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Peroxisome proliferator-activated receptor (PPAR) α ligands (Wy-14,643, and fenofibrate) and PPARγ ligands (troglitazone and
ciglitazone) inhibit antigen-induced cysteinyl leukotriene production in immunoglobulin E-treated mast cells. The inhibitory
effect of these ligands on cysteinyl leukotriene production is quite strong and is almost equivalent to that of the anti-asthma
compound zileuton. To develop new aspects for anti-asthma drugs the pharmacological target of these compounds should be
clarified. Experiments with bone-marrow-derived mast cells from PPARα knockout mice and pharmacological inhibitors of PPARγ
suggest that the inhibitory effects of these ligands are independent of PPARs α and γ. The mechanisms of the PPAR-independent
inhibition by these agents on cysteinyl leukotriene production are discussed in this review.
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1. INTRODUCTION

Asthma is defined as “a common chronic disorder of
the airways that is complex and characterized by variable
and recurring symptoms, airflow obstruction, bronchial
hyperresponsiveness, and an underlying inflammation” [1].
Many types of inflammatory cells, neutrophils, eosinophils,
lymphocytes, and mast cells contribute to the development
of asthma.

Mast cells are differentiated from bone marrow stem
cells and release various mediators of inflammation, such
as histamine, through degranulation and arachidonic acid
metabolites through de novo synthesis in response to
pathological stimuli in asthma, atopic dermatitis, and other
conditions. Immunoglobulin (Ig) E, a protein from B
lymphocytes, increases in the serum of patients with type I
allergic diseases [2].

Arachidonic acid is metabolized into many biologically
active lipids, such as prostaglandins via cyclooxygenase, and
leukotrienes (LTs) via 5-lipoxygenase (5-LOX). Arachidonic
acid liberated from membrane phospholipids by phospho-
lipase A2 is then metabolized into LTA4 by the 5-LOX/5-
LOX activating protein (FLAP) complex (Figure 1). LTA4 is

metabolized into LTC4 by conjugating cysteine, glycine, and
glutamic acid via LTC synthase [3]. LTC4 is subsequently
metabolized into LTD4 and LTE4 via the contribution of
dipeptidases [4] or cytochrome P450 [5] by glutamic acid
and glycine degradation (Figure 2). The LTs C4, D4, and
E4 are called cysteinyl LTs (cysLTs) because they contain
cysteine in their molecules. The cysLTs are regarded as main
mediators of asthma because of their potent constricting
effects on bronchiolar smooth muscle [6]. Specific receptors
of cysLT are known [7, 8], and the inhibitors of the receptor
[9] and the inhibitors of 5-LOX/FLAP activity [10–12] have
been used to treat asthma.

Peroxisome proliferator-activated receptors (PPARs) are
a family of transcription factors that are part of the nuclear
receptor superfamily. The PPARs have 3 subtypes from the
independent genes α, β (also called δ), and γ. A group
of hypolipidemic agents, such as clofibrate and fenofibrate,
are known to be ligands for PPARα, and some agents used
to treat type 2 diabetes mellitus, such as rosiglitazone,
pioglitazone, and ciglitazone, are known to be ligands for
PPARγ. Some physiological fatty acids, such as leukotriene
B4 and 15-deoxy-Δ12-14 prostaglandin J2, are reported to be
ligands for PPARα and PPARγ, respectively [15, 16].
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Figure 1: Diagram of arachidonic acid metabolism.

2. LIGANDS FOR PPARγ INHIBIT cysLT
PRODUCTION IN MAST CELLS

Troglitazone (1 μM), a PPARγ ligand formerly used to treat
type 2 diabetes mellitus, inhibits LTB4, LTC4, and LTE4

production induced by the type I allergy mechanism in
a mast cell line, RBL-2H3 [17]. The inhibitory effects of
troglitazone on these LTs are strong and similar to those
of the clinically-used 5-LOX inhibitor zileuton (1 μM) [17].
Another PPARγ ligand, ciglitazone (30 μM), also inhibits
LTC4 production [18]. Neither troglitazone nor ciglitazone
affects hexosaminidase release, the index for mast cell
degranulation, or prostaglandin D2 production via cyclooxy-
genase [17, 18]. The observations that 0.1 μM of the PPARγ
antagonist GW9662, which inhibits the PPARγ activation
of (AOx)3-TK-Luc promoter induced by the PPARγ ligand
rosiglitazone [19], did not affect LTC4 production [18]
and that 30 μM of GW9662 inhibits LTC4 production (our
unpublished data) in the IgE-sensitized, and Ag-treated RBL-
2H3 mast cell line obscures the contribution of PPARγ on LT
production in mast cells.

3. LIGANDS FOR PPARα ALSO INHIBIT cysLT
PRODUCTION IN MAST CELLS

Whether PPARα ligands affect LT production in mast cells
has been examined, and the PPARα ligands fenofibrate
(100 μM) and Wy-14,643(30 μM) have been reported to
inhibit calcium ionophore A23187-induced cysLT produc-
tion by the RBL-2H3 mast cell line [13]. However, Wy-
14,643 does not significantly inhibit cysLT production
by the IgE-sensitized and Ag-treated RBL-2H3 mast cell
line. Neither fenofibrate (100 μM) nor Wy-14,643 (30 μM)
affects radioactivity released from the IgE sensitized [3H]-
arachidonic acid prelabeled RBL-2H3 mast cell line following
treatment with Ag, which is an index of arachidonic acid
release from mast cells. Neither fenofibrate (100 μM) nor
WY-14,643 (30 μM) affects lipid peroxidation, which is an
index of 5-LOX activation, whereas troglitazone (1 μM) and
zileuton (1 μM) strongly inhibit lipid peroxidation [13].

4. ARE THE INHIBITORY EFFECTS OF
THESE PPARs LIGANDS VIA PPARs?

Subsequently, the mRNA levels of PPARs α and γ were
examined in mast cells. There were no significant PPARα
[13] and PPARγ (our unpublished data) bands on Northern
blot analysis of the RBL-2H3 mast cell line or of mouse
bone marrow-derived mast cells (BMMCs). Then, PPARα
[13] and γ [14] mRNA levels in RBL-2H3 mast cell line were
measured with the real-time semiquantitative polymerase
chain reaction (PCR) and compared with levels in other
organs. The PPARαmRNA level is less than the level in 1000-
times diluted liver, and the PPARγ mRNA level is almost the
same as the level in 100-times diluted white adipose tissue
(Figure 3).

These observations that mast cells have very low levels of
PPARα/γ mRNA lead to another question: are these PPARs
in mast cells effective?

Studies have examined whether fenofibrate (100 μM)
raises acyl-CoA oxidase mRNA levels, which are known to
be induced by PPARα activation [20, 21], and have shown
that fenofibrate does not increase acyl-CoA oxidase mRNA
levels in the RBL-2H3 mast cell line [13]. The effects of these
PPARα ligands on BMMCs from PPARα-null mice were
thoroughly examined, and both fenofibrate (100 μM) and
Wy-14,643 (30 μM) were found to inihbit cysLT production
[13]. It has been concluded that these compounds inhibit
cysLT production independently of PPARα.

We have observed that the immunoreactivity of anti-
PPARγ IgG in the RBL-2H3 mast cell line though ciglitazone
(30 μM) does not induce the mRNA level of acyl-CoA
binding protein [18], which is a target gene of PPARγ [22].
Diaz et al. [23] have examined PPARγ protein in mouse
BMMCs by SDS-PAGE immunoblot analysis and reported
that the amount of PPARγ in BMMCs is equivalent to
that in the Jurkat T-cell line, which is known to have
effective PPARγ [24]. Maeyama et al. [25] have demonstrated
that rosiglitazone (1–30 μM) increases the proliferation of
BMMCs, but that the proliferation is not observed in
BMMCs from PPARγ heterozygous deficient mice. Ward and
Tan [26] have reviewed the contents of PPARs in various
types of cells and have concluded that the PPARγ in mast
cells might play a role, and Paruchuri et al. [27] have recently
reported that LTE4-induced COX-2 induction, prostaglandin
D2 production, and ERK phosphorylation are sensitive for
the interference of PPARγ in the human mast cell sarcoma
line LAD2 and may indicate a role of PPARγ in mast cells.
Further studies of the role of PPARγ in mast cells are
necessary.

5. WHAT IS THE TARGET?

The experimental findings that PPARs α and γ in mast cells
seem not to be effective at very low mRNA levels lead to
another question: what is the target of these compounds?

Fenofibrate (25 mg/kg p.o. for 10 days) induces prolif-
eration of peroxisomes even in PPARα-null mice [28]. Wy-
14,643 (75 μM) induces plasminogen activator inhibitor I
with the induction of p38 and p42 mitogen-activated protein
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Figure 2: Chemical structures of arachidonic acid and cysteinyl leukotrienes.

kinase (MAPK) phosphorylation 5 minutes after treatment,
which would be too early for the induction to occur via
transcription [29]. The ligand Wy-14,643 (1 μM) leads to
the phosphorylation of extracellular signal-regulated kinase
(ERK) after 5 minutes of treatment but does not increase
acyl-CoA oxidase mRNA levels [30].

The PPARγ ligands ciglitazone (20 μM) and 15-deoxy-
Δ12-14 prostaglandin J2(15 μM) induce ERK, c-Jun N-
terminal kinase, and p38 MAPK after 15 minutes of treat-
ment, which might be earlier than transcription occurs [31].
The inducible effects of PPARγ ligands on MAPK have
been reported elsewhere [32, 33], and most authors have
concluded that these effects are independent of PPARγ.

MAPK is reported to induce 5-LOX activity in human
polymorphonuclear cells and the Mono Mac 6 human
monocytic leukemia cell line [34], and these findings may
support the presence of PPAR-independent effects of PPAR
α and γ ligands. However, MAPK phosphorylation has not
been observed in mast cells treated with these PPAR ligands.
The stimulating effect of these compounds on MAPK seems
not to be the main mechanism of the PPAR-independent
inhibition of cysLT production because it might increase the
production of cysLTs.

The cysLT concentration is determined by subtracting
degradation from production, and the PPAR-independent
activation of MAPK increases cysLT production in mast
cells. The degradation of cysLTs could be another mech-
anism of these drugs. The responsible enzymes of cysLT
metabolism remain unclear. Recent findings that LTC4 is
metabolized into LTD4 by γ-glutamyltransferase and γ-
glutamylleukotrienase and that of double knockout mice
of these enzymes do not metabolize LTC4 into LTD4 may
indicate that these enzymes are the enzymes responsible

for LTC4 degradation [35]. The degradation of LTD4 into
LTE4 is reported to occur partly because of dipeptidase [36],
but the responsible enzyme is still unclear. Induction of
cytochrome P450 (CYP) 2B1/2 by phenobarbital in rats and
the decrease in LTC4 concentrations in liver extract suggest
the involvement of CYP2B1/2 in LTC4 degradation [37]. The
CYP family comprises a large number of enzymes, and we
do not yet have sufficient information on the contribution of
CYP to cysLT metabolism.

Fujimura et al. [38] have reported that incubation with
prostaglandin A1 (as PPARβ/δ ligand) and 15-deoxy-Δ12-14

prostaglandin J2(as PPARγ ligand) for more than 6 hours
decreases the surface IgE receptor Fc ε RI in the KU812
human basophilic cell line, whereas LTB4 (as PPARα ligand)
does not. The PPARα and γ ligands were preincubated for
2 hours before antigen treatment in mast cells [13, 17, 18],
and the decrease of Fc ε RI on the surface of mast cells is not
the main mechanism of the PPAR-independent inhibition of
cysLT production. Regulation of the sensitivity to antigens is
of pathological interest in allergic diseases, including asthma,
and the interaction of mast cells with other inflammatory
cells in pathological conditions should be examined.

6. CONCLUSION

These findings show that some effects of ligands of PPARs
α and γ occur through a mechanism independent of PPARs
α and γ. The involvement of PPARs α and γ should be
examined in pharmacological experiments of PPAR ligands
and of ligands of other nuclear receptors.

The involvement of PPARα in the effects of PPAR ligands
can be investigated in PPARα-null mice [39] and at lower cost
in mast cells, as described above.
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Figure 3: Measurement of mRNA levels of PPARα (upper panel)
and PPARγ (lower panel) with real-time semiquantitative PCR.
Total RNA (1 μg) extracted from white adipose tissue ( ), liver
(�), BMMC (�), and RBL-2H3 mast cells (�) was supplemented
with 50 pg of chloramphenicol acetyltransferase RNA and then
reverse-transcribed. The indicated amounts of cDNA were applied
to real-time PCR. PCR performed without cDNA was used as a
negative control (×) of the reaction. Data are presented as the
number of PCR cycles to cross the threshold. Messenger RNA levels
in these tissues were extrapolated from the PCR cycle of the liver for
PPARα or white adipose tissue for PPARγ and then corrected by the
chloramphenicol acetyltransferase cDNA content in each sample
and presented in the manuscripts [13, 14].

PPARγ-null mice die at 10.5 to 11.5 days post coitum
because of placental dysfunction [40], and the contribution
of PPARγ cannot be examined in PPARγ-homozygous
knockout mice. One of the mutants of the PPARγ2 sub-

type, Pro12Ala, reduces transcription of wildtype tk-Luc-
linked PPARγ-related acyl-CoA oxidase, the peroxisome
proliferator-responsible element, and lipoprotein lipase pro-
moter by 40%, and persons homogenous for Ala-mutated
PPARγ have lower body mass indexes and higher serum
levels of high-density lipoprotein cholesterol [41]. A 50%
reduction in PPARγ activity seems to have some biological
effects, and PPARγ heterozygous knockout mice, which are
expected to have 50% lower levels of PPARγ activity, and
conditional knockout mice could be useful experimental
models. Some RNA interference probes are available to
inhibit PPARγ transcription and would be useful tools
for investigating PPARγ involvement in cells, although the
nonspecific interference by off-target effects should be noted.

Further investigations of the involvement of PPARs and
other nuclear receptors in arachidonic acid metabolism are
necessary to develop more effective and specific compounds
as anti-asthma drugs.
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