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Introduction

Esophageal carcinoma (ESCA) is a highly aggressive 
digestive malignancy, with the seventh highest incidence 
and sixth highest mortality rate worldwide (1,2). According 
to the National Central Cancer Registry of China (NCCR) 

statistics, there were approximately 478,000 newly 
diagnosed ESCA cases in China, which represents a threat 
to public health (3). The main histological subtypes can be 
classified into squamous cell carcinoma and adenocarcinoma 
based on the location of the tumor (4,5). It is challenging to 
choose an appropriate therapeutic schedule for curing the 
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disease. Radical esophagectomy is the standard therapy for 
ESCA without metastatic disease. Neoadjuvant therapy with 
chemotherapy or chemoradiotherapy has been utilized as an 
effective supplemental treatment option to cure ESCA (6). 
Despite immense improvements in diagnosis and therapy, 
the prognosis of patients with ESCA remains pessimistic (7).  
The 5-year survival rate is between 20% and 30% (8,9). 
Although the TNM staging system (T: extent of the tumor; 
N: extent of spread to the lymph nodes; M: presence of 
metastasis) is the most common indicator for prognostic 
prediction, it is of great importance to develop additional 
powerful prognostic predictors for precise individualized 
treatment.

N6-methyladenosine (m6A) modification is one of 
the most pervasive modifications of RNA methylation in 
eukaryotic cells and is a dynamic and reversible process 
involved in RNA splicing, nuclear transport, stability and 
translation (10,11). It is well known that m6A modification 
relevant to messenger RNA (mRNA) and noncoding 
RNA (ncRNA) regulates basic biological processes (BP) 
and pathological functions, such as cell differentiation, 
development and tumorigenesis (12,13). Recently, with the 
continuous development of high-throughput sequencing and 
tumor epigenetics, m6A modification has gained increasing 
attention. The m6A modification is regulated by a variety of 
regulators, such as methyltransferases (writers), demethylases 
(erasers), and binding proteins (readers). The identification 
of these m6A regulators brings a new dawn for investigating 
RNA modification biology (11,14,15). m6A modification 
is installed enzymatically by a methyltransferase complex 

comprising writers, such as METTL3 and WTAP. It can be 
removed by two demethylases, ALKBH5 and FTO (16-18). 
m6A can be identified by various readers that implement 
regulatory functions by selectively recognizing methylated 
RNA (19). Increasing evidence has demonstrated that m6A 
modification plays an important role in tumorigenesis, 
cell proliferation and the tumor microenvironment in 
various malignancies, such as breast cancer, prostate cancer, 
hepatocellular cancer, thyroid cancer and lung cancer  
(20-26). A previous study reported that high expression 
of WTAP (one of the “writers”) leads to poor prognosis 
o f  ga s t r i c  cancer  by  in f luenc ing  T- lymphocy te 
infiltration, suggested that the m6A modification pattern 
was significantly associated with the tumor immune 
microenvironment (TIME) (27). Zhang et al. found that 
m6A modification patterns are strongly related to different 
TIME cell-infiltrating characteristics, and the evaluation 
of m6A modification patterns within individual tumors can 
predict immune infiltration and patient prognosis (28). Han 
et al. reported that YTHDF1 (one of the “readers”) inhibits 
cross-presentation by dendritic cells by recognizing and 
binding to m6A-tagged transcripts, thereby inhibiting anti-
tumor immunity, blockade of YTHDF1 can enhance the 
therapeutic efficacy of immunotherapy (29). Thus, these 
findings suggest that the m6A modification pattern can affect 
prognosis and immunotherapeutic efficacy in various cancers. 
At present, little is known about the biological function of 
these m6A regulators. There are few studies on the molecular 
subtypes of m6A regulators in ESCA. The aim of this study 
was to investigate the landscape of m6A modification and 
establish a scoring system for accurately predicting the 
prognosis in ESCA, thereby prolonging the survival time.

In the present study, we downloaded transcriptomic 
data, clinical information and somatic mutations of 
ESCA from The Cancer Genome Atlas (TCGA). Copy 
number variations (CNVs) were obtained from the UCSC 
(University of California, Santa Cruz) Xena database. The 
differentially expressed m6A regulators between normal and 
tumor tissues were identified. Consensus clustering analysis 
was utilized to establish a scoring system based on these 
m6A regulators for predicting prognosis. Additionally, we 
investigated the correlation between m6A modification and 
immune cell infiltration and tumor mutation burden (TMB). 
Our observations indicated that m6A modification might 
exert an essential role in the progression of malignancy, and 
the prognostic signature may be considered a promising 
prognostic biomarker and potential therapeutic target 
in ESCA. We present this article in accordance with the 
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TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-910/rc).

Methods

Data acquisition and processing

Transcriptomic data in the fragments per kilobase million 
(FPKM) format, somatic mutation and clinical information, 
including sex, depth of tumor invasion, lymphatic 
metastasis, distant metastasis and survival information, were 
downloaded from the TCGA-ESCA database (https://
portal.gdc.cancer.gov/). A total of 10 normal samples 
and 159 tumor samples were enrolled for subsequent 
transcriptomic analysis. The pathological subtypes included 
squamous cell carcinoma (81 cases) and adenocarcinoma 
(78 cases). A total of 184 patients were enrolled for somatic 
mutation analysis. The CNV dataset was retrieved from 
the UCSC Xena database (https://xena.ucsc.edu/). Twenty-
one well-acknowledged m6A regulators (writers including 
METTL3, METTL14, WTAP, VIRMA, ZC3H13, RBM15 
and RBM15B; erasers including FTO and ALKBH5; readers 
including YTHDC1/2, YTHDF1/2/3, HNRNPC, FMR1, 
LRPPRC, HNRNPA2B1, IGF2BP1/2/3) were selected for 
subsequent research. This study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Survival analysis

We utilized univariate Cox regression analysis and the 
Kaplan-Meier method to investigate the prognostic effect 
of candidate genes or prognostic signatures. Survival curves 
were plotted by the Kaplan-Meier method, and a log-rank 
P value of less than 0.05 was considered to be statistically 
significant.

Differential gene and somatic mutation analyses

The limma R package was used to identify m6A regulators 
that were differentially expressed between normal and 
tumor samples. The significance criteria were set at the 
cutoff value of P less than 0.05 and |fold change|=1. We 
employed the maftools R package to evaluate the differences 
in somatic mutations.

Consensus clustering analysis

Using the ConsensusClusterPlus R package, we clustered 

the patients with ESCA into distinct subgroups based on the 
profiles of 21 m6A regulators and m6A-related differentially 
expressed genes (DEGs). The K-means clustering method 
was utilized to decide the number of distinct subgroups. 
Additionally, we constructed a m6A score system to quantify 
the m6A modification pattern. All m6A-related DEGs with 
significant prognoses were dichotomized into two groups 
according to the hazard ratio with a cutoff value of 1. Then, 
all patients were divided into low and high m6A score 
groups on the basis of cumulative hazard ratios <1 or >1. 
The ggalluvial R package was employed to depict an alluvial 
diagram to show the correlation between distinct clusters.

Functional annotation

To evaluate the differences in BP between distinct m6A 
regulator subgroups, we performed gene set variation 
analysis  (GSVA),  gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses. 
Selecting c2.cp.kegg.v7.2.symbols.gmt as the reference 
gene set, the GSVA R package was utilized to perform 
GSVA. Based on the coexpressed genes, we utilized the 
clusterProfiler R package to perform GO and KEGG 
analyses and utilized the ggplot2 R package to visualize the 
results.

Correlation analysis between m6A regulators and immune 
cell infiltration in the TIME

We detected the correlation between m6A regulators and 
immune cell infiltration (including B cells, CD4+ T cells, 
CD8+ T cells, macrophages, neutrophils, and dendritic cells) 
in ESCA by using the TIMER (Tumor Immune Estimation 
Resource) database (https://cistrome.shinyapps.io/timer/). 
The TISIDB (Tumor-Immune System Interactions 
Database; http://cis.hku.hk/TISIDB/) was employed to 
calculate the correlations between m6A regulators and 
immune regulators. Meanwhile, we employed the single-
sample gene set enrichment analysis (ssGSEA) algorithm to 
evaluate the infiltration of 28 types of immune cells in the 
TIME. Additionally, we investigated the correlation between 
the m6A score and immune cell infiltration in the TIME.

Statistical analysis

The clinicopathological features between distinct subgroups 
were compared by using the chi-square test. The differences 
between distinct subgroups were compared by using 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-910/rc
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Student’s t-test. We utilized univariate Cox regression 
analyses to evaluate the prognostic factors in patients with 
ESCA. Survival differences between distinct subgroups were 
compared by using the Kaplan-Meier method and log-rank 
test. SPSS version 21.0 (IBM Corp, Armonk, NY, USA) was 
employed to perform all statistical tests.

Results

Overview of m6A regulator expression in ESCA

First, we investigated the differences in 21 m6A regulators 
between normal and tumor tissues. The expression analysis 
revealed that METTL3, WTAP, VIRMA, RBM15, YTHDC1, 
YTHDF1/2/3, HNRNPC, FMR1, LRPPRC, HNRNPA2B1, 
IGF2BP1/2/3, and ALKBH5 were elevated in tumor tissues, 
and the remaining five m6A regulators showed no significant 
differences between normal and tumor tissues (Figure 1A). 
Using the GEPIA database by matching TCGA-ESCA 
normal and GTEx data, eight m6A regulators, including 

ZC3H13, RBM15, FTO, YTHDF1, YTHDF3, LRPPRC, 
IGF2BP2 and IGF2BP3, were differentially expressed in 
tumor tissues (Figure S1A-S1U). Compared with paired 
normal tissues, differentially expressed m6A regulators, 
including METTL3 ,  YTHDF1 ,  HNRNPC ,  FMR1 , 
HNRNPA2B1, IGF2BP2 and IGF2BP3, were observed in 
tumor tissues (Figure S2A-S2U). The circle map shows 
the locations of CNV alterations of 21 m6A regulators on 
chromosomes (Figure 1B). Further analysis revealed that  
21 m6A regulators in ESCA had prevalent CNV alterations. 
IGF2BP2, YTHDC1 and IGF2BP1 showed extensive CNV 
amplification. In contrast, RBM15, METTL3, HNRNPC, 
YTHDF2 and RBM15B had widespread CNV deletions 
(Figure 1C). A network map was constructed to illustrate the 
comprehensive landscape of the interactions between the 
m6A regulators and their prognostic significance in ESCA 
(Figure 1D). Additionally, we evaluated the prevalence of 
somatic mutations in 21 m6A regulators in ESCA. Among 
184 samples, 23 samples (12.5%) experienced genetic 
mutations, mainly missense mutations and nonsense 

Figure 1 Genetic alterations of 21 m6A regulators in ESCA. (A) Expression pattern of m6A regulators in normal and tumor tissues. (B) The 
location of CNV alterations of m6A regulators on chromosomes. (C) CNV mutation frequency of 21 m6A regulators in ESCA. (D) The 
landscape of the interactions and their prognostic significance between 21 m6A regulators in ESCA. (E) Somatic mutation frequency of 21 
m6A regulators. (F) Correlation analysis between ZC3H13 mutation and METTL14 expression. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no 
significance. m6A, N6-methyladenosine; ESCA, esophageal carcinoma; CNV, copy number variations. 
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Figure 2 Survival analysis of m6A regulators that are strongly associated with prognosis. (A) ALKBH5. (B) FMR1. (C) METTL14. (D) 
RBM15B. (E) YTHDC1. (F) YTHDC2. (G) YTHDF1. (H) YTHDF2. (I) YTHDF3. m6A, N6-methyladenosine.
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mutations. ZC3H13 had the highest mutation frequency, 
followed by LRPPRC (Figure 1E). We also employed 
correlation analysis to investigate the mutual regulation 
among these m6A regulators. METTL14 was significantly 
upregulated in ZC3H13 mutation samples (Figure 1F). 
However, other correlation analyses showed no apparent 
differences (data not shown). Survival analysis demonstrated 
that 9 m6A regulators were significantly associated with 
prognosis. Upregulation of FMR1 and YTHDF3 was 
remarkably related to shorter survival time, while ALKBH5, 
METTL14, RBM15B, YTHDC1, YTHDC2, YTHDF1 and 
YTHDF2 were significantly associated with prolonged 

survival time (Figure 2A-2I). These results revealed that 
m6A regulators, including writers, erasers and readers, 
were implicated in the m6A modification pattern, thereby 
simultaneously affecting the prognosis of ESCA.

Identification of m6A modification patterns in ESCA

To evaluate the m6A modification pattern in ESCA, consensus 
clustering analysis was performed to stratify all samples. By 
using the K-means clustering method, two clusters with 
distinct m6A regulators were finally identified, including 
47 cases in the m6A cluster A subgroup and 111 cases in 
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Figure 3 Consensus clustering analysis based on 21 m6A regulators and analysis of the overlapping DEGs. (A) The area under the curve 
in consensus clustering analysis. (B) The consensus fraction matrix of all samples when k=2. (C) Heatmap of the expression of 21 m6A 
regulators in each sample. (D) Heatmap demonstrating the GSVA score of representative pathways in distinct m6A cluster subgroups. (E) 
Principal component analysis of distinct m6A cluster subgroups. (F) Bubble diagram of GO enrichment analysis. (G) Bubble diagram of 
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gene set variation analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular 
component; MF, molecular function.

the m6A cluster B subgroup (Figure 3A,3B). A heatmap 
of 21 m6A regulators revealed that there were apparent 
differences in distinct m6A cluster subgroups (Figure 3C).  
In addition, we performed GSVA enrichment analysis to 
evaluate the differences in biological function among distinct 
m6A cluster subgroups. The results showed that there were 
dramatic differences in tumor progression, such as in the 

PPAR signaling pathway and cell cycle (Figure 3D).

Functional annotation

Moreover, we utilized principal component analysis (PCA) 
to evaluate the differences among distinct m6A cluster 
subgroups and discovered that it was obvious to distinguish 
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between the two m6A cluster subgroups (Figure 3E). By 
using univariate Cox analysis, a total of 519 DEGs between 
the two m6A cluster groups were identified. We performed 
GO enrichment and KEGG pathway analyses to evaluate 
the potential function. The top five BP, including organelle 
fission, nuclear division, chromosome segregation, mitotic 
nuclear division and nuclear chromosome segregation, were 
enriched. The category of cell components (CC) was enriched 
in spindle, chromosome region, condensed chromosome, 
centromeric region, and spindle pole. The top five enriched 
molecular functions (MFs) included ATP hydrolysis activity, 
tubulin binding, microtubule binding, small GTPase binding, 
and GTPase binding (Figure 3F). KEGG pathway analysis 
revealed that the top five processes, including the cell cycle, 
protein processing in the endoplasmic reticulum, ubiquitin-
mediated proteolysis, nucleocytoplasmic transport and oocyte 
meiosis, were significantly enriched (Figure 3G).

Construction of the m6A score system

On the basis of the DEGs, we also performed consensus 
clustering analysis to further investigate m6A modification. By 
using the K-means method, two gene cluster subgroups were 
finally identified (Figure 4A,4B). The gene cluster A subgroup 
was remarkably related to m6A cluster A (Figure 4C).  
There were no significant differences in RBM15B and 
YTHDF2 among distinct gene cluster subgroups. The 
remaining 19 m6A regulators in the gene cluster B 
subgroup were significantly expressed in tumor tissues 
compared with normal tissues (Figure 4D). We constructed 
a m6A score system to subsequently evaluate the prognosis 
of ESCA. All patients were dichotomized into low and high 
m6A score subgroups. The alluvial diagram was utilized 
to show the correlation of distinct clusters (Figure 4E). 
Additionally, correlation analysis indicated that the m6A 
cluster A and gene cluster A subgroups were significantly 
associated with high m6A score (Figure 4F,4G). Between the 
high and low m6A score subgroups, we compared somatic 
tumor mutation profiles to investigate the relationship 
between m6A score and TMB. Somatic mutation analysis 
revealed that MUC16, CSMD3, ZNF804B and DYNC2H1 
had more mutations in the high m6A score subgroups, while 
FLG and PCLO had more mutations in the low m6A score 
subgroups (Figure 4H,4I). Further analysis indicated that 
patients who died had higher m6A score (Figure 4J). On 
the other hand, we found that surviving patients accounted 
for 79% of the low m6A score subgroup (Figure 5A).  
Survival analysis indicated that patients in the high m6A 

score or high TMB subgroup experienced unfavorable 
prognoses (Figure 5B,5C). Survival analysis combined with 
TMB and m6A score demonstrated that patients in the 
high TMB and high m6A score subgroup had the worst 
prognosis (median survival time 12 months), while patients 
in the low TMB and low m6A score subgroup had the best 
prognosis (median survival time 48 months) (Figure 5D).

Correlation analysis between m6A regulators and immune 
cell infiltration

First, we investigated the correlation between m6A 
regulators and six types of immune cells by using the 
TIMER database. Our results revealed that B cells were 
positively associated with METTL3, METTL14, ZC3H13, 
RBM15, RBM15B, YTHDC1, YTHDF1 and LRPPRC. CD8+ 
T cells were positively related to WTAP and negatively 
related to RBM15B. Macrophages were positively correlated 
with METTL3, ZC3H13, FTO, YTHDC1, YTHDF1 
and FMR1. Neutrophils were positively associated with 
WTAP and negatively related to LRPPRC. Dendritic cells 
were negatively related to VIRMA, ZC3H13, RBM15, 
RBM15B, YTHDF1, YTHDF3, HNRNPA2B1 and LRPPRC  
(Figures S3-S9). Then, we utilized the TIMER database 
to analyze the influence of somatic CNVs on immune 
cell infiltration and demonstrated that CNVs significantly 
affected the abundance of six types of infiltrating immune 
cells (Figure S10). Based on distinct m6A cluster subgroups, 
ssGSEA revealed that activated B cells, activated CD8 T 
cells and neutrophils were upregulated in the m6A cluster A 
subgroup. In contrast, activated CD4 T cells, type 2 T helper 
cells and memory B cells were reduced in the m6A cluster A 
group (Figure 5E). In terms of the m6A score, neutrophils and 
monocytes were positively correlated with the m6A score, 
while CD4 T cells, type 2 T helper cells and memory B cells 
were negatively associated with the m6A score (Figure 5F).  
Meanwhile, we evaluated the relationships between the 
abundance of 28 types of tumor-infiltrating immune cells 
and m6A regulators by using the TISIDB database. This 
observation showed that m6A regulators were significantly 
associated with distinct tumor-infiltrating immune cells 
(Figure S11A). Correlation analysis indicated that most m6A 
regulators were significantly related to immunoinhibitors and 
immunostimulators (Figure S11B,S11C). To further evaluate 
the effects of m6A regulators on the tumor immune response, 
we also analyzed the correlation between m6A regulators 
and major histocompatibility complex (MHC) molecules and 
found that WTAP and ZC3H13 were positively related to 
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Figure 4 Consensus clustering analysis based on the overlapping DEGs and construction of the m6A score system. (A) The area under 
the curve in consensus clustering analysis. (B) The consensus fraction matrix of all samples when k=2. (C) Correlation analysis between 
clinical features and distinct clusters. (D) Expression pattern of m6A regulators in distinct gene cluster subgroups. (E) Sankey plots of 
distinct molecular subgroups. (F) Correlation analysis between the m6A score and gene cluster. (G) Correlation analysis between m6A 
score and m6A cluster. (H) Mutation landscape of the high m6A score subgroup. (I) Mutation landscape of the low m6A score subgroup. 
(J) Correlation analysis between the m6A score and survival status. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significance. CDF, cumulative 
distribution function; m6A, N6-methyladenosine; DEGs, differentially expressed genes. 
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MHC molecules, and the remaining m6A regulators were 
negatively associated with MHC molecules (Figure S11D). 
A previous study conducted by Thorsson et al. revealed that 
tumor tissues can be divided into six immune subtypes: 
wound healing, IFN-gamma dominant, inflammatory, 

lymphocyte depleted, immunologically quiet, and TGF-b 
dominant (30). Our results demonstrated that HNRNPC, 
FMR1, LRPPRC, HNRNPA2B1, IGF2BP1 and IGF2BP2 
were implicated in immune subtypes (Figure S12). 
METTL3, WTAP, RBM15, FTO, ALKBH5, YTHDF1, 
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Figure 5 Exploration of the clinical significance of the m6A score and correlation analysis between m6A regulators and immune cell 
infiltration. (A) Correlation analysis between the m6A score and the prognosis of ESCA. (B) Kaplan-Meier curves for distinct m6A score 
subgroups. (C) Kaplan-Meier curves for distinct TMB subgroups. (D) Kaplan-Meier curves for distinct m6A scores combined with TMB 
subgroups. (E) Correlation analysis between m6A clusters and immune cell infiltration. (F) Correlation analysis between the m6A score and 
immune cell infiltration. *, P<0.05; ***, P<0.001; ns, no significance. m6A, N6-methyladenosine; TMB, tumor mutation burden; ESCA, 
esophageal carcinoma.
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YTHDF2 and HNRNPC were significantly associated with 
molecular subtypes of ESCA (Figure S13). In conclusion, 
our studies revealed that the m6A regulators were closely 
related to immune cell infiltration in the tumor immune 
microenvironment.

Discussion

Tumorigenesis is a multistep and multifactor process that 
involves genetic alteration, epigenetics, posttranscriptional 
regulation and immune evasion (31,32). m6A is the most 
pervasive modification of human RNA and is dramatically 
correlated with various physiological and pathological 
processes, such as obesity and cancer (33,34). Growing 

evidence has revealed that abnormal expression of m6A 
regulators is remarkably implicated in cell proliferation, 
migration and invasion, thereby leading to tumorigenesis 
and progression (9). Until now, very few studies have 
focused on ESCA. Therefore, it is imperative to further 
investigate the underlying functional role of m6A regulators 
in ESCA and the relationship between m6A regulators 
and immune cell infiltration in the TIME. With the 
development of high-throughput sequencing and other 
biological techniques, the biological function of m6A 
modification in ESCA has been gradually disclosed.

In this study, we evaluated the expression pattern and 
prognostic significance of 21 m6A regulators and found 
that most m6A regulators were upregulated in ESCA tumor 
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tissues compared with normal tissues. Survival analysis of a 
single m6A regulator revealed that nine genes were closely 
related to survival time. By using consensus clustering 
analysis, all included patients with ESCA were divided into 
two subgroups. Patients in the low TMB and low m6A score 
subgroup had the best prognosis. Moreover, we constructed 
a human m6A score system to further evaluate prognosis 
and immune cell infiltration. Based on the m6A score 
system, distinct subgroups can be completely distinguished. 
Additionally, we also investigated the correlations of m6A 
regulators and immune cell infiltration in the TIME. 
Dendritic cells were negatively associated with most m6A 
regulators. Neutrophils and monocytes were positively 
related to the m6A score. CD4+ T cells and type 2 T helper 
cells were negatively associated with the m6A score.

An increasing number of studies have demonstrated 
that m6A regulators have an important regulatory effect 
on immunity (35). Previously, the therapeutic schedule was 
mainly based on the TNM staging system and pathological 
classification. To date, with the development of research, it 
has been found that the status of the host immune system 
is closely related to the prognosis of various cancers, such 
as colorectal cancer, lung cancer and ESCA. The inherent 
aptitude of the immune system is to distinguish it from 
healthy self-tissues or foreign substances and to recognize 
and eradicate tumor cells. Nevertheless, tumor cells can 
escape immune surveillance by cancer immunoediting, 
where the immune system can hold back or accelerate tumor 
growth (36,37). Accumulating evidence has revealed that the 
TIME plays a crucial role in mediating tumor proliferation 
and affecting the response to immunotherapy (38).  
Recently, immunotherapies, including PD-1 antibodies 
and dendritic cell vaccines, have been used in clinical trials 
for patients with advanced malignancy for whom first-
line chemotherapy failed (39,40). Our study demonstrated 
that most m6A regulators were negatively related to 
dendritic cells, indicating that m6A regulators contribute 
to dysfunction of the immune system. Dendritic cells, as 
robust antigen-presenting cells, take part in mediating the 
initiation of adaptive immune responses and innate immune 
responses (41).

At present, the relationship between m6A regulators and 
immune cell infiltration in the tumor microenvironment 
remains obscure. In this study, we also found that TP53 
and TTN displayed the highest incidences of somatic 
mutations, and IGF2BP2 showed the most extensive CNV 
amplification. IGF2BP2, as a reader, plays a pivotal role in 
mRNA localization, stability and translation. A previous 

study demonstrated that higher expression of IGF2BP2 
was observed in hepatocellular carcinoma and significantly 
related to unfavorable prognosis, indicating that IGF2BP2 
serves as an oncogene and could promote tumor progression 
via a m6A-FEN1-dependent mechanism (42). Another study 
revealed that upregulation of IGF2BP2 facilitates lung cancer 
proliferation and angiogenesis (43). Meanwhile, our study 
found that IGF2BP2 was overexpressed in ESCA tumor 
tissues and closely related to immune subtypes, thereby 
hinting that IGF2BP2 is involved in the prognosis of ESCA. 
A previous study revealed that the mRNA and protein levels 
of METTL3 were significantly upregulated in esophageal 
squamous cell carcinoma (ESCC) tissues, and inhibition 
of METTL3 could impede tumor proliferation (44). In 
our study, we confirmed that METTL3 was upregulated in 
tumor tissue, indicating that it acts as an oncogene. Growing 
evidence has reported that YTHDF1 has an important role in 
the antitumor immune response. A study conducted by Han 
et al. reported that knockdown of YTHDF1 can elevate the 
antitumor response of CD8+ T cells and PD-L1, implicating 
YTHDF1 as a candidate therapeutic target in antitumor 
immunotherapy (29). Our research revealed that CNV of 
m6A regulators, including arm level again, high amplification 
and arm level deletion, could affect the abundance of immune 
cell infiltration in ESCA. This observation confirmed that 
m6A regulators are likely to display a vital regulatory effect 
on immune cell infiltration in ESCA. The role of the m6A 
demethylase ALKBH5 in ESCA is controversial (9). A 
previous study investigated the functional role of ALKBH5 
in ESCC and found that upregulation of ALKBH5 was 
dramatically related to unfavorable prognosis. Knockdown 
of ALKBH5 impeded tumor cell proliferation and migration 
in vitro and in vivo and accumulated tumor cells in the G0/
G1 phase (45). In contrast, another study reported that 
overexpression of ALKBH5 reduced tumor cell migration 
and invasion in ESCC (46). Similar to this research, other 
studies reported that ALKBH5 can suppress the malignancy 
of esophageal cancer in vivo and in vitro, indicating that 
ALKBH5 takes part in an inhibitory effect in ESCA (47,48).

It is noteworthy that there are several limitations in 
this study. First, we did not separately investigate the 
distinct histological types due to the small sample size. 
The difference between squamous cell carcinoma and 
adenocarcinoma could affect the consistency of our results. 
In addition, these results were obtained by integrated 
bioinformatics analyses, lacking validation in vivo and  
in vitro. To further verify these conclusions, subsequent 
studies in cells, animal models and clinical experiments need 
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to be implemented.

Conclusions

In summary, the present study systematically investigated 
the expression pattern of m6A regulators, constructed a 
m6A score system to improve the predictive value of a 
single m6A regulator, and evaluated the correlation of m6A 
regulators and immune cell infiltration in the TIME. Our 
results provide important insights into the underlying role 
of m6A regulators and suggest that m6A regulators can 
serve as potential prognostic biomarkers and promising 
therapeutic targets against immunotherapy.
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