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A highly variable clinical course, immune dysfunction, and a complex genetic blueprint pose

challenges for treatment decisions and the management of risk of infection in patients with

chronic lymphocytic leukemia (CLL). In recent years, the use of machine learning (ML)

technologies has made it possible to attempt to untangle such heterogeneous disease entities.

In this study, using 3 classes of variables (international prognostic index for CLL [CLL-IPI]

variables, baseline [para]clinical data, and data on recurrent gene mutations), we built ML

predictive models to identify the individual risk of 4 clinical outcomes: death, treatment,

infection, and the combined outcome of treatment or infection. Using the predictive models,

we assessed to what extent the different classes of variables are predictive of the 4 different

outcomes, within both a short-term 2-year outlook and a long-term 5-year outlook after CLL

diagnosis. By adding the baseline (para)clinical data to CLL-IPI variables, predictive

performance was improved, whereas no further improvement was observed when including

the data on recurrent genetic mutations. We discovered 2 main clusters of variables

predictive of treatment and infection. Further emphasizing the high mortality resulting from

infection in CLL, we found a close similarity between variables predictive of infection in the

short-term outlook and those predictive of death in the long-term outlook. We conclude that

at the time of CLL diagnosis, routine (para)clinical data are more predictive of patient

outcome than recurrent mutations. Future studies on modeling genetics and clinical outcome

should always consider the inclusion of several (para)clinical data to improve performance.

Introduction

Survival in patients with chronic lymphocytic leukemia (CLL) has improved significantly with the introduc-
tion of chemoimmunotherapy and later targeted therapies.1-5 Although both survival from diagnosis and
survival after treatment have improved,1-3 infection is still the primary cause of mortality before and during
treatment across all age groups.6,7 Because CLL treatments may suppress immune function, it is neces-
sary to identify patients at high risk of infection, death, or treatment at diagnosis and before a specific
treatment modality is initiated. The international prognostic index for CLL (CLL-IPI) was proposed to strat-
ify patients with CLL according to risk of treatment and mortality using a small set of variables.8 Likewise,
various Cox regression models have been able to identify certain risk factors; however, real-world data
with varying degrees of missingness at different time points call for the use of machine learning (ML)
models.9 Eventually, the goal of complex modeling in CLL would be to predict the risks of infection and
other complications as well as the chance of efficacy of different treatment modalities for a specific
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Key Points

� Baseline data (but not
genetics) added to
CLL-IPI variables
improve predictive
performance of ML
models in CLL.

� Risk factors predictive
of death within a
5-year outlook are
mostly similar to risk
factors predictive of
infection within a
2-year outlook.
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patient. Furthermore, by predicting overall survival, we may identify
the most vulnerable patients in need of specialized supportive care.

In recent years, there has been growing interest in fusing different
data types and sources of information to improve the performance
of ML predictive models.10-14 Multimodal modeling has been
applied to a range of medical data, including electronic medical
records,15 medical imaging,16 laboratory tests,17 microbiology cul-
ture results,18 and genetic data.19 We recently developed CLL-TIM
(CLL Treatment Infection Model), an ML algorithm aimed to identify
patients at high risk of infection and/or treatment based on CLL-IPI
variables and routine (para)clinical data.20 Furthermore, we and
others have assessed the prognostic impact of recurrent mutations
in CLL.21-26 The addition of both genetic data and routine (para)clin-
ical data along with CLL-IPI variables has demonstrated improved
prognostic indices.20,21,27 Recently, Gruber et al28 demonstrated
that specific genetic patterns correlate with lymphocyte kinetics
(ie, development of lymphocytosis) in patients with CLL. This study
may be seen as a first step toward mapping the correlation between
genetic and routine laboratory changes over time.

In this study, we focus on using multimodal learning principles to
create data-driven models that can test the importance of different
classes of data in terms of genetic, (para)clinical, and CLL-IPI varia-
bles for prediction of different clinical outcomes on different time-
scales. More specifically, we built a supervised ML algorithm to
predict death, treatment, infection, and a combined event of treat-
ment and/or infection within 2 and 5 years postdiagnosis. We aim
to build decision support systems that can guide clinicians toward
individual patient care for prospective testing in clinical trials and
eventual clinical implementation.

Methods

Data set

We used a single-center retrospective cohort of patients with CLL
who were diagnosed between 2008 and 2016. Our data consisted
of CLL-IPI variables (Table 1), recurrent mutations, and routine labo-
ratory tests obtained before CLL diagnosis. CLL-IPI variables were
retrieved form the Danish National CLL Register (DCLLR)8 and
were modified as previously described using a B2M level of 4.0
mg/L as a cutoff and del(17p) as the only TP53 aberration.3,21 Data
on recurrent mutations (56 genes) were collected at time of diagno-
sis using targeted next-generation sequencing as previously
described.21 In total, 515 mutations were found in 219 patients,
ranging from 1 to 10, with a median of 2. Excluding IGLL5 muta-
tions, which are considered passenger mutations from IGHV hyper-
mutation, the total number was 413 mutations in 197 patients. A list
of recurrent mutations is provided in the data supplement (supple-
mental Data). Of noncoding mutations, we included only splice site
mutations (with 12-bp intronic overlap) in the listed genes and the
common 39 untranslated region deletion in NOTCH1. The features
extracted from the recurrent mutations included binary features indi-
cating the presence or absence (1-hot encoding) of each recurrent
mutation, the total number of recurrent mutations, the number of
driver mutations, and the number of altered signaling pathways.22

We extracted a range of baseline features from the DCLLR, such
as age, sex, family history of CLL, Eastern Cooperative Oncology
Group performance status, CD38 positivity, 70 kDa z-associated
protein (ZAP70) positivity, and FISH status for del(13q), tri(12),

del(11q), and del(17p). Furthermore, biochemical and microbial data
from routine blood tests, such as hemoglobin levels, complete blood
counts, and C-reactive protein levels, as well as information on
blood cultures were retrieved from the PERSIMUNE data ware-
house.29 In contrast to baseline data, routine blood tests were col-
lected longitudinally before and after CLL diagnosis. Lastly, we
computed the number of previous infections each patient had
before diagnosis.20

Models

By using different combinations of feature sets, we defined 4 mod-
els: CLL-IPI features only (IPI), CLL-IPI features plus recurrent muta-
tions (1MUT), CLL-IPI features plus baseline (para)clinical features
(1BL), and all features combined (ALL).

We used these 4 models to test (1) whether adding recurrent muta-
tions to CLL-IPI features improves the performance of the predictive
model further (IPI vs 1MUT), (2) whether adding baseline (para)clin-
ical features to CLL-IPI features improves the performance of the
predictive model further (IPI vs 1BL), (3) whether adding baseline
(para)clinical features to CLL-IPI features improves the performance

Table 1. CLL-IPI characteristics of newly diagnosed patients with

CLL (n 5 314)

Variable N (%)

Age, y

#65 125 (39.8)

.65 189 (60.2)

Binet stage

A 273 (86.9)

B/C 41 (13.1)

B2M, mg/L

#4.0 263 (85.9)

.4.0 43 (14.1)

Missing 8

IGHV status

Mutated 211 (67.4)

Unmutated 102 (32.6)

Missing 1

del(17p)

Absent 284 (95.3)

Present 14 (4.7)

Missing 16

TP53

Mutated 21 (6.7)

Wild type 293 (93.3)

CLL-IPI risk

Low 167 (57.4)

Intermediate 87 (29.9)

High 31 (10.7)

Very high 6 (2.1)

Missing 23

B2M, b2-microglobulin.
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more than adding recurrent mutations to CLL-IPI features (1MUT
vs 1BL), and (4) whether using all the feature sets improves the
performance more than using CLL-IPI and baseline (para)clinical fea-
tures (1BL vs ALL).

Algorithms

To predict the clinical outcomes, we used a range of boosting algo-
rithms, including AdaBoost,30 XGBoost,31 LighGBM,32 and Cat-
Boost,33 and 3 bagging algorithms: RandomForest,34 ExtraTrees,35

and an ensemble of LinearSVM36 with bagging. The missing values
were imputed by applying the mean strategy. Before training Ran-
domForest and ExtraTrees, a subset of features was selected using
a feature-selection step based on LinearSVM with lL regularization.
In bagging- and boosting-based models (including AdaBoost,
XGBoost, and LightGBM), the training algorithm performed
the feature-selection step intrinsically by selecting features that

minimized the prediction error. Thus, all the features were used in
the training of bagging and boosting models without any external
feature selection before the learning phase. We combined the pre-
dictions of the algorithms using majority voting. To address the
imbalance in the number of samples in the classes, we adjusted
the class weights inversely proportionally to the class frequencies
in the training set. We implemented all the algorithms in Python
using the Scikit-learn package.37 The code to test the predictive
model is available at https://gitlab.com/mparviz/cll-baseline. To use
the code for prediction, patient data containing clinical variables
must be provided in the form of a csv file with 76 columns and n
rows (n is the number of patients).

Evaluation metrics

Because the data set was imbalanced for all the outcomes (the
number of observations was not the same for all the possible values
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Figure 1. Schematic representation of the data collection and analysis. (A) Data from different data sources, including baseline tests ( ), routine laboratory tests

( ), and recurrent mutations ( ), were combined to construct a heterogeneous data set. Prediction point was set at 3 months postdiagnosis, and clinical outcomes ( )

were predicted. (B) The clinical outcomes were death ( ), treatment ( ), the combined event of treatment or infection (composite), and infection ( ). (C) Based on the

combination of feature sets, 4 models were defined: (1) IPI, which included CLL-IPI score and the CLL-IPI features only; (2) 1BL, which included CLL-IPI features, baseline

tests, and routine laboratory tests; (3) 1MUT, which included CLL-IPI features and recurrent mutations; and (4) ALL, which included all features. (D) Clinical outcomes were

predicted in 2- and 5-year outlooks postdiagnosis (except for the first 3 months). (E) The data from different sources were merged to create one data set ( ). Then, for a

specific outcome and outlook, the target values were created and later used in the training/test ( ). Based on the model, feature extraction was performed ( ). A stacked

ML model consisting of 7 algorithms and a fusion stage based on majority voting was trained and tested. The performance of the models ( ) and the contribution of the

features (
SHAP

) were estimated to identify the risk factors predictive of each combination of outcome, model, and outlook. tNGS, targeted next-generation sequencing.
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of the outcomes), we evaluated the algorithms using Matthews
correlation coefficient (MCC):

MCC ¼ ð½TP3TN�2½FP3FN �Þ=
�ð TPþ FP½ � TPþ FN½ � TNþ FP� TNþ FN½ �Þ½

True (TPs) and false positives (FPs) refer to the numbers of pre-
dicted high-risk patients that were correct and incorrect, respec-
tively. Similarly, true (TNs) and false negatives (FNs) refer to the
numbers of predicted low-risk patients that were correct and incor-
rect, respectively.

Prediction point and outlooks

Aiming to identify both high- and low-risk patients, we performed
predictions in both a 2-year and a 5-year outlook after CLL diagno-
sis. We included all the test results obtained 3 months after diagno-
sis to allow for modeling of all the diagnostic tests in the training
set. Thus, no predictions were performed during the first 3 months
of the outlooks. For a given patient and outcome, depending on the
length of the outlook, the target values used in the supervised learn-
ing might change. For instance, the target value corresponding to a
patient treated 3 years postdiagnosis would be 0 in the 2-year out-
look, whereas in the 5-year outlook, the target value would be 1.

Outcomes

Primary outcomes were death, treatment, infection, and a composite
event of infection or treatment within the predictive time window
postdiagnosis as previously described.20 The modeling of treatment
and infection was done separately (ie, the event of infection before
treatment was not included in the treatment outcome and vice
versa). We used the event of having a blood culture drawn as a
proxy for infection because it is a clinical standard practice to draw
a blood culture only when a patient has a clinical infection.20,38 This
is true whether the blood culture result is negative, indicating con-
tamination, or positive.39-41

Data set split

To investigate the variability of the algorithm performances across
the features sets and outcomes, we used both a fixed holdout data
set and K-fold cross-validation (supplemental Figure 1). To do this,
we first divided the cohort into 3 disjoint sets, set A, set B, and set
C, for a given outcome and outlook where the splits were stratified
with respect to the class labels.

K-fold cross-validation

To assess the generalizability of the ML algorithm predictions on the
unseen samples for a given feature set and algorithm, we used a
K-fold cross-validation algorithm42 to perform training and testing on
set A. To reduce the variability caused by the partitioning, multiple
rounds of cross-validation were performed. By running multiple
rounds, we estimated the performance of the algorithms more
robustly and later tested the significant performance differences

among the models. However, to compare the MCCs obtained for
each round/split across the models, we used the same random ini-
tialization for data splitting across the algorithms and the models.
Here we set the number of folds to 5 and the number of rounds to
40 and optimized the algorithm hyperparameters by running a five-
fold grid search. This procedure was repeated for all the algorithms
on all 4 models and 2 outlooks.

Holdout validation

To further assess the generalizability and robustness of the trained
models, we performed a holdout validation42 using combined sets
A and B as the training set and set C as the test set. Like the evalu-
ation process on set A, we performed a fivefold grid search to opti-
mize the algorithm hyperparameters.

Statistical analysis

Because the random seed used to generate data splits in fivefold
cross-validation in each round was the same across the models, the
obtained MCC values were matched. Therefore, we used the Wil-
coxon signed-rank test43 to assess the significance of the model
performances and test the hypotheses. Kaplan-Meier estimates of
overall survival, treatment-free survival, infection-free survival, and
treatment and infection–free survival were used to estimate the sur-
vival function of the models. P values were calculated by the log-
rank test, and hazard ratios were calculated using Cox regression
analysis. We performed the statistical analyses in Python using the
lifelines package.44

Explainability

Recently developed models in the field of explainable artificial intelli-
gence can be used to explain the predictions of ML algorithms by
quantifying the importance of each feature. Using these models, risk
factors predictive of clinical outcomes can be identified. Here, we
used Shapley Additive Explanations (SHAP)45 values to measure
the contribution of each feature to the algorithm prediction. More
specifically, we calculated the average of absolute SHAP values
for each feature and retained only those with an average SHAP
value .0.01.

The recurrent mutation identified in the cohort was provided in the
supplementary data of a previously published paper.21

Results

Patient characteristics

Modeling was based on data and diagnostic samples from 314
consecutive patients with CLL.21 The patient composition was simi-
lar to that of prior published cohorts, at 60% male, 87% with Binet
stage A, 67% with unmutated IGHV, and 6.7% with TP53 aberra-
tions, as detailed in Table 1. With a median follow-up of 6.5 years
(95% confidence interval, 5.9-7.1), all patients were included in the
full 2-year follow-up, whereas some were right censored in the
5-year follow-up (supplemental Table 1). In total, 49 patients were

Figure 2 (continued) Comparison of the performance of the models in predicting clinical outcomes. Box plots depicting the performance of the 4 models in

predicting death, treatment, infection, and the combined outcome of infection or treatment within 2-year (A,C,E,G) and 5-year (B,D,F,H) outlooks postdiagnosis. In each

subplot, the box plots show the quartiles, the median, and the outliers of MCC values obtained using fivefold cross-validation on set A. The scatter plots (single marker for

each model) demonstrate the MCC value of the holdout validation on set C. Death (A-B), treatment (C-D), treatment or infection (composite) (E-F), and infection (G-H).

*P 5.05, ***P 5.001.

3720 PARVIZ et al 28 JUNE 2022 • VOLUME 6, NUMBER 12



A

IGHV germline identity (%)
IGHV mutational status

CLL-IPI score
Platelet count

Absolute lymphocyte count
Haptoglobin level

Del(11q)
ECOG performance status

Familial CLL
Albumin level

IgM level
Neutrophil count

Binet stage
Basophil count

Cytomegalovirus Ig level
Sodium level

Glomerular filtration rate
B2M�4.0 mg/L

Gender
IgG level

Lactate dehydrogenase level
Reticulocytes level

Bilirubin level
Glucose level

Hemoglobin level
B2M level
Del(13q)
Age�65
IgA level

Age
Infection count

Death

0.0 0.2

B
Treatment

0.0 0.2

C
Infection

0.0 0.2

D
Composite

0.0 0.2

2-
ye

ar

E
IGHV germline identity (%)

IGHV mutational status
CLL-IPI score
Platelet count

Absolute lymphocyte count
Haptoglobin level

Del(11q)
ECOG performance status

Familial CLL
Albumin level

IgM level
Neutrophil count

Binet stage
Basophil count

Cytomegalovirus Ig level
Sodium level

Glomerular filtration rate
B2M�4.0 mg/L

Gender
IgG level

Lactate dehydrogenase level
Reticulocytes level

Bilirubin level
Glucose level

Hemoglobin level
B2M level
Del(13q)
Age�65
IgA level

Age
Infection count

0.0 0.2

F

0.0 0.2

G

0.0 0.2

H

0.0 0.2

5-
ye

ar

Mean |SHAP| Values

0.0 0.2

Figure 3.

28 JUNE 2022 • VOLUME 6, NUMBER 12 PREDICTION OF CLINICAL OUTCOME IN CLL USING AI 3721



excluded because of an occurring event (ie, death, treatment, or
infection) before the prediction time point. In addition to the previ-
ously published data on recurrent mutations (1MUT) in 56 genes
based on the diagnostic samples,21 76 (para)clinical baseline varia-
bles (1BL), similar to those included in the modeling of the previ-
ously published20 CLL-TIM algorithm (supplemental Data), along
with data on CLL-IPI variables formed the basis for modeling, as
outlined in Figure 1. The study was approved by the Danish Data
Protection Agency, health authorities, and National Committee on
Health Research Ethics. Because of its retrospective biobank use,
the study did not require written informed permission under Danish
legislation.

Including baseline (para)clinical features improves

performance significantly, whereas adding recurrent

mutations shows no significant effect

Overall, starting out with modeling based on CLL-IPI variables, add-
ing (para)clinical features improved the performance significantly
(P , .001 using Wilcoxon signed-rank test), whereas adding recur-
rent mutations showed no significant effect (P . .05). The results
of the K-fold cross-validation in predicting clinical outcomes across
the outlooks showed that adding baseline (para)clinical features
(1BL) to CLL-IPI features (IPI) improved the performance of the pre-
dictive models further (Figure 2). Although the improvements were
significant across all outcomes and both outlooks, the difference
between 1BL and IPI increased for infection and the composite
outcome compared with death and treatment.

In contrast, adding recurrent mutations showed no improvement in
predicting different clinical outcomes as assessed by MCCs. More
specifically, comparing the performances of the 1MUT and IPI mod-
els, adding recurrent mutations to CLL-IPI features (1MUT) had little
effect on model performance. In comparison with CLL-IPI (IPI) and
the baseline (para)clinical features (1BL), using all feature sets
(ALL) did not improve performance further. However, for modeling
the composite outcome of infection or treatment, recurrent muta-
tions improved performance when added to CLL-IPI variables for
the 2-year outlook (Figure 2G). For infection as an outcome, adding
recurrent mutations on top of baseline (para)clinical features (ALL)
improved predictive performance for the 5-year outlook (Figure 2F).

Compared with the 2-year outlook (Figure 2A,C,E,G), the 5-year out-
look (Figure 2B,D,F,H) showed that performance improved across
all models and across all outcomes. Furthermore, the improvements
were larger for the models that included baseline (para)clinical fea-
tures (1BL and ALL) compared with the models that were restricted
to CLL-IPI (IPI) and recurrent mutations (1MUT).

We investigated the generalizability of the models further by per-
forming holdout validation. The scatter plots (single marker for each
model) in Figure 2 show the MCC value of the holdout validation on
set C. Overall, the models achieved MCCs on set C comparable to
the values obtained on set A, which indicates the robustness of

the proposed ML framework and the effectiveness of the baseline
(para)clinical features.

Identifying patterns of risk factors predictive

of clinical outcomes and how they change

with outlook

To identify the risk factors predictive of different outcomes, we com-
puted the contribution of (para)clinical and CLL-IPI features across
all samples included in the model. We discovered 2 clusters of fea-
tures, the first mostly predictive of treatment and the other predictive
of infection (Figure 3). Similarly, hierarchic clustering of the risk fac-
tor patterns yielded 2 main groups of outcome-outlook. One group
contained treatment, and the other consisted of infection and the
composite outcome (Figure 4). Interestingly, in the 2-year outlook,
death was merged with treatment, whereas in the 5-year outlook,
death was merged with infection and the composite outcome. The
treatment-predictive cluster included IGHV germ line identity per-
centage, IGHV mutational status, CLL-IPI score, platelet count,
absolute lymphocyte count, haptoglobin, and presence of del(11q)
(Figure 3B,F). The infection-predictive cluster included number of
prior infections, age (continuous), age .65 years (categorical),
IgA, del(13q), and a range of laboratory tests (ie, B2M, hemo-
globin, glucose, bilirubin, reticulocytes, and lactate dehydrogenase;
Figure 3D,H). Because the composite outcome was the combined
event of infection or treatment within the specified outlook, we
expected to see features from both clusters to appear as risk fac-
tors. For the 5-year outlook, the identified risk factors predictive of
the composite outcome were distributed almost equally between
treatment-predictive and infection-predictive clusters (Figure 3G).
For the 2-year outlook, they were skewed toward the infection-
predictive cluster (Figure 3C). In addition, we observed a cluster of
risk factors that were mostly predictive of the composite outcome
for the 2-year outlook. This included Eastern Cooperative Oncology
Group performance status, familial CLL, albumin level, IgM level,
and neutrophil count.

In the case of modeling death, the risk factors for the 2-year out-
look were divided between the 2 clusters, using the IGHV germ
line identity as the numeric value from the treatment-predictive
cluster and 3 routine laboratory tests (B2M, hemoglobin, and glu-
cose levels) from the infection-predictive cluster (Figure 3A).
Apart from Binet stage, B2M, and a series of laboratory tests (ie,
estimated glomerular filtration rate, cytomegalovirus immunoglob-
ulin level, neutrophil and basophil counts, and sodium, IgG, and
IgM levels), which were largely related to death in the 5-year out-
look, the remaining risk factors were from the infection-predictive
cluster (Figure 3E).

To visualize the discriminative performance of the model, Kaplan-
Meier curves were generated for the 2- and 5-year outlooks (Figures
5 and 6). In line with the assessment of the discriminative perfor-
mance by MCCs, this showed that 1BL outperformed IPI for all 4

Figure 3 (continued) Identified risk factors predictive of the outcomes. SHAP plots on the full cohort illustrate the contribution of the most important features in

predicting the clinical (mean absolute SHAP values .0.01) in 2-year outlook (A-D) and 5-year outlook (E-H). Death (A,E), treatment (B,F), treatment or infection (C,G), and

infection (D,H). The cluster of features predictive of different outcomes was detected after sorting the features so that the most important features predictive of treatment

appear at the top (red) and the most important features predictive of infection appear at the bottom (blue). The features more predictive of death or the composite outcome

and not treatment or infection appear in the middle. ECOG, Eastern Cooperative Oncology Group; Ig, immunoglobulin.
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outcomes for both the 2- and 5-year outlooks, except for treatment
in the 2-year outlook (Figure 5C).

Discussion

In this study, we developed a predictive ML model of death, treat-
ment, infection, and a composite event of treatment and infection.
Besides (para)clinical features, we extracted features from recurrent
genetic mutations and compared the performance of these 2 feature
sets separately and combined. Finally, by building predictive models
for 2- and 5-year outlooks, we studied how the length of the predic-
tion time window influenced the pattern of identified risk factors.

To identify newly diagnosed patients with CLL with high risk of
infection or treatment, we had previously developed CLL-TIM. This
ML model is currently being applied in the selection of patients for a
randomized clinical trial of upfront acalabrutinib for patients without
International Workshop on Chronic Lymphocytic Leukemia criteria
but at high risk of treatment and/or infection (PreVent-ACaLL; regis-
tered at www.clinicaltrials.gov as #NCT03868722). CLL-TIM was
designed to predict a composite outcome within 2 years postdiag-
nosis on a relatively large cohort.20 This work showed that (para)-
clinical features were among the most important factors selected by
the algorithm.

We demonstrated that for ML-based predictive modeling of death,
treatment, and infection, adding (para)clinical features to CLL-IPI var-
iables significantly improved predictions, whereas adding data on
recurrent genetic mutations did not improve prediction of clinical
outcomes on a medium-sized cohort of newly diagnosed patients
with CLL. Recent evidence suggests that mutational profiling might
be more challenging than previously thought. For example, the prog-
nostic impact of recurrent mutations differed in patients with differ-
ent IGHV-mutated and -unmutated status.46 In another study, it was
shown that recurrent mutations in CLL were correlated with the
development of lymphocytosis, which implies that biochemical

baseline tests basically retain similar and probably more information
regarding disease progression.28 As key International Workshop on
Chronic Lymphocytic Leukemia47 criteria, lymphocyte doubling time,
anemia, and thrombocytopenia may be predicted by genetic aberra-
tions and may confound one another. Therefore, such (para)clinical
features in our model seem to diminish the effect of recurrent
genetic mutations. Another explanation for the lack of predictivity of
recurrent genetic mutation data, which is in contrast to some previ-
ous studies,48 may be attributed to the difference in the multivariate
models used to identify risk factors in previous work compared with
ours. Previous work on mutational data has been based on associa-
tion studies using Cox proportional hazards as a multivariate
method.9 Conversely, the risk factors proposed in this work were
derived using several and different multivariate models, as evidenced
by the different ML algorithms used. Cox proportional hazards mod-
els are used to detect significant associative relationships between
independent factors and the dependent variable, whereas ML algo-
rithms are designed to predict the dependent variable given the
independent factors. Understandably, the evaluation procedures of
these models are also different. For standard statistical models, all
samples from a cohort are usually used to perform a significance
test, whereas an ML-based approach necessitates a model that is
predictive on a blind test set. In this way, ML-based risk factors are
predictive of an outcome and not just associative. It may also be the
case that because many recurrent mutations are quite rare, partition-
ing the data makes it much harder for ML models to learn any mean-
ingful relationships between these features and the clinical
outcomes. Likewise, many genetic studies have investigated the
tumor mutational load, such as the number of driver mutations, to
make clinical sense of rare occurring events.21,22,25,27,49 This, in
turn, has an impact on the identified risk factors. An obvious solution
to this limitation is to investigate larger cohorts with recurrent muta-
tional data and use an ML-based approach to study the possibility
of discovering risk factors based on genetic information, although
such data sets often include a limited set of sequenced genes. The
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presented findings do not rule out that genetic aberrations can
improve modeling of clinical outcome; however, they emphasize the
need for joint modeling of multidimensional data for improved pre-
dictive performance.

We identified a cluster of risk factors (IGHV germ line identity per-
centage, actual IGHV mutational status, CLL-IPI score, platelet
count, absolute lymphocyte count, haptoglobin level, and presence
of del (11q) strongly predictive of treatment but showing little pre-
dictivity toward infection. We also found a set of risk factors that are
strongly predictive of infection but not so much of treatment. The
cluster includes the infection count, age (as continuous variable),
age . 65 years (categorical), del(13q), and a range of laboratory
tests, such as reticulocyte count as well as hemoglobin, B2M, IgA,
lactate dehydrogenase, bilirubin, and glucose levels. Therefore, fea-
tures predictive of treatment may be harmful/unreliable for the pre-
diction of infection. This may be the reason that some treatment
features do not show up for prediction of the composite outcome,
whereas the algorithm identified other features that were predictive
of treatment (and infection) but not harmful for prediction of infec-
tion. Interestingly, most of these infection-only factors were also pre-
dictive of death in the 5-year outlook, which confirms the recent
studies suggesting that infection is the primary cause of death
among patients with CLL.3,6,7

From an ML perspective, our findings showed that including contin-
uous variables such as age, IGHV germ line identity percentage,
and B2M improved performance of the ML algorithms drastically.
This indicates that alongside the binary version of certain variables,
we can trust ML approaches to identify better cutoffs for improved
predictive performance.

Using the proposed ML-based approach to discriminate high-risk
and low-risk patients, we showed that including (para)clinical fea-
tures improved risk stratification across all the outcomes and both
outlooks, except for treatment outcome in the 2-year outlook. It is
noteworthy that although generally higher MCC value correlates
with higher hazard ratio, the relation between MCC metric and haz-
ard ratio is not necessarily monotonically increasing, which explains
the differences in our findings based on MCC values. We believe
that moving toward ML models that are designed specifically for
survival analysis could close the gap between Cox proportional haz-
ards regression and supervised ML algorithms.9

When compared with the results of K-fold cross-validation, internal
validation revealed that our model performed similarly. Considering
the small sample size and the complexity and heterogeneity of the

feature space, this is a promising finding that shows that good regu-
larization can allow complex models to generalize well outside of the
training data. Close similarity between the risk factors predictive of
infection in the short term and death in the long term seem to reflect
the high mortality resulting from infection in CLL. We emphasize
that more predictive information can be modeled based on routine
(para)clinical data than by data on recurrent mutations in CLL at
time of diagnosis.

Using (para)clinical data to improve the predictive performance of
ML models can help us improve our understanding of the related-
ness between different clinical outcomes and propose more accu-
rate prognostic scores that can identify high-risk patients with CLL.
Future studies on modeling genetics and clinical outcome should
thus always consider the inclusion of (para) clinical data other than
IPI variables to improve performance.
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