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The COVID-19 pandemic, caused by SARS-CoV-2, has led to over 750 million infections and 6.8 million
deaths worldwide since late 2019. Due to the continuous evolution of SARS-CoV-2, many significant
variants have emerged, creating ongoing challenges to the prevention and treatment of the pandemic.
Therefore, the study of antibody responses against SARS-CoV-2 is essential for the development of
vaccines and therapeutics. Here we perform single particle cryo-electron microscopy (cryo-EM) structure

IS</e\Jl/1 v;/ocrd;' 5 determination of a rabbit monoclonal antibody (RmAb) 9H1 in complex with the SARS-CoV-2 wild-type
or o—_El\(;I B (WT) spike trimer. Our structural analysis shows that 9H1 interacts with the receptor-binding motif
Rni’ Ab (RBM) region of the receptor-binding domain (RBD) on the spike protein and by directly competing with

angiotensin-converting enzyme 2 (ACE2), it blocks the binding of the virus to the receptor and achieves
neutralization. Our findings suggest that utilizing rabbit-derived mAbs provides valuable insights into
the molecular interactions between neutralizing antibodies and spike proteins and may also facilitate the
development of therapeutic antibodies and expand the antibody library.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

The Coronavirus disease 2019 (COVID-19) pandemic caused by
the B-coronavirus severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) remains an ongoing global health crisis [1]. SARS-
CoV-2 belongs to the coronavirus family, which also includes two
previous highly pathogenic coronaviruses severe acute respiratory
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syndrome coronavirus (SARS-CoV) and Middle Eastern respiratory
syndrome virus (MERS-CoV). The disease was first reported in
December 2019 and since early 2020, it has rapidly spread world-
wide [2]. As of November 2021, the SARS-CoV-2 variant BA.l
(Omicron, originally found in South Africa) and its sublineages have
become the dominant strains circulating globally. This has reversed
the trend of previously dominant strains such as B.1.1.7 (Alpha),
B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) [3—5]. And as of
February 17,2023, more than 756 million people have been infected
with COVID-19, resulting in over 6.8 million deaths (https://
covid19.who.int/).

SARS-CoV-2 is an enveloped, positive-strand RNA virus
belonging to the Betacoronavirus genus [G]. Like SARS-CoV, SARS-
CoV-2 uses its homotrimeric, glycosylated spike protein to bind the
angiotensin-converting enzyme 2 (ACE2) receptor and enter host
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cells [7,8]. The spike protein is formed after its two functional
fragments S1 and S2 are proteolytically cleaved by furin-like pro-
teases. The S1 subunit contains an N-terminal domain (NTD, resi-
dues 14—305) that recognizes attachment factors and a receptor-
binding domain (RBD, residues 328—531) responsible for binding
to the host receptor ACE2 [7]. The S2 subunit contains a fusion
peptide that facilitates viral and host cell membrane fusion after S1
binds to the receptor. An additional proteolytic cleavage site is
located in the S2 region, immediately before the fusion peptide. The
RBD undergoes a conformational change between an up (or open)
and a down (or closed) conformation, and the binding of RBD to the
ACE2 receptor is only possible when it is in the up conformation, as
the receptor-binding motif (RBM) is not fully exposed in the down
conformation. Due to the immune advantages, the RBD is the most
important target recognized by neutralizing antibodies [9]. There-
fore, it is essential to develop new therapeutic antibodies that can
effectively neutralize SARS-CoV-2 and prepare for potential out-
breaks caused by emerging SARS-CoV-2 variants of concern (VOCs)
in the future.

Previously, we reported a rabbit monoclonal antibody (RmAb)
9H1 that was able to neutralize the wild-type (WT) SARS-CoV-2
strain in both pseudovirus and authentic virus assays, with ICsg
values of 14 ng/mL and 26 ng/mL, respectively [10]. In this study, we
present the cryo-electron microscopy (cryo-EM) structure of the
SARS-CoV-2 WT spike trimer in complex with 9H1 Fabs to provide
further insight into the neutralizing mechanisms of 9H1. Our
findings show that 9H1 can compete with ACE2 for binding to both
the WT and Delta RBD, as demonstrated through competitive ELISA
experiments. Moreover, we compare several monoclonal anti-
bodies (mAbs) that share similar epitopes with 9H1 but exhibit
broader neutralizing activity to investigate the sensitivity of RBD-
targeting antibodies to mutations and provide molecular infor-
mation for the development of new broad-spectrum antibodies.
Our structural data may improve the understanding of interactions
between non-humanized antibodies and spike proteins.

2. Materials and methods
2.1. Expression and purification of the SARS-CoV-2 spike protein

Soluble 6P-stabilized SARS-CoV-2 WT and Delta spike proteins
were expressed through transient transfection, as previously
described [11,12]. In brief, the genes encoding residues 1-1208 of
WT and Delta spike ECD were cloned into the pcDNA3.1 mamma-
lian expression vector (Invitrogen) and transfected into FreeStyle
293-F cells (Invitrogen) using polyethyleneimine (PEI, Poly-
sciences). Spike proteins were purified using Ni Sepharose resin
(Cytiva) and further purified through gel filtration chromatography
using a Superose 6 10/300 column (Cytiva) in 1 x TBS (20 mM Tris-
HCl, 200 mM Nadl, pH 8.0).

2.2. Generations of rabbit monoclonal antibody 9H1 against SARS-
COV-2 spike proteins

The generation of RmAb 9H1 involved the use of the SMab
platform from Yurogen Biosystems, as previously reported [10]. In
brief, rabbits were immunized with DNA vaccines. After single B cell
sorting, the successfully recovered IgG variable regions from a
positive clone was cloned into a pcDNA3.4 vector for monoclonal
antibody expression and purified by protein A affinity chromatog-
raphy. The resulting RmAbs were then tested for neutralization and
ACE2 receptor-blocking abilities.
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2.3. Production of 9H1 Fab fragments

RmAbs were buffer exchanged and concentrated to 4 mg/mL
before being fragmented using immobilized papain, as previously
reported [10]. In brief, the fragmented antibody samples were
collected and incubated with immobilized rProtein A Beads 4FF
(smart-lifesciences, Cat. No. SA012200), and finally buffer
exchanged into 1 x PBS buffer and confirmed using SDS-PAGE.

2.4. Cryo-EM sample preparation and data collection

The SARS-CoV-2 WT spike protein was diluted to 1.0 mg/mL in
1 x PBS and mixed with 9H1 Fab at a 1:3 ratio. To prevent aggre-
gation, 0.01% (w/v) n-dodecyl B-D-maltoside (DDM) was added
before the sample was plunge-frozen using a Vitrobot IV (Ther-
moFisher Scientific), with a blot time of 2.5s at —1 force and 8 °C/
100% humidity. 4829 micrographs were collected with a defocus
range between 1.2 and 2.5 um using a 300 kV Titan Krios micro-
scope (ThermoFisher Scientific) equipped with a K3 detector
(Gatan) and SerialEM software [13].

The statistics of cryo-EM data collection can be found in
Supplemental Table 1.

2.5. Cryo-EM data processing

The dose-fractioned images were precisely corrected for motion
and dose-weighted using MotionCorr2 software [14]. CryoSPARC
was used for subsequent steps including CTF estimation, particle
picking, extraction, 2D classification, Ab-Initio reconstruction, 3D
classification, 3D refinements and local resolution estimation [15].
Non-uniform refinement was used to obtain the final 3D re-
constructions, resulting in an overall resolution of 3.25 A for the
“up/up/up” state (class I) with C3 symmetry, and 3.50 A for the “up/
up/down” state (class II) with C1 symmetry. A local refinement
focused on the WT RBD-9H1 variable domain region was per-
formed to improve the resolution at the binding interface, resulting
in a 3.59 A map of the RBD-9H1 interface.

The complete cryo-EM data processing workflow is described in
Supplemental Fig. 1.

2.6. Model building and refinement

The SARS-CoV-2 WT spike-9H1 Fab complex structures were
built by first placing the previous structural model of the WT spike-
510A5 Fab complex (PDB: 7WSO0) [11] into the cryo-EM electron
density maps using UCSF Chimera [16]. The 9H1 Fab model was
predicted using Phyre2 [17], then the manual and automated model
building were iteratively performed using Coot 0.9.6 [18] and real-
space refinement in Phenix 1.20 [19].

The data validation statistics are shown in Supplemental Table 1.

2.7. ELISA experiments

The binding efficacy of 9H1 was assessed using enzyme-linked
immunosorbent assay (ELISA) as previously described [10]. In
brief, ELISA plates (Corning, Cat. No. 9018) were coated with 25 pL
of 1 ug/mL WT, Delta and Omicron spike ECD or RBD proteins and
incubated overnight at 4 °C. After washing and blocking, 25 pL 9H1
RmADbs of gradient concentrations were added to each well and
incubated for 1 h. Then, goat anti-rabbit IgG-HRP was added and
incubated for 1 h at room temperature. Thermo TMB substrate was
then added and plates were kept in the dark at room temperature.
Finally, the OD of 450 nm was measured using the Epoch micro-
plate spectrophotometer (Biotek, USA).
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2.8. ACE2 receptor blocking assay

To determine ACE2 competition with 9H1 bound to WT or Delta
RBD, a competitive ELISA assay was performed. For WT, bio-
tinylated WT RBD (Kactus Biosystems, CoV-VM4BDB) was coated
onto ELISA plates and serially diluted 9H1 was incubated with
human ACE2 (Kactus Biosystems, ACE-HM501) before being added
to the plates. ACE2 with an hFc tag was detected via goat anti-
human IgG-HRP. For Delta, human ACE2 (Kactus Biosystems, ACE-
HM501) was coated onto the ELISA plates, and biotinylated Delta
RBD (SinoBiological, 40592-VO8H91) was incubated with serially
diluted 9H1 before being added to the plates. and incubated for 1 h.
Biotinylated Delta RBD was detected via neutravidin-HRP. ELISA
plates were read at OD 450 nm and 630 nm with an Epoch
microplate spectrophotometer (Biotek, USA).

3. Results

3.1. Cryo-EM structure determination of WT spike in complex with
9H1

To understand the structural basis for the binding mode of
RmAb 9H1, we determined cryo-EM structures of the prefusion
SARS-CoV-2 WT spike trimer in complex with 9H1 Fabs, which are
stabilized by six prolines (HexaPro) (Supplemental Fig. 1A and B).
Our analysis revealed two distinct classes of WT spike-9H1 Fab
complexes, both of which RBD represents a 3-Fab-per-trimer
binding mode, with each RBD bound to one 9H1 Fab (Fig. 1A and B).
In class I complex, most of the particles are in the “up/up/up”
conformation, allowing reconstruction with C3 symmetry to an
overall resolution of 3.25 A (Supplemental Fig. 1C), with all three
RBDs tilted at an angle of ~90° (Fig. 3C). In class Il complex, most of
the particles are in the “up/up/down” conformation, allowing
reconstruction with C1 symmetry to an overall resolution of 3.50 A
(Supplemental Fig. 1D). Due to the steric hindrance caused by the
binding of 9H1 to the down RBD (RBDc), one of the up RBD (RBDg)
adopts an unusual over-up conformation with a tilt angle of ~105°
(Fig. 3D).

Because of the conformational dynamics of the 9H1-bound
RBDs, the electron density in these regions is relatively weak. To
further analyze the molecular details of the interaction between
9H1 and RBD, we performed local refinement to improve the res-
olution of the RBD-9H1 interface to 3.59 A (Supplemental Fig. 1E).
Using the improved density map and a predicted 9H1 Fab structure,
we generated structural models that incorporated only the variable
heavy chain (VH) and variable light chain (VL) domains of the 9H1
Fab due to the flexible nature of the RBDs (Supplemental Fig. 1F and
G).

3.2. Structural basis for the neutralizing mechanism of 9H1

Based on our structural analysis, we then utilized the local-
refined model to identify detailed interactions between WT RBD
and 9H1 Fab. Like other Class 2 antibodies, 9H1 binds to the RBM
region of the RBD regardless of whether it is in the up or down
conformation (Fig. 2A) [20]. The complementarity-determining
regions (CDRs) of both the light chain (CDRL3) and heavy chain
(CDRH3) are located close to the RBM loop (residues 496—506) that
connects the 6 strand and a5 helix of the RBD, while the CDRL1
mainly interacts with the a3 helix (residues 403—409) of the RBD
(Fig. 2A). Additionally, the CDRH2 contacts the flexible RBM loops
(residues 443—447 and 498—502) mainly through hydrophobic
interactions (Fig. 2A). The total buried surface area of the WT RBD-
9H1 Fab interface is 684 A2 from 9H1 (with 63% of the surface area
contributed by the light chain) and 647 A? from the WT RBD
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(Fig. 2B).

At the WT RBD-9H1 interface, RBD residues R403, E406, R408,
P499, T500, N501, G502 and Y505 have extensive interactions with
the 9H1 VL residues Y29, D30, E90 and S92, and the 9H1 VH resi-
dues H55 and Y102 (Fig. 2C). This interaction network is charac-
terized by various hydrogen bonds and salt bridges that are
associated with 9H1 CDRs and the RBD amino acid residues located
within the 9H1 epitope. Notably, RBD residues T500, N501, G502
and Y505 located on the RBM loop (residues 496—506) are inserted
into the cleft between the heavy and light chains of 9H1, where the
major hydrogen bond interactions are concentrated.

In our cryo-EM structures, each up or down RBD is decorated
with one 9H1 Fab on the RBD, resulting in an epitope that overlaps
with the ACE2 binding site. Upon superposition of the up RBDs with
the structure of WT RBD-9H1 Fab and RBD-ACE2 complexes, we
find significant hindrance between the 9H1 Fab and ACE2 on the
same up RBD (Fig. 2D), indicating that 9H1 may compete directly
with ACE2 for RBD binding. Our structural analysis was confirmed
by competitive ELISA experiments, in which 9H1 was shown to
significantly inhibit the binding of ACE2 to both WT RBD and Delta
RBD (Fig. 2E). Therefore, 9H1 can block ACE2 binding to the spike
trimer, resulting in a neutralizing effect.

3.3. SARS-CoV-2 Omicron variants can escape neutralization by
9H1

Our previous study demonstrated that 9H1 could neutralize not
only the SARS-CoV-2 WT strain but also the Delta variant [10,21].
Structural analysis reveals that the Delta RBD has only two muta-
tion sites, L452R and T478K, which are not located on the 9H1
epitope and therefore do not affect the binding of 9H1 to Delta RBD,
maintaining its neutralizing activity against the Delta variant.
However, the Omicron variant has accumulated a higher number of
mutations on its spike protein, including N501Y and Y505H on the
BA.1 RBD which severely disrupts the hydrogen bond between RBD
and the 9H1 light chain. Other Omicron mutations such as D405 N,
V445P, G496S and Q498R, may also affect the RBD-9H1 in-
teractions. Our ELISA experiments have shown that while 9H1 ex-
hibits a high binding capacity to the spike ECD and RBD of both WT
and Delta strains, it has lost the ability to bind the BA.1 spike and
RBD (Supplemental Fig. 2).

With the emergence of Omicron and its sublineages, the effec-
tiveness of most RBM-targeting neutralizing antibodies, including
9H1, has been significantly affected [22—26]. Interestingly, recent
studies have identified new RBM-targeting antibodies with broad-
spectrum neutralizing ability against Omicron variants [27—32].
We aim to investigate the mechanisms behind the loss of neutral-
izing activity of 9H1 against Omicron and the resistance of the
other four antibodies to Omicron mutations.

To achieve this, we compared the distribution of epitopes
among these antibodies that were highly or partially overlapping
with the ACE2 binding site (Fig. 3A). Consistent with our previous
description, the 9H1 epitope is mainly located in the RBD4gg-506
loop. This region contains frequent mutations from Omicron BA.1,
especially N501Y and Y505H, which disrupt the hydrogen bonds
between 9H1 and RBD (Fig. 3B). Additionally, the a3 helix of RBD
(residues 403—409) is another 9H1 epitope region, which also
contains mutation sites from BA.2, BA.3 and BA.4/5 (Fig. 3B).
Therefore, the interaction between 9H1 and RBD would be severely
affected by Omicron mutations, resulting in loss of its neutralizing
activity against Omicron variants.

In contrast, F61 [27], GARO5 [28] and S2K146 [29,30] exhibit a
larger contact area and more extensive hydrogen bond or salt
bridge interactions with the RBD. Besides the RBD4g6.506 loop and
RBD4g3-499 helix, these three antibodies also interact with the
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Fig. 1. Cryo-EM structures of WT spike protein in complex with RmAb 9H1. (A and B) The overall cryo-EM structures of the WT spike-9H1 Fab complexes. (A) class 1, 3.25 A,
revealing binding of 9H1 to RBDs in the “up/up/up” state; (B) class II, 3.50 A, revealing binding of 9H1 to RBDs in the “up/up/down” state. (C and D) The tilt angle of the up (C) and
over-up (D) WT RBDs are defined by the angle between the long axis of the RBD (red line) and its projection on the horizontal plane (black ellipse). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)

RBD4g6-493, RBD453-460 and RBD415.421 regions. Notably, the epitopes
of F61 and GARO5 exhibit significant overlap, while GARO5 has an
additional interaction with RBD E484 compared to F61 due to its
longer CDRH3 (Fig. 3A and B). In addition, the LY-CoV1404 epitope
remains unaffected by the BA.1 mutations, especially N440K,
G446S, Q498R and N501Y, suggesting that LY-CoV1404 is not sen-
sitive to these mutations [32]. Hence, despite more than twenty
mutation sites being accumulated in the Omicron RBD, the four
broad-spectrum mAbs discussed above may form new interactions
with some of these mutation sites and maintain robust binding
with the RBD. This could explain their potent neutralizing activity
against the emerging Omicron variants [27—30,32].

4. Discussion

The emergence of highly mutated SARS-CoV-2 variants, espe-
cially the Omicron sublineages, has raised serious concerns about
immune evasion, vaccine efficacy, and the need for effective
neutralizing antibodies for clinical treatment [22—26]. Although
recently reported mAbs have shown broad neutralizing activity
against different Omicron sublineages, further research is needed
to investigate the binding modes of various antibodies and the
molecular mechanisms of interaction between antibodies and the
spike protein, which help researchers to develop multifunctional
antibodies and expand the therapeutic antibody library. In this
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study, we used single-particle cryo-EM to analyze the structure of
the prefusion SARS-CoV-2 WT spike trimer in complex with the Fab
fragments of RmAb 9H1 to explore its binding mode and neutral-
izing mechanism. Together with the competitive ELISA experi-
ments, we demonstrate that 9H1 binds to WT RBD and Delta RBD in
both up and down conformation and by directly targeting the RBM,
9H1 can compete with ACE2 for RBD binding and thus blocks viral
attachment to the receptor and achieves neutralization.

However, the Omicron variant has accumulated a higher num-
ber of mutations on its spike protein, which severely disrupt in-
teractions between RBD and the 9H1. In contrast, other RBM-
targeting antibodies such as F61, GARO5, S2K146 and LY-CoV1404
have broader neutralizing activity against Omicron variants.
These antibodies have a larger contact area and more extensive
hydrogen bond or salt bridge interactions with the RBD. Addi-
tionally, they may also form new interactions with mutation sites
and maintain robust binding with the RBD. These findings can
guide the development of new broad-spectrum neutralizing
antibodies.

In conclusion, we present high-resolution cryo-EM structures of
RmAb 9H1 bound with the SARS-CoV-2 WT spike trimer. The
neutralizing potency of rabbit-derived 9H1 highlights the potential
of screening neutralizing antibodies from different species.
Furthermore, our structural analysis provides valuable insight into
the molecular interactions between RmAb and the RBD epitope,
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Fig. 2. Structural details of interactions between the WT RBD and 9H1 Fab. (A) The structure model of WT RBD in complex with 9H1 Fab and its CDRs are labeled. The RBM is
colored in green. (B) The footprints of the 9H1 heavy chain and light chain are represented as surface and colored purple and steel blue, respectively. (C) Detailed interactions
between the WT RBD and 9H1 Fab including 9H1 CDRL1, CDRL3 and CDRH3. The interacting residues of WT RBD are shown as yellow sticks, the 9H1 light chain residues are shown
as steel blue sticks and the heavy chain residues are shown as purple sticks. Potential hydrogen bonds are represented as magenta dashed lines and salt bridges are represented by
orange lines, respectively. The WT residues recognized by 9H1 are listed. (D) The superposition of the local-refined RBD-ACE2 model (PDB ID: 6M0]J) to that of the WT RBD-9H1 Fab
model shows significant steric hindrance between 9H1 Fab and ACE2. (E) The ability of 9H1 to compete with ACE2 for binding to WT RBD (left) and Delta RBD (right). The
competition capacity of 9H1 was indicated by the level of reduction in the response unit of ACE2 compared with or without the addition of 9H1. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)

which can aid in developing new therapeutic antibodies and Data availability
expanding the antibody library.

All data generated and analyzed in this study are provided in the
paper and the Supplementary Information. The coordinates and EM
map files for the WT spike-9H1 Fab class I complex, WT spike-9H1
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5 430 435 440 445 450 455 460
pobpFTecviAwNsN[NLDs[kV[ele NY NY[L]yRLFRKS[NLK
PDDFTGCVIAWNSN|NLDS|kvfeleny NY[LIVRIEFRK s|N|L k
PDDFTGCVIAWNSN|NLDS|Kkv[[eaNYNY[LI[YRLFRKS|N[LK
popFTGcviAwNsNNLDs|kv|elc NN Yy REllr « s[n[L
poDFTGCV I AWN sN|N|E o S|KV[G|EN YN v|L|y R L FRKS|NLK
495 500 505 510 515 520 525
s v[e|rfa]lp T[nJe ve[vlar YRVVVLSFELLHAPATVCGPK
s v|c|Fla|p T|N|e Vie|¥|]aP YRVVVLSFELLHAPATVCGPK
s v|c|Fla|P T|N|G VGE|YjaP YRVVVLSFELLHAPATVCGPK
M 1 X VGllaP YRVVVLSFELLHAPATVCGPK
L|als v[s|r|afiF|n|e Wic|v|[@lP YRVVVLSFELLHAPATVCGPK

Fig. 3. Comparison of the epitopes of 9H1 and other RBM-targeting mAbs. (A) Structure models of RBD in complex with 9H1 and other four RBM-targeting antibodies that have
broad-spectrum neutralizing ability against the Omicron variant. RBD is colored gray. 9H1 Fab is colored consistent with Fig. 1 and the other four Fabs are colored as follows: F61
(PDB ID: 7XMX), hot pink; GARO5 (PDB ID: 7T72), aquamarine; S2K146 (PDB ID 7RAL), dark purple; LY-CoV1404 (PDB ID: 7MMO), sky blue. (B) The sequence of SARS-CoV-2 WT RBD
(residues 331-528) with highlighted footprints of mAbs (colored according to the RBD antigenic site recognized). The amino acid substitutions from Omicron BA.1 are marked with
black boxes; additional mutation sites from BA.2, BA.3 and BA.4/5 are marked with red boxes; additional mutation sites from BQ.1, BQ.1.1, XBB.1 and XBB.1.5 are marked with blue

boxes.
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