances of d = 1.3 km, 2.9 km, 6.7 km and 15.4 km as shown 
in Fig. 2 and compared the predicted values of NSBAOD = 0.06/NSBAOD = 0.4 against our measurement to find the 
mean distance to light sources contributing the most NSB light at the zenith. Figure 3B shows the NSB ratios 
for the selected light source distances along with our measured value from the IFA station. The horizontal black 
line shows our measured NSB ratio (0.57), which is best matched by the model for which d = 6.7 km. The figure 
therefore suggests that our measured value is theoretically due to light sources at distances ≲ 7 km, and is mostly 
attributable to light sources distributed within the mean radius of 5 km shown in Fig. 3A.

While we are unable to determine exactly which light sources dominate the contribution to zenith NSB at the 
IFA station, certainly some of those sources are within a wider interval of radii, R. The number of light sources in 
a city, n, increases roughly as the square of the distance from a given location (n ~ R2), so we conclude that light 
sources in the neighborhoods nearest IFA alone cannot be decisive for its NSB. Light from sources at smaller 
distances contributes efficiently to the total brightness of the zenith sky because the relatively shorter optical 
paths of those light rays mean that they suffer less atmospheric attenuation from source to observer. However, 
as noted previously, there are few such sources at short range from IFA. Distant sources (d > 7 km) contribute 
less efficiently to zenith brightness at the IFA because of the longer optical paths of their light rays, but their 
numbers are relatively high.

The most significant contribution to NSB at this site is from light sources in some radius interval R1 to R2 
because of two opposite effects. First, as noted above, n is a quadratically increasing function of R. However, 
because the radiance of a light source varies as R−2, and in consideration of the exponential attenuation of the 
light beam along its direction of travel, the real optical signal varies as R−N, where N > 2 and depends on factors 

Figure 3.   Sources of artificial light near the Vienna measuring station and their modeled NSB impact as a 
function of AOD and distance. (A) Situation of the University of Vienna Institute for Astrophysics (IFA) with 
respect to the spatial distribution of upward radiance and zenith night sky brightness over the city of Vienna, 
Austria. In the top panel, the upward-directed radiance in nW cm−2 sr−1 is shown in false colors according to the 
key at upper left, overlaid on a background map of Vienna. The zone defined by the 5-km circle encloses light 
sources with the highest relative importance for the experimentally determined ratio of NSBAOD = 0.06/NSBAOD = 0.4 
discussed in the main text. In the bottom panel, the same information is shown but the false colors indicate the 
predicted zenith night sky brightness from the maps of Falchi et al.1. The scale at upper left shows the zenith 
brightness in units of mcd m−2. (B) Model predictions of the NSBAOD = 0.06/NSBAOD = 0.4 ratio as a function of light 
source distance from the Vienna measurement station. The ratios computed are shown as bars with blue dots for 
wavelengths of 450 nm, bars with green crossed lines for 530 nm, and red bars for 650 nm. The horizontal black 
line indicates the measured NSBAOD = 0.06 /NSBAOD = 0.4 NSB ratio (0.57).

https://astro.univie.ac.at/ueber-uns/lichtverschmutzung/
https://astro.univie.ac.at/ueber-uns/lichtverschmutzung/
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such as the atmospheric turbidity and the length and inclination angle of the beam path. We therefore expect that 
the weighted contribution of nearby light sources is higher than that for distant sources, and that the contribu-
tion to the NSB is mostly from lights at d ≤ 7 km. For larger values of d, the contribution from light sources to 
the NSB is expected to decrease steeply26.

We computed generic models of point light sources at the same fiducial distances as before, which are 
shown in Fig. 4. The models have identical values of ASH (2.2 km) and ASY (0.6). We allowed the NSBAOD = 0.3/
NSBAOD = 0.0 ratio to vary according to the values shown by the green bars (λ = 530 nm) in Fig. 3B. Although the 
measured ΔAOD (− 0.34) is different from the ratio used to compute these generic models (− 0.30), we find good 
correspondence between the model predictions and our IFA observations.

Formally speaking, our model should be tested in the context of a deliberate, persistent reduction in air pollu-
tion. Even though we only showed the result for a case in which weather effects simulated a systematic pollution 
reduction, the test performed is appropriate to validate the model. For as long as air pollution levels are reduced, 
whether temporarily (in the case of Vienna) or permanently (through effective policy changes), the effect should 
be the same because the underlying physics is the same. Although we looked at one instance in which certain 
aerosol properties changed in a particular way, the combination of parameters resulting in a decrease in AOD is 
less important; furthermore, in a cleaner atmosphere the aerosol properties would not be determinative of the 
result since NSB asymptotically approaches that of constant background for Rayleigh scattering. We therefore 

Figure 4.   Model predictions of the NSBAOD = 0/NSBAOD = 0.3 ratio for point light sources at the indicated 
distances. The other model input parameters (α = − 1.3, ASY = 0.6, SSA = 0.95 and ASH = 2.2 km) were the same 
among all four models. These plots match the orientation of those shown in the leftmost column of Fig. 2, but 
the scales are different in each panel. To emphasize the details in each case, we have scaled them differently in 
order to adapt the dynamic range of the NSB ratios shown.
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expect that the conclusions reached here will be equally applicable to any situation in which atmospheric AOD 
is reduced for whatever reason.

Methods
The clear sky atmospheric model.  It is a crucial determinant of reliable NSB predictions to adopt a 
cloud-free atmospheric model that is very closely aligned with conditions observed in nature. In practice, the 
main endeavor of the model is to cover fundamental aspects of atmospheric optics while keeping the approxi-
mations imposed on the model parameters and properties within the range of values and trends commonly 
observed in the atmosphere. Any such model must have a theoretical foundation providing satisfactorily accu-
rate predictions; make no extreme demands on computational resources; and allow for real-time numerical 
experimentation. The multiple scattering solver19 designed for NSB characterization is briefly described in 
“Determining higher-order scattering radiances” section below, except for its properties and limits which are 
both summarized here.

Due to the relatively short distances from a light source to the observer in the case of skyglow seen over a city, 
radiative transfer is confined here to the case of a plane-parallel atmosphere characterized with a good horizontal 
uniformity of its composition. We make this standard simplification as it was found reliable in radiative transfer 
modeling under clear sky conditions and it reduces the model’s complexity and streamlines the computations 
while giving proper attention to important physical aspects of the problem to be solved when the atmosphere 
is of finite optical thickness. The latter is important in order to choose a suitable method to solve the radiative 
transfer equation (RTE)27. The atmospheric optical depth can scarcely exceed unity under clear sky conditions, 
thus allowing use of the Method of Successive Orders, which is simple in concept; fast in convergence; easy in 
understanding of the underlying physics; and straightforward in the interpretation of optical phenomena due 
to predictable photon paths.

We model Earth’s atmosphere as an anisotropic scattering medium containing randomly oriented scatterers. 
Random orientation is of especially high relevance to aerosol particles, which can be large in size compared to 
the wavelength of visible light and thus exhibit various scattering patterns depending on their instantaneous 
orientation relative to the direction of the incident light. Particles with preferred orientations show very dis-
tinct scattering signatures that would be extremely difficult to incorporate into a common model, but random 
orientations allow for ensemble averaging and for use of approximate formulae such as the Henyey-Greenstein 
scattering phase function Pa(θ) =

(

1− g2
)

/

(

1+ g2 − 2gcosθ
)3/2 . Here the asymmetry parameter ( g ) is known 

to range from − 1 to 1, while favoring forward-lobed Pa(θ) (i.e., photons directed preferentially to scattering 
angles θ < 90◦ ) in the case of large particles and transitioning to an intensity distribution that is symmetric in 
both the forward and backward directions as g approaches zero.

In our clear-sky atmospheric model we account for scattering and absorption by aerosol particles and Rayleigh 
scattering by air molecules. The attenuation due to absorption bands of atmospheric gases is neglected because 
of short optical path lengths between light source and observer. We know from extensive numerical modeling28 
that the contribution to NSB from multiple scatterings increases with ground albedo, especially in the direction 
opposite to the azimuthal position of the light source. Although the ground albedo is generally low when snow 
cover is absent, in this paper we model sky brightness from the superposition of five higher-order radiances in 
order to guarantee the NSB is accurate to within a specified error tolerance. The solution to the monochromatic 
RTE allows the simulation of both narrowband (quasi-monochromatic) and broadband radiances. We do not 
consider the polarization state of ground-reaching radiation because most devices employed in night-sky moni-
toring are designed to average intensity measurements irrespective of polarization. We base our assessments on 
a well-defined restriction to the unpolarized RTE along with the fact that light emerging from artificial sources 
is typically unpolarized.

To interpret the bulk optical properties of the atmospheric environment we use the following five aerosol 
parameters: (i) asymmetry parameter ( g ) also called ASY throughout this paper; (ii) single scattering albedo 
(SSA); (iii) optical depth at a reference wavelength of 500 nm (AOD500nm); (iv) Ångström exponent (α); and 
(v) aerosol scale height (ASH). Extremely low values of ASY are rare among distinct aerosol populations. Most 
studies suggest ASY > 0.5, frequently grouped around the value of 0.629. SSA, which characterizes the frac-
tion of electromagnetic energy scattered relative to that removed from an incident beam of light, is generally 
large except for highly absorbing materials. The value of SSA = 0.95 we used in our modeling is well within 
the range of data displayed ibidem. The Ångström exponent models the spectral behavior of AOD in the form 
AOD = AOD500nm × (λ/500 nm)α, where λ is in nanometers. Horvath et al.20 found that α is close to − 1.5 but 
normally spans a wide interval of values from − 2 to 0 or even more. We used α = − 1.3 in the numerical experi-
ments reported here along with ASH = 2.2 km30. We varied AOD500nm in our numerical models, and the respec-
tive values used are indicated in the figure captions. In most of cases AOD500nm = 0.32 (i.e., AOD530nm = 0.3 for 
α = − 1.3) unless explicitly defined otherwise. The Rayleigh optical depth has been computed according to the 
method of Duan, Min, and Stamnes31.

Computing optical properties of urban aerosols.  While the composition and size distribution of 
aerosols are subject to large spatial variations, aerosol types are generally classified according to their character-
istics. Aerosol type classifications are geographically specific, except for situations in which the particles under-
went long-range transport (as can be observed, e.g., during dust events32). We can therefore distinguish between 
and among urban aerosols, rural aerosols, maritime aerosols, etc. In rural settings, aerosols tend to be a mixture 
dominated by water-soluble solids with the addition of some dust-like particles33. Urban aerosols are similar to 
rural aerosols, but industrial and automotive activities replace a minority of rural-type particles with soot-like 
aerosols. In the computation of our models for Vienna, we adopted an aerosol composition consisting by volume 
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of ~ 50% ammonium sulfates, ~ 40% organic matter, and ~ 10% black carbon with mean complex refractive index 
m = 1.5 + 0.05i obtained according to the Bruggeman mixing rule34. The value of m slightly differs from that 
obtained in Kocifaj, Horvath and Gangl35.

The choice of a particular aerosol model is based on the target simulation. We selected an urban aerosol model 
because most light emitted upwards originates from human settlements. However, rural and urban aerosol 
models do not differ much in size distribution, so the modeling results appear relevant for large cities and smaller 
towns as well. The aerosol number distribution is modeled by the bimodal lognormal function 

f (r) = dN(r)
dr ∝

∑2
i=1

Ni
rσi

exp

[

−
1
2

(

logr−logri
σi

)2
]

 , where N(r) is the number of particles having a radius between 

r and r + dr . The numerical constants used to model the baseline conditions were as follows: N1 = 0.999875, N2 
= 0.000125, σ1 = 0.35, σ2 = 0.4, r1 = 0.06 µm, r2 = 1.17 µm36. We were inclined to accept model values for elevated 
relative humidity conditions to be in line with the fact that some constituents, such as large, dust-like aggregates 
or water soluble aerosols, can remain suspended in the atmosphere for a longer time. The angular distribution 
of the scattered light intensity relative to the number concentration of urban aerosols displayed in Fig. 1 is com-
puted from 

{

∫

∞

0 f (r) i1(θ ,r)+i2(θ ,r)
2 dr

}

/

∫

∞

0 f (r)dr , where i1 and i2 are intensity distribution functions determined 
as the squares of Mie amplitude functions S1 and S2 , respectively37.

Determining higher‑order scattering radiances.  Radiative transfer in a plane-parallel atmosphere 
reduces to an integro-differential equation that can be solved iteratively subject to homogeneous boundary 
conditions38. The iterative procedure is straightforward for an atmosphere illuminated uniformly from below; 
however, the physical model for first-order radiance requires special treatment in cases where the uniformly 
bright interface is replaced by an array of isolated sources emitting light arbitrarily into the upper hemisphere. 
Since the eigenvalues are low for a cloudless atmosphere, we have identified no convergence problems even for 
extreme values of AOD500nm ≈ 0.6–0.8 and even for elevated ground albedo values (not shown in this paper).

The first-order downward and upward radiances due to light emissions from a single source have been derived 
by Kocifaj19 in the form of so-called generating functions. The higher-order radiance formalism is to generate 
j-th radiance field out of (j − 1)-th radiance field. The latter is assumed to be known for all grid points. For a 
plane-parallel, exponentially stratified atmosphere we preferred to integrate over the optical depth τ ′ rather than 
altitude, so the downward radiance at the optical depth τ in the j-th scattering order approximation is

where I+j−1 and I−j−1 are the downward and upward radiance fields at the altitude corresponding to the actual 
value of τ ′ ; D+

j  is the total diffuse irradiance at the ground; p+ and p− are the scattering phase functions for light 
beams traversing the atmosphere from a direction �

′

=
(

µ
′,A′

)

 towards � = (µ,A) . Here µ′
= cosz′ , where z′ 

is the zenith angle and A′ is the azimuth angle, both of which are used as local variables in numerical integration. 
Analogously (µ,A ) defines the direction of light beam after the j-th scattering event. The first integral on the 
right-hand-side of Eq. (1) is taken over the upper hemisphere (+), while the symbol (−) in the second integral 
indicates the integration of all light signals entering the atmospheric layer τ from below. The optical depth τ ranges 
from 0 (at the top of atmosphere) to τ0 (at the ground), while �τ = τ

′
− τ and �τ0 = τ

′
− τ0 . All functions/

parameters including ground albedo ( a ) are considered to be wavelength-dependent. Exact expressions for the 
above functions and for the upward radiance can be found in the previous work of Kocifaj19.

The total radiance is obtained by summing over all computed scattering components: I = 
∑

j I
+

j  . In the 
numerical experiments in this paper, the index j floats from 1 to 5. The diffuse irradiance is determined from 
D+

j =
∫ 2π
0 I+j µ

′d�′ . Due to their exponential stratifications the concentrations of atmospheric constituents and 
the integration along the vertical direction are both replaced in Eq. (1) by a more convenient approach based 
on the total optical depth. The latter also changes roughly exponentially, so we can avoid dynamically adapted 
lattice spacing along the vertical direction and keep the integration error low for relatively low numbers of grid 
points. The integration error is controlled by adjusting the integration step to half of its initial value.

Data availability
The experimental and computational data are available at the IDA and Slovak Academy of Sciences (web-page). 
The other data that support the results of this study are available from the corresponding author upon reasonable 
request. (Extended data is available for this paper). Access to the multiple scattering code used in this work is 
available from the authors upon request.
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