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Abstract. Gastric cancer (GC), one of the most lethal malig‑
nant tumors, is highly aggressive with a poor prognosis, 
while the molecular mechanisms underlying it remain largely 
unknown. Although advanced imaging techniques and 
comprehensive treatment facilitate the diagnosis and survival 
of some GC patients, the precise diagnosis and prognosis are 
still a challenge. The present study used publicly available 
gene expression profiles from The Cancer Genome Atlas 
and Gene Expression Omnibus datasets including mRNA, 
micro (mi)RNA and circular (circ)RNA of GC to establish 
a competing endogenous RNA network (ceRNA). Further, 
the present study performed least absolute shrinkage and 
selector operator regression analysis on the hub RNAs to 
establish a prediction model with mRNA and miRNA. The 
ceRNA network contained 109 edges and 56 nodes and 
the visible network contains 13 miRNAs, 9 circRNAs and 
34 mRNAs. The five mRNA‑based signature were CTF1, 
FKBP5, RNF128, GSTM2 and ADAMTS1. The area under 
curve (AUC) value of the diagnosis training cohort was 0.9975. 
The prognosis of the high‑risk group (RiskScore >4.664) was 
worse compared with that of the low‑risk group (RiskScore 
≤4.664; P<0.05) in the training cohort. The five miRNA‑based 
signature were miR‑145‑5p, miR‑615‑3p, miR‑6507‑5p, 
miR‑937‑3p and miR‑99a‑3p. The AUC value of the diagnosis 
training cohort was 0.9975. The prognosis of the high‑risk 
group (RiskScore >1.621) was worse compared with that of 
the low‑risk group (RiskScore ≤1.621; P<0.05) in the training 
cohort. The validation cohorts indicated that both five mRNA 

and five miRNA‑based signatures had strong predictive power 
in diagnosis and prognosis for GC. In conclusion, a ceRNA 
network was established for GC and a five mRNA‑based 
signature and a five miRNA‑based signature was identified 
that enabled diagnosis and prognosis of GC by assigning 
patient to a high‑risk group or low‑risk group.

Introduction

Gastric cancer (GC) has a highly aggressive clinical course 
making it one of the most lethal malignant tumors with a discour‑
aging prognosis. Comparing published data by GLOBOCAN 
in 2012, the updated 2018 edition data showed an increase in 
incidence and mortality with 1,033.7 thousand new patients and 
782.7 thousand deaths per year worldwide (1,2). More advanced 
gastric endoscopic imaging provides an opportunity for clini‑
cians to detect the precancer lesions and treat the tumor at an 
endoscopically curable stage. The strategy of early detection and 
endoscopic resection has lowered morbidity in the countries with 
a high prevalence of GC, including Japan and South Korea (3‑5). 
However, in other regions, a shortage of properly trained 
endoscopy operators and inconsistencies in diagnosis between 
pathologists contribute to the fact that a significant proportion 
of patients are diagnosed at advanced stage. Accurate diagnosis, 
especially for those who cannot be biopsied, is an urgent problem 
that must be overcome for treatment of GC.

Although individual treatments, including surgery, chemo‑
therapy, radiotherapy and molecular targeted therapy, have 
made great improvements, those with advanced‑stage GC still 
have a poor 5‑year survival rate (6). These poor outcomes have 
resulted in research focusing on identifying prognostic related 
factors, including age, gender, tumor grade and pathological 
molecular subtypes (7,8). In addition, accumulating studies 
identify non‑coding RNAs including micro (mi)RNA, circular 
(circ)RNA and long‑noncoding RNA as having prognostic 
value. Although studies highlight the value of biomarkers, 
some limitations cannot be ignored, such as conclusions based 
on a single research cohort, inadequate multi‑center valida‑
tion, single marker, and small sample sizes (9‑12). Therefore, 
new biomarkers with high accuracy and specificity are needed 
to improve the diagnosis and prognosis of GC.
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The present study used publicly available gene expression 
profiles from The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) datasets including mRNA, miRNA 
and circRNA of GC to establish a competing endogenous (ce)
RNA network. The prediction models based on 5‑mRNA 
signature and 5‑miRNA signature were generated by least 
absolute shrinkage and selection operation (LASSO) penalized 
regression. The prediction models showed a good capacity for 
diagnosis and prognosis in both internal validation groups and 
external validation sets. Thus, the present study identified and 
validated new candidate genes to diagnose and prognose GC 
by assigning a patient to high‑risk or low‑risk group.

Materials and methods

Patients and datasets. All the gene expression profiles were 
obtained from The Cancer Genome Atlas (TCGA) Gene 
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo) database or Genotype‑Tissue Expression (GTEx; 
https://gtexportal.org/home/) project. The information of all 
selected datasets including sample size and sequencing form 
are listed in Table I. GTEx data was used to verify the diag‑
nostic model as a supplement to normal samples.

Identification of differentially expressed genes (DEGs). 
DEGs, including mRNA, miRNA and circRNA were identi‑
fied from the aforementioned datasets. Significant DEGs 
(|log2FC| > 2, adjusted P‑value <0.05) were identified by using 
the Limma package (https://www.bioconductor.org/pack‑
ages/release/bioc/html/limma.html) of R 4.0.3 (13,14).

Weighted correlation network analysis (WGCNA). Hub 
genes were identified using WGCNA. WGCNA networks 
were constructed for mRNA, miRNA and circRNA using the 
GSE54129, GSE106817 and GSE93541 datasets, respectively. 
First, the similarity matrix was constructed based on the 
expression data by calculating the Pearson correlation coeffi‑
cient between two genes, the top 20% differentially expressed 
mRNA, the top 50% of miRNA and the top 75% of circRNA 
were chosen for further study. Next, clustering detection was 
performed to exclude outlier samples. Also, an appropriate 
power of β was adopted as a soft‑thresholding parameter 
through network topological analysis to construct scale‑free 
networks. An adjacency matrix was next transformed into a 
topological overlap matrix (TOM), 1‑TOM was used as the 
distance to cluster the genes and a dynamic pruning tree was 
built to identify the modules. Finally, the correlation between 
phenotypes (tumor or normal tissue) and modules was calcu‑
lated to recognize the most clinically significant ones (15).

Construction of ceRNA network. RNAhybrid (https://bibiserv.
cebitec.uni‑bielefeld.de/rnahybrid) was used to predict the 
interaction between circRNA and miRNA (16). miRWalk 3.0 
(http://mirwalk.umm.uni‑heidelberg.de/) was used to predict 
the interaction between mRNA and miRNA (17), while 
the circRNA‑miRNA‑mRNA network was built using 
Cytoscape 3.8.2 (18).

Functional annotation of hub mRNA. Node mRNAs in 
ceRNA network was conducted to Gene Ontology (GO) 

molecular function enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment using 
clusterProfiler package of R4.0.3 (https://www.bioconductor.
org/packages/release/bioc/html/clusterProfiler.html). P<0.05 
was defined as the threshold of statistically significance (19).

Screening diagnostic and prognostic signature. To screen 
diagnostic and prognostic signatures, LASSO regression anal‑
ysis was performed using the glmnet (https://cran.r‑project.
org/web/packages/glmnet/index.html) package of R 4.0.3 in 
TCGA dataset. After 10‑fold cross validation, the top 5 mRNA 
and miRNA ranked by absolute value of regression coefficient 
were token as diagnostic and prognostic signature for further 
study (20).

Construction of support vector machine (SVM) diagnostic 
model. SVM diagnostic model was constructed to predict 
carcinoma and non‑carcinoma by using scikit‑learn package 
supplied by python v3.8 (https://www.python.org/down‑
loads/release/python‑3812/) (21,22). Grid search with 3‑fold 
cross validation was conducted to test all parameters values 
shown in Table II, then the diagnostic model was constructed 
based on best parameter combination. Finally, the model was 
verified by 10‑fold cross validation and receiver operating 
characteristic (ROC) curve was drawn to evaluate the clas‑
sification efficiency of the model (23).

Construction of prognostic model. The prognostic model 
was used to predict prognosis based on RiskScore value. 
RiskScore values were calculated using a linear combina‑
tion of gene expression values weighted by univariate Cox 
regression coefficients. The standard form was defined as 
RiskScore=∑(βi x Xi), where i is the number of prognostic 
signatures, β is the correlation coefficient of prognostic 
signatures in univariate Cox regression analysis and X is the 
expression value of prognostic signatures (24).

Results

Differential expression analysis. The expression data between 
cancerous and non‑cancerous samples were compared and 
DEGs were defined according to the standard of |log2FC| >2 and 
adjusted P‑value <0.05. The number of DEGs in each dataset 
were summarized in Table III, the detail information about up 
and downregulated RNAs can be viewed in Tables SI‑SVII. 
The log2FC and P‑value distribution of top 100 differentially 
expressed mRNAs were shown by heatmaps and volcano plot 
(Fig. 1). The heatmaps and volcano plots for miRNAs and 
circRNAs were presented in Figs. S1 and S2. The expression 
level of DEGs in homogenous samples were consistent as seen 
in heatmaps and the RNA expression levels in GC and normal 
tissue were significantly different, indicating samples used in 
this cohort had good uniformity and the DEGs screened were 
reliable. Volcano plots illustrated the log2FC values of all differ‑
entially expressed mRNAs were distributed between ‑6 and 6, 
with the majority being distributed between ‑3 and 3. For 
miRNA, log2FC values were distributed between ‑5 and 5 and 
most distributed between ‑1 and 1. For circRNA, log2FC values 
were distributed between ‑8 and 8, with most being distributed 
between ‑2 and 2.
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WGCNA analysis. A total of 4,193 mRNAs (the top 20%) 
were identified in GES54129 dataset ranked by the Pearson 
correlation coefficient. Sample clustering analysis showed 
three obvious outlier samples with heights >100, the remaining 
samples after pruning (cutHeight=100) were reserved for 
following analysis. Network topological analysis indicated 
the appropriate power of β was 9 (Fig. 2B) and mRNAs with 
similar expression levels were categorized into the same 
module. Finally, the dataset was divided into 10 modules 

(Fig. 2C). The correlation analysis between phenotypes and 
modules indicated that green and turquoise modules were the 
most clinically significant (|R|>0.8, P<0.05; Fig. 2D).

The top 50% of miRNAs (1,282) were identified in the 
GSE106817 dataset. Sample clustering analysis showed there 
were no outlier samples. Topological analysis indicated the 
appropriate power of β was 3. All candidate miRNAs were 
categorized into 5 modules (Fig. S3A‑C) and turquoise was the 
most clinically significant (|R|>0.8, P<0.05; Fig. 2E).

Table I. Datasets used in this study and their sample distribution.

Dataset Experiment type RNA type Tumor Normal

TCGA RNA‑seq mRNA 375 32
GSE54129 Expression profiling by array mRNA 111 21
GTEx RNA‑seq mRNA ‑ 207
TCGA miRNA‑Seq miRNA 436 41
GSE106817 Non‑coding RNA profiling by array miRNA 115 2,759
GSE112264 Non‑coding RNA profiling by array miRNA 50 41
GSE83521 Non‑coding RNA profiling by array circRNA 6 6
GSE93541 Non‑coding RNA profiling by array circRNA 3 3

TCGA, The Cancer Genome Atlas; GTEx, Genotype‑Tissue Expression; miRNA, microRNA; circRNA, circularRNA.

Figure 1. DEmRNAs in gastric cancer. (A) Heatmap plot of top 100 DEmRNAs identified from TCGA dataset. Blue represents normal samples and red 
represents gastric cancer patients. (B) Heatmap plot of top 100 DEmRNAs identified from GSE54129 dataset. Colors as in A. (C) Volcano plots of mRNAs 
identified from TCGA dataset. Red and blue dots indicated up‑ and down‑regulated mRNAs. (D) Volcano plots of mRNAs identified from GSE54129 dataset. 
DEmRNAs, differentially expressed mRNAs; TCGA, The Cancer Genome Atlas. 
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The top 75% of circRNAs (1,313) were observed in 
GSE93541 for further analysis. Sample clustering analysis 
showed that there were no outlier samples. Topological network 
analysis showed the appropriate power of β was 7. circRNAs 
were classified into 10 modules (Fig. S3D‑F) and turquoise 
was the most clinically significant module (|R|>0.8, P<0.05; 
Fig. 2F). The number of mRNA, miRNA and circRNA in each 
module were listed in Table IV.

Candidate RNAs screening. To promote the reliability and 
applicability of the ceRNA network, the present study took 
the RNAs obtained from WGCNA analysis intersected with 
the DEGs in TCGA and GEO datasets. The DE mRNAs in 
turquoise and green modules were intersected with DEGs 
from GSE54129 and TCGA, the DE miRNAs in the turquoise 
modules were intersected with GSE106817, GSE112264 and 
TCGA datasets. Similarly, the DE circRNAs in turquoise 
were intersected with GSE93541 and GSE83521 data‑
sets. 72 mRNAs (43 upregulated and 29 downregulated), 
17 miRNAs (5 upregulated and 12 downregulated) and 
10 circRNAs (3 upregulated and 7 downregulated) were 
obtained as candidate RNAs to construct ceRNA in next 
step (Fig. 3). The DEGs after intersection are shown in 
Tables SVIII‑SX.

Construction of ceRNA network. The interaction relationship 
between hub circRNAs, miRNAs and mRNAs were predicted. 
Next, the interacting connections among hub RNAs were 
imaged by Cytoscape software. The GC ceRNA network 
contained 109 edges and 56 nodes, including 13 miRNAs, 9 
circRNAs and 34 mRNAs (Fig. 4A), the details of 56 node 
RNAs are shown in Table SXI.

Functional annotation of hub mRNAs. GO and KEGG anal‑
yses were performed on node mRNAs identified in ceRNA 
network. GO enrichment analysis indicated that biological 
processes mainly involved in metabolism, immunity, cell 
proliferation and development. For cellular component, it 
mainly participated in the formation of transcription complex, 
platelet and lateral plasma membrane, etc. Molecular function 
mainly involved in the activity of enzymes and the binding 
of substances (Fig. 4B). For KEGG, there were 8 significantly 
enriched pathways (P<0.05), which mainly involved in 
metabolism and immune‑related pathways, such as glutathione 

Table IV. Number of RNAs contained in each module in 
weighted correlation network analysis.

 GSE54129 GSE106817 GSE93541
Module (mRNA) (miRNA) (circRNA)

Black 130 ‑ 49
Blue 1,110 87 312
Brown 395 55 141
Green 183 ‑ 76
Grey 423 544 5
Magenta 66 ‑ 35
Pink 70 ‑ 45
Red 164 ‑ 52
Turquoise 1,410 550 507
Yellow 242 46 91

miRNA, microRNA; circRNA, circularRNA.

Table III. Summary of the number of DEGs in this study.

Dataset Type UP_DEGs DOWN_DEGs

TCGA mRNA 2,087 2,322
GSE54129 mRNA 998 830
TCGA miRNA 72 81
GSE106817 miRNA 569 428
GSE112264 miRNA 602 428
GSE83521 circRNA 70 80
GSE93541 circRNA 202 216

DEGs, differentially expressed genes; UP_, upregulated; DOWN_, 
downregulated; TCGA, The Cancer Genome Atlas; miRNA, 
microRNA; circRNA, circularRNA.

Table II. Support vector machine model parameter options.

Parameter name Parameter value range

Penalty C 0.01‑30
Gamma 1x10‑10‑1
Kernel rbf, linear

Table V. Least absolute shrinkage and selection operation 
regression coefficient absolute value of the top 5 RNAs.

A, mRNA

Symbol β

GSTM2 ‑3.513723131
ADAMTS1 ‑1.606401793
FKBP5 1.462560621
RNF128 1.065936307
CTF1 ‑0.587182395

B, miRNA 

Symbol β

hsa‑miR‑615‑3p ‑0.63417029
hsa‑miR‑937‑3p ‑0.58439658
hsa‑miR‑99a‑3p 0.39320561
hsa‑miR‑6507‑5p ‑0.35158869
hsa‑miR‑145‑5p ‑0.18756029

miRNA/miR, microRNA.
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metabolism, pathogenic Escherichia coli infection and IL‑17 
signaling pathway, etc. (Fig. 4C).

Diagnostic and prognostic signature identif ication. 
Referencing the mRNAs and miRNAs in ceRNA network, 
LASSO regression analysis was performed on TCGA to 
further screen diagnostic and prognostic signature of mRNA 
(Fig. 5A and B) and miRNA (Fig. 5D and E). The top 5 mRNAs 
were CTF1, FKBP5, RNF128, GSTM2 and ADAMTS1, the 

top 5 miRNA were miR‑145‑5p, miR‑615‑3p, miR‑6507‑5p, 
miR‑937‑3p and miR‑99a‑3p. The value of LASSO regression 
coefficient is listed in Table V.

Diagnostic model construction and validation. Considering 
the cancer and para‑cancer sample imbalance in TCGA 
(375 vs. 32), para‑cancer samples were all retained, and 32 cancer 
samples were randomly selected from 375, then 64 samples 
were randomly assigned to training group (44 samples) and 

Figure 2. Identification of modules associated with gastric cancer by weighted correlation network analysis from GSE54129 dataset. (A) Sample clustering 
after outlier samples removal. (B) Screening the appropriate power of β. (C) Distribution of average mRNA significance and errors in the modules associated 
with gastric cancer. (D) Distribution of average mRNA significance and errors in the modules. (E) Distribution of average miRNA significance and errors in 
the modules. (F) Distribution of average circRNA significance and errors in the modules. 
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Figure 3. Screening hub RNAs. (A) Upset plot for mRNAs screened by differential expression analysis and weighted correlation network analysis. The red 
line represented upregulate hub mRNAs and the blue line represented downregulate hub mRNAs. (B) Upset plot for miRNAs. (C) Upset plot for circRNAs. 
circRNAs, circular RNAs; TCGA, The Cancer Genome Atlas. 
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internal validation group (20 samples) according to ratio of 7:3. 
The expression data of the top 5 mRNAs from training group 
were entered into the training model. Following 5‑fold cross 
validation, the optimal penalty C was set as 3.0702, gamma 
was set as 1.2648 and kernel was set as rbf. Model accuracy 
(ACC) was 0.91 and area under curve (AUC) value was 0.9669 
(Fig. 5C). Then the internal validation showed ACC was 0.95 
and the AUC value was 1.0000 (Fig. S4A). To further validate 
the robustness of the model and diagnostic ability of candidate 
mRNAs, 21 pairs of cancerous and non‑cancerous samples 
from the GSE54129 dataset and all samples from GTEx and 
TCGA datasets were used as external data to further verify the 
model. The results showed ACC and AUC values of these two 
datasets are both greater than 0.8 (Fig. S4B and C). The above 
results indicated that the 5 characteristic mRNA had strong 
ability to distinct gastric cancer from non‑cancer.

For miRNA, 41 cancer samples from TCGA GC 
dataset (41/436) were selected randomly to balance 
41 para‑cancer samples, 82 samples were randomly assigned 
to the training group (57 samples) and the internal validation 
group (25 samples) according to ratio of 7:3. The expression 

data of the 5 signature miRNAs from the training group 
were entered into the model for training and the optimal 
penalty C was set as 3.0702, gamma was set as 1.2648 and 
kernel was set as rbf. Results indicated ACC was 0.93 and 
AUC value was 0.9975 (Fig. 5F). Internal validation group 
indicated the ACC was 0.92 and AUC value was 0.9733 
(Fig. S4D). GSE106817 and GSE112264 datasets were used 
as external validation data and results showed that the ACC 
and AUC values of these two datasets are both more than 0.8 
(Fig. S4E and F) (25,26).

Prognostic model construction and validation. Patients with 
both overall survival (OS) information and expressed data of 
the 5 candidate mRNAs were selected and finally 375 cases 
were recruited. The results of Univariate Cox regression 
analysis are summarized in Table VI. The 375 samples were 
randomly divided into training and test cohort (188 vs. 187). 
In training cohort, the median RiskScore value was taken 
as the cutoff point (4.664). Patients with RiskScore >4.664 
were defined as a high‑risk group (94 cases) and those with 
RiskScore ≤4.664 were defined as a low‑risk group. The 

Figure 4. The ceRNA network of circRNA‑miRNA‑mRNA in gastric cancer and functional annotation of hub mRNA in ceRNA. (A) The view of ceRNA 
network which include 13 miRNAs, 9 circRNAs and 34 mRNAs. (B) The top 10 most enriched GO terms of hub mRNAs (P<0.05). (C) KEGG pathway 
enrichment of hub mRNAs (P<0.05). ceRNA, competing endogenous RNA; circRNAs, circular RNAs; miRNA, microRNA; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes. 
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survival status, RiskScore, candidate genes expression levels 
and the survival curves of training cohort were shown in 
Fig. 6A. The prognosis of the high‑risk group was worse 
compared with that of low‑risk group (P<0.05; Fig. 6B). The 
ROC curve showed that the signature had good prognosis 
accuracy for 1‑5 years in the training test, the AUC values 
were >0.5 (Fig. 6C). The same trend was seen from both the 
test set and the entire set (P<0.05; AUC >0.5; Figs. S5 and S6).

For miRNA, the present study used the same validation 
method as for mRNA; 436 patients with OS information 

were finally recruited. The results of Univariate Cox regres‑
sion analysis are summarized in Table VI. The 436 samples 
were randomly divided into the training set and the test set 
(218 vs. 218) according to ratio of 1:1. The median value of 
RiskScore was 1.621. The training cohort was divided into 
a high‑risk group (RiskScore >1.621) and a low‑risk group 
(RiskScore ≤1.621). Survival status, RiskScore value, candi‑
date miRNAs expression levels and the survival curve in 
the training cohort are shown in Fig. 7A. The prognosis of 
high‑risk patients was worse compared with that of low‑risk 

Figure 5. Diagnostic and prognostic signature identification and diagnostic model construction. (A) LASSO coefficient profiles of the hub mRNAs in ceRNA 
network. The vertical blue dotted lines are plotted at the value selected in B. (B) Selection of the tuning parameter (lambda) in the LASSO model by tenfold 
cross‑validation based on minimum criteria for OS. the lower X axis shows log (lambda) and the upper X axis shows the average number of hub mRNAs. 
(C) ROC curve analysis for diagnostic model (mRNA) in TCGA training cohort. (D) LASSO coefficient profiles of the hub miRNAs in ceRNA network. 
(E) Selection of the tuning parameter (lambda) in the LASSO model by tenfold cross‑validation based on minimum criteria for OS. the lower X axis shows log 
(lambda) and the upper X axis shows the average number of hub miRNAs. (F) ROC curve analysis for diagnostic model (miRNA) in TCGA training cohort. 
LASSO, least absolute shrinkage and selection operation; ceRNA, competing endogenous RNA; OS, overall survival; ROC, receiver operating characteristic; 
TCGA, The Cancer Genome Atlas; miRNA, microRNA; AUC, area under curve. 

Table VI. Univariate Cox regression analysis of RNAs.

Symbol β Hazard ratio (95% CI) Wald test P‑value

ADAMTS1 0.065 1.1 (0.94‑1.2) 0.94 0.33
CTF1 0.054 1.1 (0.95‑1.2) 1 0.31
FKBP5 0.15 1.2 (0.99‑1.4) 3.4 0.067
GSTM2 0.13 1.1 (0.97‑1.3) 2.5 0.11
RNF128 0.056 1.1 (0.94‑1.2) 0.93 0.34
miR‑145‑5p 0.13 1.1 (1‑1.3) 6.8 0.0091
miR‑615‑3p ‑0.045 0.96 (0.88‑1) 1.1 0.29
miR‑6507‑5p 0.2 1.2 (0.93‑1.6) 2.1 0.14
miR‑937‑3p ‑0.054 0.95 (0.86‑1) 1.2 0.28
miR‑99a‑3p 0.11 1.1 (1‑1.2) 5.9 0.015
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Figure 6. Prognostic model (mRNAs) construction in TCGA training cohort. (A) The overall survival status, RiskScore, five‑mRNAs‑based prognostic signature 
expression levels. (B) Survival curve of low‑ and high‑risk groups in training cohort. (C) Time‑dependent ROC curve comparison of the TCGA training cohort. AUCs 
at 1‑5 years were calculated. TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic; AUC, area under curve; STAD, stomach adenocarcinoma. 

Figure 7. Prognostic model (miRNAs) construction in TCGA training cohort. (A) The overall survival status, RiskScore, five‑miRNAs‑based prognostic 
signature expression levels. (B) Survival curve of low‑ and high‑risk groups in training cohort. (C) Time‑dependent ROC curve comparison of the TCGA 
training cohort. AUCs at 1‑5 years were calculated. miRNA, microRNA; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic; AUC, 
area under curve; STAD, stomach adenocarcinoma. 
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patients (P<0.05; Fig. 7B). The ROC curve showed that the 
miRNA signature had good prognosis accuracy for 1‑5 years 
in the training test, the AUC values were >0.5 (Fig. 7C). The 
same conclusion was also obtained from the test set and the 
entire sample set (Figs. S7 and S8).

Stratified analysis of the prognostic signature. The present study 
investigated the predictive power of the mRNA prognostic model 
in different clinical subgroups in TCGA dataset. The results 
showed that the prognostic model had good predictive power t in 
subgroups <65 and ≥65, T1‑T2 and T3‑T4 (P<0.05; Fig. 8).

Discussion

Accumulating high‑throughput sequencing evidence has 
revealed that global transcriptome deregulation is associated 
with tumorigenesis and the development of GC. However, 
the molecular mechanisms underlying gastric carcinogen‑
esis remain to be elucidated. The present study explored the 
circRNA‑miRNA‑mRNA interacting axis by constructing 

ceRNA network. Finally, the visible network contained 
109 edges and 56 nodes, of which 34 mRNAs, 13 miRNAs and 
9 circRNAs were included. Several promising interacting axes, 
such as circ_0007518/ circ_0071989‑miR‑6507‑5p‑CTF1 were 
further identified and the RNAs, including circRNA, miRNA 
and mRNA, identified in these axes provided a basis and direc‑
tion for further mechanism research.

Based on the hub RNAs involved in ceRNA, LASSO 
regression analysis was performed to screen the prediction 
model of mRNA signature and miRNA signature. This indi‑
cated that both the 5 mRNA‑based signature (CTF1, FKBP5, 
RNF128, GSTM2 and ADAMTS1) and 5 miRNA‑based 
signature (miR‑145‑5p, miR‑615‑3p, miR‑6507‑5p, miR‑937‑3p 
and miR‑99a‑3p) had good prediction capacity of diagnosis 
and prognosis for GC patients. The use of LASSO regres‑
sion analyses allowed for more automated setting of weights 
to zero, which was needed for this high‑dimensional data. 
Additionally, LASSO allowed for easy interpretation of the 
data that enabled the present study to screen quickly for the 
most crucial information in the model (27,28). Yan et al (29) 

Figure 8. Stratified analysis of prognostic model (mRNAs) in the TCGA dataset. The high‑risk group showed a poor prognosis than the low‑risk group in 
several clinical stratification such as (A and B) age and (C and D) T stage. TCGA, The Cancer Genome Atlas; STAD, stomach adenocarcinoma.
Supplementary figure legends
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successfully built a more extensive ceRNA network for hepa‑
tocellular carcinoma and identified 4 gene‑based signatures 
(PBK, CBX2, CLSPN and CPEB 3) using a LASSO regression 
model, which predicted the overall survival of hepatocellular 
carcinoma effectively. Li et al (30) also used LASSO regres‑
sion analysis to screen an immune‑related prognostic signature 
involving 24 genes to predict the OS and immune status in 
colorectal cancer, which was conducive to better stratification 
and more precise immunotherapy for patients.

Only the CTF1 gene identified in this cohort were reported 
in GC research, Pan et al (31) reported that CTF1 combining 
with BTN3A3 and ADA2 genes as a prognostic model to predict 
the survival state of GC patients with fluorouracil‑bases chemo‑
therapy and help clinicians develop personalized treatment. By 
contrast, studies on the pathogenesis of GC concerning the CTF1 
gene have not been reported. The other mRNAs identified in the 
present study that have been reported in studies not related to GC 
include FK506 binding protein 5 (FKBP5); a regulatory protein 
of the hypothalamic‑pituitary‑adrenal (HPA) axis, which mainly 
has functions in various stress‑related psychiatric disorders and 
which is seldom reported in GC (32). In in vitro experiments, 
Zou et al (33) demonstrated that GSTM2 might correlated with 
the cisplatin resistance of GC cells. A disintegrin and metal‑
loprotease with thrombospondin motifs (ADAMTS) is a family 
of 19 secreted membrane‑anchored proteases, Kilic et al (34) 
reported that ADAMTS1 protease was highly expressed in GC 
and nodal metastases, indicating important role in carcinogen‑
esis and lymphatic metastasis, however the specific regulatory 
mechanism of ADAMTS1 has not been studied.

In the cohort of the present study, the combination of 
5 miRNAs identified could distinguish GC patients from 
the healthy controls and predict survival when patients were 
placed into high‑risk or low‑risk groups according to their risk 
value. miRNAs are small endogenous non‑coding regulatory 
RNAs, which take a vital part in the progression of tumor by 
depredating the target mRNA, while circRNA functions as 
an miRNA sponge to regulate selective splicing, expression 
and translation of host genes through endogenous competing 
miRNA (35‑38). In GC, multiple miRNAs are differentially 
expressed and showed evidence of a function in tumorigenesis. 
Zhong et al (39) revealed that the expression levels of miR‑145‑5p 
are significantly decreased in GC cells and correlate with the 
expression of KCNQ1OT1 in tumors, which promotes disease 
progression through the miR‑145‑5p/ARF6 axis. Wang et al (40) 
report that miR‑615‑3p promotes GC proliferation and migra‑
tion by deregulating CELF2 expression in vitro and in vivo. The 
visible competing network in the present study displayed the 
interacting control between hub RNAs and the specific regula‑
tory link between the mentioned RNAs have not been reported 
as so far, which will be the direction for further research.

miRNAs are found in serum, plasma and other body fluids 
because of their ability to avoid degradation, therefore, they 
become an ideal noninvasive biomarker to diagnose and predict 
survival rates. The 5‑miRNA signature reported in the present 
study has promising clinical application. The miRNA biomarker 
panel assay was also found by other studies, So et al (11) 
recently developed a valid risk assessment tool composed of 12 
serum miRNAs able to detect GC. Similarly, Japanese studies 
by Abe et al (41) developed a novel combination of four serum 
miRNAs (miR‑4257, miR‑6785‑5p, miR‑187‑5p and miR‑5739) 

to discriminate early GC from normal tissue lesions with high 
accuracy. The present study performed a similar analysis on 
circRNA with the expectation of constructing a prediction 
model of it, but the limited sample size of the original circRNA 
datasets hampered the panel which did not display strong 
diagnostic and prognostic capacity. Although the present study 
designed internal and external validations, it also had some 
limitations, including the fact that all conclusions were obtained 
from already published bioinformatic data and the lack of 
in vitro validation experiments; the functional mechanism study 
was the main direction of the present study.

In conclusion, the present study constructed ceRNA 
network of gastric cancer using circRNA, miRNA and mRNA 
public datasets, and the interaction between hub RNAs 
provided the basis for the further molecular pathogenesis 
research. In addition, the present study developed and vali‑
dated 5 mRNA‑based signature and 5 miRNA‑based signature 
that have the potential to be useful tools to diagnose GC in 
patients and to predict their survival rates.
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