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Abstract: Oral cancer is a serious concern to people all over the world because of its high mortality
rate and metastatic spread to other areas of the body. Despite recent advancements in biomedical
research, OC detection at an early stage remains a challenge and is complex and inaccurate with
conventional diagnostics procedures. It is critical to study innovative approaches that can enable a
faster, easier, non-invasive, and more precise diagnosis of OC in order to increase the survival rate
of patients. In this paper, we conducted a review on how biosensors might be an excellent tool for
detecting OC. This review covers the strategies that use different biosensors to target various types
of biomarkers and focuses on biosensors that function at the molecular level viz. DNA biosensors,
RNA biosensors, and protein biosensors. In addition, we reviewed non-invasive electrochemical
methods, optical methods, and nano biosensors to analyze the OC biomarkers present in body fluids
such as saliva and serum. As a result, this review sheds light on the development of ground-breaking
biosensors for the early detection and diagnosis of OC.

Keywords: biosensors; oral cancer; biomarkers; saliva; electrochemical biosensor; optical biosensor;
nano biosensor

1. Introduction

The growth of malignant tissue in the oral cavity, which usually affects the tongue,
floor of the mouth, cheek, gingiva, lips, or palate, is recognised as oral cancer (OC). OC
accounts for one-third of all cancer cases worldwide and India accounts for roughly 30%
of all cases [1]. The most frequent indicators of OC are a non-healing sore in the mouth
and discomfort that is difficult to ease. Other symptoms include a lump or thickening in
the cheek; white or red spots on the gums, tongue, and other regions of the oral cavity; as
well as a persistent sore throat and difficulty eating or swallowing. OC can be avoided by
reducing the risk factors such as consumption of tobacco (both smokeless and chewable)
and alcohol, as well as raising awareness about these issues. All of these variables contribute
to the commencement of oral squamous cell carcinoma (OSCC) by producing genetic and
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epigenetic alterations. The oral aetiology begins with a burning feeling in the mouth,
some restriction while opening the mouth, and any red or white lesions in the oral cavity;
however, a lesion’s histology may show dysplastic characteristics. Such conditions are
categorised under oral potentially malignant disorders (OPMDs). Early identification is
critical for the disease’s prognosis and the sufferer’s survival if not detected in the very early
stage of OPMD, which can be life-threatening and associated with increased morbidity.

In addition to the high mortality rate, OC is a major contributor to lower productivity
in developing countries due to early deaths [2,3]. Visual inspection and biopsy are the most
common procedures for diagnosing OC and premalignant lesions (e.g., leukoplakia and
erythroplakia). Currently, OC is diagnosed using invasive methods such as tissue biopsy of
the infected area, followed by non-invasive medical imaging techniques that are both costly
and time-consuming [4,5]. Traditional methods of distinguishing OSCC from normal oral
mucosa have been exploited individually or in combination with an adjuvant investigation
strategy. These approaches are intrusive, time-consuming, costly, labour-intensive, and
reliant on the investigator’s competence. The condition may go unnoticed until a particular
diagnostic test is performed because of low amounts of biomarkers in exfoliated cells, tissue
samples, or biological fluids (saliva, human blood, semen, and urine). The quantity of these
markers is minimal in a healthy person but it increases as the disease advances.

Biosensors are receptor–transducer devices that use biological material to interact with
an analyte [6] and deliver quantitative or semi-quantitative information utilising a biological
recognition element. Biosensors are popping up all over the place in the medical profession.
They are employed as diagnostic instruments for identifying infections, monitoring and
detecting hazardous metabolites, glucose monitoring, cholesterol testing, and vitamin
and other nutrient measurements [7–9] Oral fluid-based biosensors, for example, are used
in dentistry to diagnose caries, periodontitis, and oral cancer by detecting saliva and
GCF samples [10]. This article reviews the developments and advancements in different
biosensors used in the early detection of OC and OSCC. We also explain the methods
used by biosensors to target different types of biomarkers and focused on biosensors that
function at the molecular level.

2. Requirement of Biosensors in Diagnostics

Biosensor development is critical for investigating the biomarkers responsible for these
malignancies and diagnosing OC in its early stages [11]. When cancer is identified early,
the patient’s prognosis and chances of survival will improve. This necessitates immediate
consideration of the accessibility of non-invasive, patient-friendly diagnostic technologies
that are minimally or entirely non-invasive. Biosensors can precisely and accurately assess
the number of biomarkers, assisting in the right diagnosis of OSCC development. As a
result, early diagnosis of OSCC is essential for disease treatment and improved well-being.
Progressions in emerging biosensor-based diagnostics and screening devices have opened
the path for OC or OSCC detection assays that are rapid, simple, accurate, and robust.

Emerging research on biosensors has resulted in the establishment of diagnostic
instruments with increased sensitivity and turnaround time. These technologies surely
assist physicians in the early detection and treatment of a variety of diseases. Biosensors
have several applications in the medical field, such as monitoring glucose levels in diabetic
patients, detecting pathogens and toxic metabolites, as well as measuring folic acid, biotin,
vitamin B12, and pantothenic acid [7,8]. However, this technology is still emerging in
dentistry. With the availability of these devices, diagnostic tests can be rapidly performed
within clinics.

A biosensor, by definition, is a self-contained analytical instrument that includes a
biologically active substance in close contact with an appropriate transduction element for
the goal of detecting (reversibly and selectively) the concentration or activity of chemical
species in any type of sample [12]. Clark and Lyons created the first biosensor, an enzyme-
based glucose sensor [9]. These instruments are more precise, have a faster reaction time,
and can detect nonpolar compounds.
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Because of the non-invasive early diagnosis of cancer, researchers all over the world
have begun to design and develop biosensors that can effectively detect cancer. Biosensors
are devices that transform a biological entity (protein, DNA, or RNA) into an electrical
signal that can be detected and processed in order to detect a specific biological analyte [13].
The term “bio” is used since the sensor detects biological elements such as DNA, RNA,
protein, antibodies, microorganisms, etc. A biological identification element, a transducer,
and a signal processing system are the three most significant components of a biosen-
sor (Figure 1) [14]. The biological material must have a high level of specificity, stability,
and immobilisation. Biosensors are divided and categorised based on the biorecogni-
tion element, detection technique, and kind of interaction used for bio-analyte detection.
Based on the biological recognition element, they are categorised into enzymatic, protein,
receptor-based, DNA, and whole-cell biosensors [15]. When the target bio-analytes are
in close proximity to the biorecognition element, the functioning concept is to recognise
them in the bio-fluid. The biosensor’s sensitivity, precision, reproducibility, stability, and
robustness are all controlled by biomolecules or biomimetic materials immobilised on
the substrate’s surface. When a target bio-analyte interacts with an immobilised probe,
electrical/fluorometric/luminometric/colourimetric signals are generated depending on
the presence or absence of the target bio-analyte in bio-fluid. The recognition signal events
are converted into electrical impulses by the transducer, which converts them into a mea-
surable form. Biosensors are further categorised into the following groups based on the
signal transduction mechanism: electrochemical, thermal, optical, or mass-sensitive [15].
Although electrochemical transducers are the most common in sensor technology, optical
transducers are gaining popularity in the present day due to their numerous benefits. The
signals from the transducer are amplified and displayed by an electrical system.

++

v

v

v
v

v _
_

_ OUT

S

S+

V Vdacin

t t

01001101

Figure 1. Basic components of biosensors.

3. Various Types of Biosensors Used in Detection of Cancer

Biosensors used for identifying cancer indicators are being designed and developed
by researchers and scientists in order to detect early cancer. OC may be detected effectively
and early using biosensors. DNA, RNA, and protein biosensors have all been proven in
studies for their efficiency in detecting OC and providing useful information to allow for
non-invasive OC detection [16]. The use of biosensors for protein biomarker analysis has
emerged as a promising and cost-effective method for developing point-of-care devices [17].
Electrochemical biosensors have been used in detecting cancer markers [18]. Surface
plasmon resonance sensors (SPR), which are based on spectroscopy of surface plasmons,
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are being employed for the label-free detection of cancer markers [19]. Because of their
light weight, great sensitivity, and low power requirements, piezoelectric biosensors have
also been used to detect cancer markers [20]. Tan et al. developed a surface-immobilised
optical protein sensor to detect an IL-8 marker for the diagnosis of OC [21]. Yuan et al.
created an SPR-based biosensor for detecting cancer markers in ovarian cancer patients [22].
Kumeria et al. created a microchip biosensor for detecting circulating tumour cells based
on nanoporous aluminia [23]. Malima et al. have developed a very sensitive microscale
in vivo sensor for various biomarker detections that is enabled by the electrophoretic
assembly of nanoparticles [24]. Because of their excellent sensitivity, specificity, compact
size, rapidity, and cost-efficiency, optical biosensors are currently gaining popularity for
biomarker detection [25]. Nanotechnology, MEMS (micro electromechanical systems),
NEMS, biotechnology, and other multidisciplinary techniques have been applied in the
development of novel optical biosensors.

3.1. DNA Biosensor

DNA is the genetic information carrier and the building block of biological heredity.
Following the identification of DNA, DNA-based diagnostics such as the RAPD, RFLP,
and PCR methods emerged. About 5–10% of malignancies are inherited and caused by
single-gene mutations. Several hereditary cancer syndromes and their causative genes
have been identified. In order to improve patient care, molecular-based laboratories have
been involved in the development of innovative tests that are reliable, affordable, and
low-cost. They are also utilised to improve current procedures by making them faster and
more cost-effective. Molecular diagnostics has proposed a very sensitive and quantitative
technique for detecting disease-causing pathogens and genetic variations based on genomic
sequence analysis (Table 1). Many DNA testing methods have been developed as a result
of the efforts of researchers.

The identification of DNA sequences and the discrimination of sequences is difficult
and time-consuming and has low hybridisation efficiency. To address these issues, DNA
sensors were included in high-throughput analysis, implying a significant reduction in
effort, time, and cost. Biosensors are biorecognition elements that, when combined with
various transduction mechanisms, have aided the rapid expansion in the domain of bio-
analysis and its associated technologies [26–28]. These characteristics, as well as additional
benefits such as the ease of manufacturing and operation and the cheap costs, make it an
attractive option for the non-invasive early detection of OC in saliva.

3.2. RNA Biosensor

Multiple cancer-causing defects, such as the inactivation of the anti-tumour gene,
chromosomal degradation, and gene hypermethylation, change the signature of normal
cells. These cancer-causing aberrations, such as microRNAs (miR), are considered RNA-
based cancer biomarkers. RNA biomarkers allow cancer to be diagnosed even when no
physical signs are present. Wang et al. produced a POC adaptable magnetic-controllable
electrochemical-based biosensor with great sensitivity [18]. It shows an early-stage OC
biomarker (miR) diagnosis with a limit of detection (LOD) of 0.22 aM (2.2–19 M). The
various RNA biosensors used for the detection of cancer are summarised in Table 1.

Luo et al. discovered a ratiometric electrochemical biosensor based on a locked nucleic
acid (LNA)-aided strand displacement process with greater repeatability for detecting
exosomal miR-21 originating from cancer with a LOD of 2.3 fM [29]. They created a Y-like
structure helped by LNA that activates in the presence of miR-21 as a target biomarker,
with detection validated by electrochemical impedance spectroscopy (EIS) and DPV. To
detect miR-21, Sabahi et al. created a biosensor based on a dendritic Au nanostructure
grafted with single-wall carbon nanotubes (SWCNTs) and a modified fluorine-doped tin
oxide (FTO) electrode [30]. MiR-12 was used as a specific biomarker for different cancers in
the range of 0.01 fmol L−1 to 1 mol L−1, with a detection limit of 0.01 fmol L−1.
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3.3. Protein Biosensor

For POC and clinical analysis, electrochemical biosensors provide a sensitive, fast, and
low-cost diagnostic framework for detecting protein cancer biomarkers [31]. The surface of
the electrodes in these biosensors is often modified with receptors such as antibodies or
aptamers. Because the interactions between an antibody and an antigen operate similar
to a lock-and-key binding mechanism, immunosensors are very selective [32]. Protein
biomarkers for cancer detection can be used to measure components that are thought to
be indications of aberrant biological processes, disease processes, or treatment interme-
diation responses [28,33]. These biomarkers are frequently collected from biofluids and
their expression level usually indicates disease status. Since many tumour markers are
identified in saliva, the salivary samples are of great interest for the non-invasive screening
of OC [34,35]. Research from Markopoulos and co-workers has revealed that both cell-free
mRNAs and proteins in saliva have diagnostic relevance for OC [36]. Wei et al. were pio-
neers in the development of multiplexed electrochemical sensors for the measurement of
salivary biomarkers for the diagnosis of OC [32]. Their findings revealed that the multiplex
detection of IL-8 (both mRNA and protein) allowed for a precise OC diagnosis. Human
saliva samples were utilised in another investigation to create electrochemical magneto-
biosensors for the detection of both mRNA and the protein IL-8 [25]. Highly sensitive
and selective techniques were revealed in this study. The enzyme-linked immunosorbent
test (ELISA) is the gold standard approach for clinical biomarker detection [37]. For many
protein analytes, the limits of detection (LOD) of ELISA are 1–3 pg mL−1 [28,38]. ELISA,
on the other hand, is restricted by the expense of the test kits and equipment, the length of
time it takes to measure, and the difficulty of multiplexing. As a result, when it comes to
POC diagnostics, ELISA is not the first option.

Aptamer-based biosensors have label-free and high sensitivity for electrochemical
detection when compared to standard biosensors [39,40]. A capacitive aptasensor was
created to track the overexpression of the human epidermal growth factor receptor 2 (HER2)
protein, which has been linked to ovarian, lung, stomach, and oral malignancies [41]. On a
gold microelectrode surface, anti-HER2 aptamers (ssDNA) are immobilised. Then, various
doses of HER2 were spiked in diluted human serum. The link between capacitance and
the HER2 concentration was finally determined [39]. Aptamers were also used to identify
the IL-6 protein in which EIS was used to develop a nano-aptamer sensor to detect IL-6 in
biofluids [42] and 0.02 pg mL−1 was considered to be the detection limit. Furthermore, after
two weeks, the aptasensors had 90% of their original impedance response signal, indicating
the sensor’s great stability.

Immunoassays are another type of protein sensor. A recognised element, such as a
primary antibody, is immobilised on an electrode surface in a sandwich immunoassay to
capture the specific analyte. Then, to bind the antigen, a secondary antibody coupled with
an enzyme, such as horseradish peroxidase (HRP), is added to the solution (the analyte).
HRP can convert its substrate to electrochemically active species, allowing it to translate
chemical signals into electrochemical signals (Figure 2) [25,43,44]. Heineman’s group, for
example, was a pioneer in enzyme-linked electrochemical analyte detection utilising sand-
wich immunoassays [45]. For multiplex electrochemical protein identification, two primary
techniques are used in this study. The analytes were first bound to the main antibody and
then secondary antibodies were added to the nanoparticles. Second, electrodes were used to
immobilise and measure the electrochemical signals after being immobilised with different
antibodies. Bioreceptors, redox mediators, and transducer networks are all used in the
development of sensitive and accurate electrochemical biosensing frameworks. Nanomate-
rials have been increasingly popular in recent years, and their high surface-to-volume ratio
has led to their widespread use in the biosensor field. New carbon or metal nanomaterials,
such as graphene and its derivatives, have been developed with unique qualities, such as
high electron transfer rate and biocompatibility, and as a result, numerous studies have
combined nanomaterials with immunosensors [25,46–49]. When compared to flat surfaces,
nanostructure-based immunosensors with an increased electrode surface area can provide
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10-fold or greater antibody coverage, resulting in up to 1000-fold increased sensitivity and
a lower limit of detection [50–52].
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4. Oral Fluids as Biomedia for Diagnostics

Blood and urine are the most frequent media utilised in regular laboratory procedures.
They include a variety of biological compounds that aid in disease diagnosis. The disad-
vantages of utilising blood as a biomedia include intrusive sample collection, patient fear
and anxiety, and the danger of disease transmission. The other medium is urine, which
is difficult to collect, especially in mobile people. As a result of these constraints, there
was a higher need for alternate biomedia. Oral fluids (gingival crevicular fluid [GCF] and
saliva) are easily accessible biofluids that can provide a rapid and non-invasive sample
without requiring any medical expertise. Because the procedure is non-invasive, patients
who require regular monitoring can have samples taken an unlimited number of times.
When compared to urine drug testing, most of its contents are similar to serum and it can
identify drugs promptly. Oral fluids have all these characteristics making them a promising
diagnostic medium [53].

Saliva contains a variety of electrolytes, including K, Mg, Ca, Na, and P as well as
biological elements such as proteins, enzymes, immunoglobulins, and nitrogenous prod-
ucts. Lubrification, antimicrobial activity, buffering action, digestion, and tooth protection
are the key activities of this biofluid [54,55]. Saliva has piqued the interest of the scientific
community, which has resulted in a flurry of new research. Saliva has been employed
as a diagnostic tool in a variety of sectors, including pharmacology, medicine, and den-
tistry [56]. The term ‘salivaomics’ refers to research on the saliva’s genome (genomics),
RNA (transcriptomics), metabolite profiles (metabolomics), proteins (proteomics), and
microbial community (microbiomics). Among them, the investigation of DNA methylation,
a stable epigenetic change that has been linked to systemic diseases including chronic
renal disease progression and respiratory allergies [57–59], is included in research on the
salivary genome and epigenome. Another useful approach for diagnosing some systemic
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disorders is the identification of particular microRNA segments. In fact, a subset of miRNA
sequences has been frequently identified in schizophrenia patients [60,61].

Table 1. Types of biosensors categorised based on the biological recognition elements.

Sl. No Biosensor Method Source Advantage Reference

DNA biosensor

1

Immobilisation-free,
ultra-high selective

electrochemical
biosensor

Nicking
endonuclease-aided

target recycling
Saliva

High specificity and
good discrimination at
single-base mismatch.

[28]

2
Robust ratiometric

electrochemical DNA
biosensor

Exo III-assisted
target recycling Saliva Detect low concentration

of biomarkers [62]

3 Detection of oral
cancer overexpressed 1

Nuclease-assisted
target recycling and

DNAzyme
Saliva

Ultra-high
discrimination capability

with single-base
mismatch detection

[63]

4 Biocompatible DNA
dendrimer system

Modified short
nanometer of DNA

working on the
electrode surface

Saliva Can detect multiple
biomarkers at same time [64]

RNA Biosensor

5
Magnetic controllable

electrochemical
biosensor

miRNA Artificial saliva High sensitivity, detect
cancer at early stage [38]

6
Ratiometric

electrochemical
biosensor

Locked nucleic acid Exosomes Detect exosomal miR-21
with LOD 2.3 fM [29]

7 Single-wall carbon
nanotubes

Dendritic Au
nanostructure

modified
fluorine-doped

tin oxide

Serum High sensitivity with
LOD 0.01 fmol/mL [30]

Protein Biosensors

8
Multiplexed

electrochemical
sensors

Detection of salivary
biomarkers Saliva Multiplex detection of

protein and mRNA IL-8 [32]

9 Capacitive aptasensor Detection of HER2
protein Serum

Determine the link
between capacitance

and HER2 concentration
[39,41]

10 Nano-aptamer sensor Detect IL-6 Sweat Detect low concentration
at 0.02 pg/mL [42]

5. Saliva-Based Biosensors

Saliva is a thin, watery liquid secreted by the salivary glands into the mouth. Active
transport or passive diffusion can bring salivary components from salivary glands or the
associated vasculature. Proteomic, microbiome, immunologic, genomic (transcriptomic
and epigenome), and metabolomics biomarkers have been identified as components that
correlate with specific disorders. Three groups of researchers in the United States have
successfully discovered 1166 proteins in human saliva. Matrix metalloproteinases (MMP1,
MMP3, and MMP9), cytokines (IL-6, IL-8), and vascular endothelial growth factor were
among the biomarkers they discovered. Tumour necrosis factor-alpha and salivary trans-
ferrin have also been identified as possible biomarkers for OC diagnosis because of the
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direct interaction between saliva and OC lesions. On the other hand, salivary soluble CD44
Ag can be used as a biomarker for head and neck squamous cell carcinoma [65], whereas
OSCC-related salivary biomarkers include Cyfra 21-1 [66,67], tissue polypeptide Ag, cancer
Ag 125 [66], and salivary zinc finger protein 510 peptide [68]. Saliva has recently been
proved to be a useful diagnostic tool for diseases including human immunodeficiency
virus (HIV) and hepatitis A, B, and C, in which immunologic markers such as IgG and
microbics play a vital role. Periodontitis and Sjögren syndrome have been linked to a
number of salivary metabolics. Genetic variations in patients can be found by examining
micro-RNA (mi-RNA) markers. As a result of these indicators, saliva appears to be a viable
diagnostic fluid [69,70]. However, there are a number of downsides to using saliva as a
diagnostic fluid, the most significant of which is its low specificity and sensitivity. Due to
the lack of a consistent quantity of saliva in people, the concentration of analytes might
vary substantially depending on when the sampling/collection method is performed [55].
However, the lower level of analytes in saliva is no longer a restriction because many new
and sensitive methods, such as microfluidics and nanotechnologies, are introduced, which
have enhanced sensitivity and assay speed. Microfluidics and microelectromechanical
devices for DNA, gene transcripts (mRNA), proteins, electrolytes, and tiny chemicals in
saliva, as well as the overall profile, correlate to a disease state. These technologies identify
diseases using a mix of many biomarkers rather than a single biomarker, addressing the
limitations of sensitivity and specificity in single-marker locations [71].

5.1. Salivary Metabolomics

Saliva has advantages over other biofluids, such as blood and urine, since its collection
is non-invasive and relatively fast. Some salivary metabolites have been successfully
identified using 1 H NMR [72–77], and inter-subject variability has been studied [75,76] but
to date, chemometrics has not been applied to saliva metabolite datasets to find the potential
markers for disease. As a first step in understanding the human saliva metabolome, we
employed high-resolution 1 H NMR spectroscopy to determine if the salivary metabolite
composition differs due to gender, stimulation, or smoking status. Takeda and co-workers
established the composition and concentration of salivary metabolites in a normal human
population and how health choices, such as smoking, may affect the metabolic profile [78].

5.2. Salivary Proteomics

A global quantitative analysis of human salivary proteins without resources using
a mass spectrometer can be easily obtained using a 2-DE strategy, which is widely used
for biomarker discovery, namely for oral diseases, dental caries [79] and periodontitis [80],
and also for other pathophysiological conditions such as Sjögren syndrome (SS) and non-
Hodgkin’s lymphoma [81]. In addition to biological variability, technical bias induced
by protein migration during the focusing step or by gel staining could make it difficult
to spot detection and their boundaries, making 2-DE gel analysis a hard task. Regarding
salivary peptidome, efforts have been made using label-free quantitation to evaluate the
expression of the major salivary peptides (statherin, cystatins, PRPs, SMR3B (P-B peptide),
and histatins) under different conditions.

6. Electrochemical Biosensors

Electrochemical biosensors have a higher rate of implementation than other biosensor
technologies because they can detect practically any type of biomarker and are simple to
combine with typical laboratory benchtop equipment (Figure 3). Furthermore, because
they are easily downsized, they are likely to be integrated into wearable and portable
devices [82–85]. The integration of electrochemical sensors into compact devices must meet
strict requirements for convenience, comfort, ease of operation, and flexibility, making
the creation of dependable, wearable, and portable POC ultrasensitive devices difficult.
To functionalise the surface of the sensing electrodes, a variety of methods have been
explored including antibodies, magnetic beads, and aptamers (Table 2). Researchers have



Biosensors 2022, 12, 498 9 of 16

identified many possible biomarkers for OC [86]. One of them is the cytokeratin family
member, Cyfra21.1, a fragment of cytokeratin-19 that has been widely studied in saliva
using biosensors.

Biosensors 2022, 12, x FOR PEER REVIEW 9 of 16 
 

normal human population and how health choices, such as smoking, may affect the met-
abolic profile [78]. 

5.2. Salivary Proteomics 
A global quantitative analysis of human salivary proteins without resources using a 

mass spectrometer can be easily obtained using a 2-DE strategy, which is widely used for 
biomarker discovery, namely for oral diseases, dental caries [79] and periodontitis [80], 
and also for other pathophysiological conditions such as Sjögren syndrome (SS) and non-
Hodgkin’s lymphoma [81]. In addition to biological variability, technical bias induced by 
protein migration during the focusing step or by gel staining could make it difficult to 
spot detection and their boundaries, making 2-DE gel analysis a hard task. Regarding sal-
ivary peptidome, efforts have been made using label-free quantitation to evaluate the ex-
pression of the major salivary peptides (statherin, cystatins, PRPs, SMR3B (P-B peptide), 
and histatins) under different conditions. 

6. Electrochemical Biosensors 
Electrochemical biosensors have a higher rate of implementation than other biosen-

sor technologies because they can detect practically any type of biomarker and are simple 
to combine with typical laboratory benchtop equipment (Figure 3). Furthermore, because 
they are easily downsized, they are likely to be integrated into wearable and portable de-
vices [82-85]. The integration of electrochemical sensors into compact devices must meet 
strict requirements for convenience, comfort, ease of operation, and flexibility, making the 
creation of dependable, wearable, and portable POC ultrasensitive devices difficult. To 
functionalise the surface of the sensing electrodes, a variety of methods have been ex-
plored including antibodies, magnetic beads, and aptamers (Table 2). Researchers have 
identified many possible biomarkers for OC [86]. One of them is the cytokeratin family 
member, Cyfra21.1, a fragment of cytokeratin-19 that has been widely studied in saliva 
using biosensors. 

 
Figure 3. Schematic representation of electrochemical-based detection of biological biomarkers. 

Figure 3. Schematic representation of electrochemical-based detection of biological biomarkers.

7. Optical Biosensors

Optical devices offer a new way to conduct salivary analysis with great sensitivity
and selectivity, and without the need for labels. Fluorescence-based biosensors, surface-
enhanced Raman spectroscopy biosensors, photonic crystal biosensors, and surface plas-
mon resonance biosensors are among the non-invasive optical technologies that have been
developed [87]. Colourimetry-based biosensors are also known as optical sensors and
they provide a high-quality and quick technique to perform non-invasive diagnostics of
biofluids. Microfluidic channels are commonly found in optical systems, ensuring that
biofluid is transported to the region where the detector/reader is positioned for a precise
and reproducible examination [88]. Due to its high sensitivity, adaptability, simplicity,
and multiplexing capabilities, SERS is the most often-used analytical technique among the
optical methods [89]. In this case, nanostructured materials are frequently used to improve
the device’s sensitivity.

8. Nano Biosensors

Biosensor-based detection has several advantages over traditional approaches, includ-
ing affordability, simplicity of handling, miniaturisation, and the lack of the need for an
expert to analyse the data. Fabricated biosensors are found to have some flaws such as
low sensitivity, instability, and other issues [90]. As a result, integrating developments in
biosensing with nanotechnology aids in overcoming the aforementioned constraints and
provides a considerable improvement in strategies for the detection and diagnosis of OSCC.
In this context, gold nanoparticles (AuNPs), quantum dots (QDs), dendrimers, metal oxides,
carbon-based nanocomposites, and other nanomaterials (NMs) have been employed to
fabricate nanobiosensors. Biosensor functionality has increased as a result of the unique
features of the aforesaid NMs, with quicker detection, improved detection limits, and en-
hanced repeatability [91,92]. Because of these improvements, these nanobiosensors require
a smaller sample volume and offer high precision (less than 1% error rate), specificity,
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cost-effectiveness, and reduced time and ease of implementation for automatic analysis.
As a result, it is suggested that using nano-based biosensing for the early identification of
OC could lead to enhanced patient treatment outcomes and care. Nanotechnology-based
miniaturised devices are a breakthrough in pre-clinical and clinical research fields including
medication delivery, customised medicine, and diagnostic potential, a field now known
as “nanodiagnostics”.

Advancements in nanotechnology offer the necessary impetus for the development of
nanobiosensor technologies [93,94]. Individual/singular optimisation is required for char-
acteristics such as specificity, sensitivity, shelf life, linearity, detection limit, reaction time,
and repeatability, which influence the performance of a nanobiosensor [95]. Because of the
higher relative surface area and quantum confinement effect, NM-based scaffolds greatly
improved the aforementioned metrics when compared to bulk equivalents. NMs also have
a high surface-area-to-volume ratio, which increases chemical reactivity and stability. These
scaffolds can accommodate many ligands due to their high surface-to-volume ratio, thereby
boosting binding affinity and increasing selectivity. The quantum confinement effect, on
the other hand, confines the mobility of randomly moving electrons at a certain energy
level as the particle size decreases until it reaches the nano range. This confinement causes
a rise in the band gap and a decrease in wavelength, which are critical for influencing the
characteristics of the materials. Along with the basic NM features, shape (nanospheres,
nanotubes, nanowires, and so on) and size (nanospheres, nanotubes, nanowires, and so
on) play a key role in influencing their behaviour [96–100]. The biosensing behaviour of
NMs has been shown to improve when their particle size is reduced [101]. Clinically,
determining the initial stage of OPMDs or OSCC solely from a single biomarker is difficult.
As a result, multiplexing methods incorporating the detection of numerous biomarkers are
necessary for better prediction. Immobilising different biorecognition probes specific to the
target onto the surface of NMs could enable this multiplexed detection. This method has
been successfully tested on a clinical platform for minimum or entirely non-invasive OSCC
detection [45,102].

When compared to a standard sandwich ELISA system, the addition of 3DN-CNTs
increased the sensitivity of a developed biosensor by almost twenty times [103]. Upcon-
version nanoparticles (UCNPs) [104,105], which display photon upconversion phenomena
when activated by incident near-infrared (NIR) light with emission in the visible region
of the electromagnetic spectrum, are other prominent types of NMs in biosensing. It has
been reported that biocompatible UCNP composites based on fluorescence resonance en-
ergy transfer (FRET) may detect OSCC biomarkers using energy changes in the red and
blue wavelength ranges. The expression of matrix metalloproteinase 2 (MMP2) in tumour
models and OSCC tissues could be detected using these UCNP composites. The developed
nanocomposite generates FRET-induced red fluorescence when irradiated but emits blue
fluorescence when MMP2 is present [105], indicating their potential for clinical diagnosis
in OSCC.

Table 2. Various biosensors used in the detection of OC.

Type Biomarker Detection Limit Source Advantage Reference

Electrochemical biosensors

Electrochemical
sandwich-type
immunosensor

Interleukin 1 (IL-1) 5.2 pg/mL Saliva Time to obtain results is faster
compared to ELISA [106]

Immunosensor by
immobilising

anti-Cyfra21.1 on a
gold electrode
modified with

cysteamine and
glutaraldehyde

Cytokeratin
Cyfra21.1 2.5 ng/mL Saliva

Low-cost, dependable, and robust
approach for detection of

non-invasive salivary Cyfra21.1
[107]
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Table 2. Cont.

Type Biomarker Detection Limit Source Advantage Reference

Label-free
immunosensor Interleukin 1 (IL-1) 7.5 fg/mL Serum and saliva

6-phosphonohexanoic acid (PHA)
is used as a biomolecule
immobilisation matrix.

[108]

Magnetic
beads-based

electrochemical
biosensor

Hypoxiainducible
factor-1 alpha

(HIF-1)
76 pg/mL Saliva

The biosensor was built in a
sandwich shape to require less
incubation stages, resulting in a
shorter total test time compared

to traditional laboratory methods.

[109]

A ratio-metric
electrochemical

sensor

Oral Cancer
Overexpressed 1

(ORAOV1)
12.8 fM Artificial saliva

This method is to overcome the
limitations of traditional

electrochemical biosensors with
signal-on/signal-off outputs.

[62]

Dual SPCE-based
immunosensor IL-1 and TNF 0.38 for IL-1 and

0.85 for TNF Serum and saliva
Multiplex and sensitive

amperometric biosensor with very
low costs.

[110]

SiNW sensor array
(Silicon nanowire) TNF- and IL-8 100 fg/mL Saliva

Uses intrinsic opposing charge to
enable straightforward

differentiation
[45]

Optical Biosensors

Fluorescent
immunosensor Cyfra21.1 0.5 ng/mL Clinical saliva

The 3DN-CNT sensor enhances
the sensitivity of Cyfra 21-1
detection by increasing the

density of immobilised antibodies
through its high surface area.

[111]

Microfluidic
biosensor

IL-8, IL-1, and
MMP-8 80 pg/mL Saliva Multiplexed detection of

salivary biomarkers [112]

Fluorescent biosensor
with magnetic and

fluorescence
bioprobes (MFBPs)

CD63 proteins Lower than 500
particles/mL Saliva

One-step quantification with less
assay time; achieved high
sensitivity with low limit

of detection

[113]

9. Conclusions

Because of the limitations of existing cancer detection techniques, cancer researchers
and scientists are focusing on the development of biosensors for the efficient and quick non-
invasive detection of cancer indicators. Cancer markers are substances that demonstrate
the presence of cancer cells in the body. These indicators can be found in blood, saliva, or
other bodily fluids. Most previous studies are based on a technological developmental
approach involving few subjects and thousands of different variables. In order to trans-
late this basic information into clinical practice for the diagnosis and prevention of oral
cancer, including various clinical applications, new transitional and translational studies
are needed. Properly planned and designed clinical trials on the diagnostic, predictive
and prognostic performance of biosensors will pave the path for their inclusion in regular
clinical practice. The biosensors that have been reported in the review should be analysed
in future studies for their applicability in routine clinical practice. Novel biomarkers for
various cancers are being continuously researched and a few have been clinically employed
for cancer screening and monitoring. The development of biosensors paves the way for a
new and innovative approach to the speedy early identification of cancer. It will be difficult
to convince clinicians without substantial validation due to limited studies supporting the
sensitivity and specificity of biosensors, and it is highly unlikely that clinicians would be
willing to include biosensing tools in clinical practice, given the possibility of numerous
false-positive and false-negative results. As we all know, the gold standard laboratory
techniques require specialized equipment and trained personnel in order to operate the
systems and equipment. This reflects the higher costs associated with the analysis the
increased length of time to realize the outcomes. Advanced biosensing systems can be
manufactured at relatively cheaper costs compared to laboratory equipment. Due to the
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direct interaction of saliva with premalignant or malignant lesions, OC is mostly treated
using wearable sensors inserted into the mouth cavity. In the future, wearable intraoral bio-
electronic platforms and portable POC devices are expected to have increased application
in clinical investigations and diagnoses as they offer substantial advantages compared to
traditional laboratory equipment and procedures.
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