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Abstract

Biological systems can maintain constant steady-state output
despite variation in biochemical parameters, a property known as
exact adaptation. Exact adaptation is achieved using integral feed-
back, an engineering strategy that ensures that the output of a
system robustly tracks its desired value. However, it is unclear
how physiological circuits also keep their output dynamics precise
—including the amplitude and response time to a changing input.
Such robustness is crucial for endocrine and neuronal homeostatic
circuits because they need to provide a precise dynamic response
in the face of wide variation in the physiological parameters of
their target tissues; how such circuits compensate their dynamics
for unavoidable natural fluctuations in parameters is unknown.
Here, we present a design principle that provides the desired
robustness, which we call dynamical compensation (DC). We
present a class of circuits that show DC by means of a nonlinear
feedback loop in which the regulated variable controls the func-
tional mass of the controlling endocrine or neuronal tissue. This
mechanism applies to the control of blood glucose by insulin and
explains several experimental observations on insulin resistance.
We provide evidence that this mechanism may also explain
compensation and organ size control in other physiological
circuits.
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Introduction

Homeostatic systems maintain internal variables constant in the

face of external and internal perturbations. Hormones, for instance,

regulate the levels of dozens of metabolites and small molecules

including blood glucose, calcium, phosphate, sodium, iron, and

oxygen. Transient changes in the level of a metabolite, due to a

meal or a change in consumption, lead to a change in hormone

secretion. The secreted hormone then acts on many remote tissues

to restore the level of the metabolite back to its baseline. This feed-

back control can be affected by variation in the physiological para-

meters of the target tissues. Such variation can arise due to disease,

growth, or changes in resource allocation (Kotas & Medzhitov,

2015).

Homeostatic systems thus need to show exact adaptation, the

property of maintaining a constant set point for a regulated variable

despite variation in system parameters. Exact adaptation has been

extensively studied in biological systems (Barkai & Leibler, 1997;

Alon et al, 1999; Tyson et al, 2003; Ma et al, 2009). A central engi-

neering strategy to robustly implement exact adaptation is integral

feedback (Barkai & Leibler, 1997; Yi et al, 2000; El-Samad et al,

2002). An integral feedback controller achieves exact adaptation by

integrating the error of the system over time and adjusting its output

accordingly (Sontag, 2003).

However, in addition to keeping a constant steady-state output,

many physiological circuits also keep their output dynamics precise

—including the amplitude and response time to a changing input.

Deviations from a precise dynamic response can cause disease.

These dynamics must be precise despite variations in the physiologi-

cal parameters of the remote tissues targeted by the endocrine or

neuronal circuit. Such physiological parameters vary over time and

between people. How precise dynamics can be robust to variation in

circuit parameters has rarely been explored. Standard integral feed-

back models cannot provide this robustness, because important

parameters such as the feedback gain affect the amplitude and

response time of the circuit. There is therefore a gap in understand-

ing how endocrine and neuronal systems are able to precisely

compensate their dynamics to buffer naturally occurring variations

in physiological circuit parameters.

Here, we present a design principle that provides the desired

robustness, which we call dynamical compensation (DC). We show

that this design arises naturally in physiological systems in which

the regulated variable controls the functional mass dynamics of its

regulating tissue. In particular, we show that blood glucose shows

DC to variation in insulin sensitivity and insulin secretion by

controlling the functional mass of pancreatic beta cells. Other

physiological circuits, such as calcium homeostasis, may also have

the hallmark of the present DC mechanism.
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Results

Definition of dynamical compensation

Consider a system with an input u(t) and an output y(t,s) such that

s > 0 is a parameter of the system. The system is initially at steady

state with u(0) = 0. Dynamical compensation (DC) with respect to s

is that for any input u(t) and any (constant) s the output of the

system y(t,s) does not depend on s. That is, for any s1, s2 and for

any time-dependent input u(t), y(t,s1) = y(t,s2).

Dynamical compensation is not guaranteed by exact adaptation

Any system that shows DC with respect to a parameter s also

shows exact adaptation with respect to changes in that parameter,

since the output of the system with respect to u(t) = constant must

be the same. Exact adaptation, though, does not entail dynamical

compensation. In Fig 1A–C, we demonstrate that the classic model

for exact adaption, linear integral feedback, as well as other linear

models such as proportional-integral feedback, do not have dynam-

ical compensation with respect to changes in their biochemical

parameters. This includes the proportional gain parameter s and

the integral gain p. Changes in these parameters lead to changes

in the response time and amplitude to a given input signal.

A simple nonlinear integral feedback model shows
dynamical compensation

We propose a mechanism for DC based on known hormonal circuit

reactions (Fig 1D). The basic idea is that the regulated variable y

controls the functional mass Z of the tissue that secretes the

hormone x that regulates y. The feedback gain of x is s, and the

feedback gain of Z is p and the circuit input is u(t). The circuit

dynamic equations are as follows:

_y ¼ u0 þ uðtÞ � sxy (1)

_x ¼ pZy� x (2)

_Z ¼ Z � ðy� y0Þ (3)

This circuit describes nonlinear integral feedback on the output

y. The nonlinearity of equation (3) stems from the fact that Z are

cells, and hence their growth equation is autocatalytic _Z ¼ Za where

a is the growth rate. In this circuit a depends on the regulated vari-

able y such that growth is zero when y = y0. For example, y can

increase the proliferation rate k+ and/or decrease the removal rate

k� of cells, such that the two rates cross at y = y0 and the growth

rate is a = k+ � k�.
We claim that this circuit has DC with respect to variation in the

parameters p, s. To show this, we show that the system remains

invariant after transforming x, Z to x̂ ¼ sx; Ẑ ¼ psZ. Now the equa-

tions are independent of p, s:

_y ¼ u0 þ uðtÞ � x̂y (4)

_̂x ¼ Ẑy� x̂ (5)

_̂Z ¼ Ẑ � ðy� y0Þ (6)

The dynamics are thus independent of the parameters p, s

provided that initial conditions are also independent of p, s. To

see why this is the case, consider a step change in s:s1 ? s2.

Because a nonzero steady state is only possible at y = y0 accord-

ing to equation (6), y returns to its original steady state: yst = y0.

The steady-state levels of the scaled variables x̂ and Ẑ are the

same before and after the change in s, because according to equa-

tion (1), x̂st ¼ sxst ¼ ðu0 þ uð0ÞÞ=y0 ¼ u0=y0 and from equation (2):

pZst = xst/y0 so Ẑst ¼ psZst ¼ u0=y
2
0. Therefore, any input u(t) will

produce identical output dynamics y(t) before and after Z adapts

to the change in the parameter s, because the scaled variables

have the same initial conditions, and equations (4–6) depend only

on the scaled variables. The same holds for a step change in p.

Thus, the system shows DC with respect to variation in the feed-

back gain parameters p, s.
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Figure 1. Dynamicsof input responsewithvariation ina systemparameter.

A–D (A) An input pulse is given to three systems: A linear integral feedback
system, a linear proportional-integral feedback system, and a nonlinear
feedback system with dynamical compensation. Each system has exact
adaptation and thus the same steady-state output. For each system, we
vary the parameter s, allow the system to reach steady state, and replot
the response to the input pulse. While this changes the entire response
dynamics of the linear integral controller and linear proportional-integral
controller (B and C), the controller that has dynamical compensation
adapts its entire dynamical trace precisely (D).
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Sufficient conditions for dynamical compensation

A more general class of models that show DC with respect to varia-

tions in their parameters p, s is as follows: _y ¼ fðu; y; sxÞ;
_x ¼ gðy;pZ; xÞ; _Z ¼ Z � hðyÞ, provided the following sufficiency

conditions: (i) For all p, s, the system is stable at y ¼ y�, there exists

a unique solution sx = x* for f(0, y*, sx) = 0 and there exists a

unique solution psZ ¼ Z� for gðy�;psZ; x�Þ ¼ 0 (ii) A factorization

condition on the function g: gðy; psZ; sxÞ ¼ sgðy; pZ; xÞ. Proof in

Appendix Section 1. An extension of this model, in which x passes

through multiple compartments, also shows DC with respect to vari-

ation in these parameters (Appendix Section 1).

Glucose homeostasis shows dynamical compensation

We find the hallmarks of the DC mechanism in the well-studied

glucose homeostasis system. Fasting glucose concentration in the

blood is maintained within a range of about 10% around G = 5 mM

(Allard et al, 2003) among healthy individuals. The glucose dynamical

profile following a given glucose intake is also very similar between

individuals (Ferrannini et al, 1985). Such constancy in dynamical

profile is desirable because high plasma glucose concentrations are

harmful, and too rapid a drop following a meal can cause reactive

hypoglycemia which can be fatal. Accordingly, even mild abnormali-

ties in either fasting glucose levels or postprandial glucose response

dynamics are clinical indications of pre-diabetes with significant long-

term health implications (Nathan et al, 2007).

The main regulator of plasma glucose is insulin. An increase in

glucose concentration stimulates the secretion of insulin by pancre-

atic beta cells. Insulin acts to reduce plasma glucose levels by

increasing glucose uptake in peripheral tissues and decreasing

glucose production. The glucose-insulin feedback maintains glucose

homeostasis on the timescale of minutes to hours.

The insulin circuit involves physiological parameters that can

vary over time, primarily insulin sensitivity. Insulin sensitivity (Si),

the degree to which insulin is effective in lowering plasma glucose

levels, can vary between individuals and throughout life by almost

an order of magnitude (Bergman, 1989). Low insulin sensitivity is

known as insulin resistance and is affected by obesity, inflamma-

tion, exercise, pregnancy, and genetics (Bergman, 1989).

Here, we show that glucose homeostasis has DC: The plasma

glucose response to a given intake is independent of wide variations

in parameters such as insulin sensitivity (Fig 2). To do so, we build

on a mathematical model by Topp et al (2000), which is denoted as

the bIG model (Fig 2A). The bIG model incorporates both the fast

feedback from glucose (G) to insulin (I) as well as the long-term

effect of glucose on beta-cell functional mass (b). This model has

been used to explore bistability and other important aspects of

glucose control (De Gaetano et al, 2008; Ha et al, 2015); here, we

explore its DC property that has not been previously discussed.

In the model, plasma glucose concentration G is a balance

between glucose supply and removal (Bergman et al, 1981; Topp

et al, 2000):

_G ¼ u0 þ uðtÞ � ðC þ SiIÞ � G (7)

where I is plasma insulin concentration, u0 is endogenous produc-

tion of glucose, u(t) is meal intake, C is glucose removal rate at zero

insulin, and Si is insulin sensitivity. Secretion of insulin is propor-

tional to beta-cell functional mass b and is modeled by the equation:

_I ¼ pb � qðGÞ � cI (8)

where q(G) is a monotonically increasing function of G, c is the

insulin removal rate and p is the insulin secretion per cell. So far,

this model does not have DC: The glucose dynamics and steady

state of equations (7) and (8) are not robust to variation in Si or

any other parameter. A decrease in Si leads to an increase in

steady-state glucose levels and in the meal intake response.

DC with respect to Si, p is achieved by an additional feedback

loop in which glucose affects the production rate k+ and removal

rate k� of beta-cell functional mass. We call this feedback loop the

slow feedback loop because it operates on a slower timescale than

the insulin response described above. This feedback loop was first

proposed by Topp et al (2000) based on previous experimental

evidence (Swenne, 1982; Hoorens et al, 1996; Efanova et al, 1998;

Hügl et al, 1998). The rate of change in beta-cell functional mass is:

_b ¼ b kþðGÞ � k�ðGÞð Þ ¼ b � hðGÞ (9)

where h(G) is the net beta-cell growth rate. For this mechanism to

work, we only require stability at the desired glucose set point

G = G0, or, in other words, h(G0) = 0. Adding equation (9) makes

G have exact adaptation with respect to changes in Si, p (Topp

et al, 2000; De Gaetano et al, 2008). We claim that this system also

has DC with respect to Si, p, because equations (7–9) satisfy the

sufficient conditions for DC.

This means that after a change in insulin sensitivity from S1 to

S2, beta-cell functional mass increases by a factor of S1/S2 to

compensate and as a result glucose dynamics in response to a meal

are precisely the same as before the change (Fig 2B). Note that the

adaptation of beta-cell functional mass to the change in insulin

sensitivity may take several days to months, and only after adapta-

tion are the glucose dynamics precise. Therefore, after a step-like

change in insulin sensitivity the model shows a period of time in

which glucose dynamics are not fully compensated. Upon changes

in insulin sensitivity that occur gradually over months, the beta cells

in the model will be able to track the changes in Si and effectively

compensate glucose dynamics throughout.

The DC mechanism makes additional predictions that explain

experimental observations on meal responses. DC predicts that the

dynamics of insulin after compensation for a change in insulin

sensitivity from S1 to S2 will be scaled by a factor of S1/S2 (Fig 2C

and D). This scaling was observed experimentally: The insulin

dynamics of people with and without insulin resistance are similar

when scaled by their fasting insulin level (Bagdade et al, 1967;

Polonsky et al, 1988) (insets of Fig 2B–D). In fact, the steady-state

solution has a constant product of insulin fasting level and insulin

sensitivity (IstSi = constant), explaining the well-known hyperbolic

relation between insulin secretion and insulin sensitivity in different

individuals (Kahn et al, 1993).

The DC mechanism also makes the system robust to changes in

plasma volume. Changes in volume rescale the concentration of G

and I, so that a m-fold increase in plasma volume leaves equations

intact except for an effective drop in insulin production per beta cell

q(G) ? m�1� q(G), which, just like the parameter p above, is
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buffered. The DC mechanism can thus track changes in plasma

volume—the higher the plasma volume, the larger beta-cell func-

tional mass—providing a possible mechanism for the strong correla-

tion between beta-cell mass and body weight during growth

(Montanya et al, 2000). This mechanism can also guide recovery of

beta-cell functional mass to the correct level following perturbations

in which beta cells are lost.

We further tested whether this mechanism provides DC in a

more detailed model of the insulin system by Dalla Man et al

(2007). This model has 13 variables and 35 parameters. It does not

include the slow feedback loop on beta-cell functional mass

described here and accordingly does not show DC (Fig EV1 and

Appendix Section 2). We find using numerical simulations that

adding the slow feedback loop on beta-cell functional mass provides

DC to changes in insulin sensitivity in this model.

For the mechanism to work, the slow feedback loop requires that

beta-cell production and removal rates become equal at the glucose

set-point level G0. This seems to require accurate coordination

between removal and production rates of beta-cells. It is well

known, however, that beta-cell proliferation decreases strongly with

age (Swenne, 1983), raising the question of how this coordination is

achieved. We propose that the desired glucose fixed point is main-

tained via a switch-like drop in beta-cell removal rates around

G = G0. Such a sharp drop at G = 5 mM has been experimentally

observed (Fig EV2 and Appendix Section 3).

Pathways to failure of DC in glucose homeostasis

Despite its robustness, dynamical compensation fails in some indi-

viduals, leading to diseases such as diabetes. Diabetes is character-

ized by high fasting glucose and impaired glucose dynamics in

response to a meal (American Diabetes Association, 2014). Diabetes

can occur because of autoimmune destruction of beta cells (Type 1

Diabetes, T1D) or in a subset of individuals with insulin resistance

(Type 2 Diabetes, T2D) or from other reasons. Generally, impaired

glucose levels result from insulin secretion that is insufficient given

the persons’ sensitivity to insulin (Bergman et al, 2002).

Topp et al (2000) describe three pathways in which such insuffi-

cient secretion may develop: regulated hyperglycemia, bifurcation,

and dynamical hyperglycemia. In regulated hyperglycemia, a

change in beta-cell removal or production rates causes a change in

the glucose set point, such that a hyperglycemic set point is

maintained. In bifurcation, a more radical change may cause beta-

cell removal rate to exceed their production rate at all glucose

concentrations, resulting in the elimination of the beta-cell

population, which may occur in T1D. The third pathway, dynamical

hyperglycemia, relies on the existence of an unstable fixed point at

a high glucose concentration due to the toxic effect of glucose on

beta cells at these concentrations (Efanova et al, 1998). Topp et al

show that in this case, if insulin sensitivity drops faster than beta-

cell functional mass can adapt, then glucose levels may exceed this
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Figure 2. Dynamical compensation after a step change in insulin sensitivity.

A Glucose (G), insulin (I), and beta-cell functional mass (b) interactions with a meal input (u). Glucose increases insulin secretion and increases beta-cell functional
mass growth rate. The insulin sensitivity is Si, and the insulin secretion per beta cell is p.

B–D Twenty-four-hour simulated dynamics of plasma glucose concentration (B), plasma insulin concentration (C), and plasma insulin concentration normalized by its
baseline (D) in response to three meals are compared before a step change in insulin sensitivity and after beta-cell adaptation to the step change. (Insets)
Measured 24-h profiles of plasma glucose concentration, insulin secretion, and fold change in insulin secretion over baseline in normal and obese, insulin-resistant
subjects from Polonsky et al (1988).
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unstable fixed point. In this case, the beta-cell population is elimi-

nated. This pathway may underlie the etiology of T2D (Ha et al,

2015).

The above three pathways result in a perturbed glucose steady-

state level. Hence, one of the conditions for DC is not met, condition

(i) (stability at the desired set point). We would like to add two

other mechanisms for pathology that can occur even when the

normal glucose set point is maintained. First, note that a circuit with

DC is not robust to all of its parameters, only to certain ones. The

glucose homeostasis model has DC to the insulin sensitivity and

insulin secretion parameters, which vary over a wide range. The

model does not have, by itself, DC to variation in endogenous

glucose production or insulin removal rate, which may vary less.

Changes in these parameters alter glucose dynamics in response to

a given input (Fig EV3 and Appendix Section 4). DC in the model is

also affected by a mismatch between muscle and liver insulin resis-

tance, which can alter glucose dynamics in a way that agrees with

clinical observations (Fig EV4 and Appendix Section 5).

Dynamical compensation may occur in other
physiological circuits

Here, we ask whether other physiological circuits also have the DC

property. In Table 1, we list several hormonal and neuronal systems

that have the regulatory hallmarks for a DC mechanism. While

experimental data on whether these systems indeed show dynami-

cal compensation is lacking, we hypothesize that they are good

candidates for DC.

One system that we hypothesize may show DC is calcium home-

ostasis. Plasma calcium levels are maintained within a tight range

by the parathyroid hormone (PTH). PTH acts to increase plasma

calcium levels by increasing its release from the bones, its reabsorp-

tion in the kidneys and its absorption from the intestine. The

parathyroid (PT) gland secretes PTH in response to low calcium. In

addition, calcium has a direct effect on PT gland mass dynamics by

means of suppressing PT cell growth (Naveh-Many et al, 1995;

Wada et al, 1997; Mizobuchi et al, 2007), forming a candidate slow

feedback loop. When the PT hormone becomes less effective (for

instance due to chronic renal failure), hyperplasia of the PT glands

and increased secretion of PTH develops (Fukagawa et al, 1991). In

Fig EV5 and Appendix Section 6, we show that a plausible model

for the calcium homeostasis system that incorporates this slow feed-

back loop has DC. This model demonstrates that DC can occur also

when the hormone acts to increase the regulated variable (calcium),

and not only when it acts to decrease it as in the case of glucose/

insulin.

A second putative example is the control of adrenal and thyroid

gland sizes by their respective trophic hormones, the regulated vari-

ables in this case, which can potentially provide dynamical compensa-

tion for stress and metabolic rate, respectively (Appendix Section 7).

A putative example for a neuronal circuit is the control of arterial

oxygen by signals sent from the carotid body to increase respiration

rate in response to hypoxia. Hypoxia has been shown, in turn, to

increase cell proliferation in the carotid body (Nurse & Vollmer,

1997; Wang et al, 2008; Platero-Luengo et al, 2014), causing an

increased ventilatory response (Teppema & Dahan, 2010; Bishop

et al, 2013).

In these systems, the regulated variable feeds back on the size or

functional mass of the regulating tissue, providing the interactions

needed for a DC mechanism. The present mechanism may thus

explain how organ size control of hormone-secreting glands is

achieved and how hormones can function precisely despite varia-

tion in the physiological parameters of their target tissues.

Discussion

This study presented the concept of dynamical compensation.

Dynamical compensation is a property of systems in which for every

possible time varying input, the complete dynamics of the output,

including its amplitude and response time, are insensitive to varia-

tions in key parameters of the system. Dynamical compensation is

achieved by a component (such as hormone-secreting tissue) whose

functional mass changes to buffer the variation in these parameters.

This property entails exact adaptation but is distinct from it, because

exact adaptation only requires that the steady-state output will

be robust (and not the response amplitude, response time, etc.).

Dynamical compensation is especially important in systems in

which improper response to input perturbations may lead to

pathology, such as in metabolite homeostasis.

The concept of dynamical compensation relates to the concept of

fold-change detection (FCD), in which the output dynamics of a

system is independent of multiplying its input by a scalar (Shoval

et al, 2010). Like FCD, which is an invariance property (Shoval

et al, 2011) with respect to scaling of the input, dynamical compen-

sation is also an invariance property, but with respect to changes in

certain parameters. DC, however, is different from FCD because

most known FCD mechanisms do not have dynamical compensation

when their parameters are changed. Likewise, DC systems need not

have FCD.

Our analysis of circuits with the DC property focused on circuits

with three nodes. A three-node circuit architecture allows for a fast

feedback component together with a slower nonlinear integral feed-

back component, which may correspond in physiological systems to

a hormone and a hormone-secreting tissue, respectively. Future

work may explore dynamical compensation in more complex regu-

latory networks.

This study provides a class of circuits that show dynamical

compensation to key parameters that naturally vary over time and

between people. In particular, we found that this class of circuits

includes plausible models of glucose homeostasis. We analyzed a

Table 1. Physiological systems that have the hallmarks of a
DC mechanism.

Regulated
variable (y) Fast feedback (x) Tissue (Z)

Plasma glucose Insulin Pancreatic beta cells

Plasma calcium Parathyroid
hormone (PTH)

Parathyroid gland

Arterial oxygen Ventilatory reflex Peripheral chemoreceptors
(carotid and aortic bodies)

Adrenocorticotropic
hormone (ACTH)

Cortisol Adrenal gland

Thyroid stimulating
hormone (TSH)

Thyroid
hormones (T3, T4)

Thyroid gland

ª 2016 The Authors Molecular Systems Biology 12: 886 | 2016

Omer Karin et al DC in physiological circuits Molecular Systems Biology

5



model based on the work of Topp et al (2000). This model extends

the classic glucose-insulin system by incorporating the effect of

glucose on the dynamics of beta-cell mass and is used to analyze

the pathogenesis of diabetes (Topp et al, 2000; De Gaetano et al,

2008; Ha et al, 2015). While the original model explicitly referred

to the action of glucose on beta-cell proliferation and apoptosis,

our analysis applies generally to removal and production of beta-

cell functional mass. Removal of beta-cell functional mass can be

due to dysfunction, hypotrophy, cell death or de-differentiation,

and production might be due to increased function, hypertrophy,

or proliferation. DC seems to occur in experimental measurements

on the glucose and insulin responses of people with and without

insulin resistance (Fig 2, insets). These studies reported population

averages of the dynamics, which can potentially mask variations

between people; data on individual dynamics would provide a

more stringent test of DC. Finally, we suggest that DC may arise

naturally in other physiological homeostatic circuits in which the

regulated variable controls the mass dynamics of its regulating

tissue.

Materials and Methods

bIG model parameters

For the simulations of the bIG model, presented in equations (7–9)

in the main text, we used the parameters from Topp et al (2000)

displayed in Table 2. The model is provided in SBML format in

Code EV1.

To simulate equation 9 (see above), we used the following

equations for the production and removal of beta-cell mass. We

assumed that functional beta-cell production follows the kinetics of

glucokinase (Porat et al, 2011):

kþ Gð Þ ¼ lþ � 1

1þ 8:4
G

� �1:7

and functional beta-cell removal has the experimentally observed

steep drop near 5 mM described in Appendix Section 2:

kþ Gð Þ ¼ l� � 1

1þ G
4:8

� �8:5

The values of l+, l� determine the turnover of functional mass,

which is less than 1% per day:

lþ ¼ 0:021 � 1

24 � 60 min�1

l� ¼ 0:025 � 1

24 � 60 min�1

This feedback loop, with these parameters, is also added to the

model by Dalla Man et al (2007) (Fig EV1) to simulate the slow

feedback from glucose to functional beta-cell mass.

The simulation that incorporates both hepatic and muscle insulin

resistance (Fig EV4) uses normal insulin sensitivity parameters from

Visentin et al (2015) displayed in Table 3 with all other parameters

as in the bIG model.

Expanded View for this article is available online.
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