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Gene therapy aims to replace a defective or a deficient protein at therapeutic or cura-
tive levels. Improved vector designs have enhanced safety, efficacy, and delivery, with 
potential for lasting treatment. However, innate and adaptive immune responses to the 
viral vector and transgene product remain obstacles to the establishment of therapeutic 
efficacy. It is widely accepted that endogenous regulatory T cells (Tregs) are critical for 
tolerance induction to the transgene product and in some cases the viral vector. There 
are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of 
adaptive Tregs specific to the introduced gene product and concurrent administration 
of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered 
to direct specificity to the therapeutic antigen. Recent clinical trials have advanced 
adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in 
patients receiving cell transplants. Here, we highlight the potential benefit of combining 
gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. 
Furthermore, techniques to engineer antigen-specific Treg cell populations, either through 
reprogramming conventional CD4+ T cells or transferring T cell receptors with known 
specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon 
these observations and the successful use of chimeric (IgG-based) antigen receptors 
(CARs) in antigen-specific effector T cells, different types of CAR-Tregs could be added 
to the repertoire of inhibitory modalities to suppress immune responses to therapeutic 
cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs 
to suppress unwanted immune responses to gene therapy and their perspectives are 
reviewed in this article.

Keywords: regulatory T  cells, tolerance, gene therapy, chimeric antigen receptor regulatory T  cells, adoptive 
transfer, cell therapy, adeno-associated virus vectors, lentiviral vectors

iNTRODUCTiON

Gene therapy has the tremendous potential to completely cure with a single treatment, diseases pre-
viously classified as untreatable, or disorders that could be managed but not corrected. Correction 
is achieved by transferring a functional copy of a gene, which is otherwise mutated in the dis-
eased state, or by editing the defective gene in the patient’s body. After a period of major setbacks 
during the late 1990s and early 2000s, this technique has reemerged as a major breakthrough in 
regenerative medicine (1, 2). A clear proof of clinical efficacy has mostly been observed in ocular 
diseases (inherited blindness), primary immune deficiencies, beta-hemoglobinopathies, and more 
recently hemophilia (2–9). Approaches for gene therapy in the clinic are based on in vivo delivery 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00554&domain=pdf&date_stamp=2018-03-19
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00554
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:narobiswas@ufl.edu
https://doi.org/10.3389/fimmu.2018.00554
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00554/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00554/full
http://loop.frontiersin.org/people/362404
http://loop.frontiersin.org/people/303743
http://loop.frontiersin.org/people/95004
http://loop.frontiersin.org/people/28571


2

Biswas et al. Gene Therapy With Tregs

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 554

to post-mitotic cells or tissues, or ex vivo delivery into autolo-
gous hematopoietic stem cells (HSCs), followed by reinfusion 
into the patient. Treatment of blindness by in vivo gene transfer 
(NCT00999609 and NCT00516477) is the first representative 
gene therapy drug approved in the USA by the Food and Drug 
Administration (Luxturna, Spark Therapeutics). In the meantime, 
cancer gene therapy drugs have already been approved, which 
include the virotherapeutic Imlygic (an engineered oncolytic 
Herpes virus, Amgen), chimeric antigen receptor (CAR) T cell 
therapy such as tisagenlecleucel-T (Kymriah, Novartis), and 
most recently, axicabtagene ciloleucel (Yescarta, Kite Pharma). 
The latter are of particular significance for this review, as they 
underscore the potential for therapies based on genetically 
engineered T cells.

iMMUNe ReSPONSeS TO GeNe 
THeRAPY

The aim of successful gene therapy is the safe and effective deliv-
ery of the replacement gene at therapeutic levels, potentially for 
the lifetime of an individual. A key obstacle to successful gene 
therapy is the host’s immune response to both the viral vector  
and the transgene product. A fatal inflammatory immune response 
to the adenoviral vector almost brought the field to a stop in 
1999 in a gene therapy clinical trial (10), although the safety and 
efficacy of gene therapy has been clearly established since then.

Gene therapy by vector administration into immune-privileged 
sites like the brain, eye, and testis has successfully achieved long-
term transgene expression (11, 12). However, vector-mediated 
delivery into immune-competent organs is complicated by pre-
vailing neutralizing antibodies that can limit the efficacy of trans-
duction in patients (13). Although initial trials enrolled patients 
after a very careful selection process, gene therapy is becoming 
more common, and patient inclusion criteria are expected to be 
less exclusive, likely including patients with prevailing neutraliz-
ing antibodies or cross-reactive immunologic material- negative 
mutations.

At present, several viral vectors have been established as 
vehicles for gene transfer. Common among these are adenoviral 
vectors, gamma retroviral vectors, adeno-associated virus (AAV) 
vectors, and lentiviral vectors (LVs). For LV, gene therapy has 
been clinically approved for ex vivo gene transfer (14, 15), and the 
use of LVs for in vivo gene replacement is being evaluated in pre-
clinical models (16, 17). This is facilitated by the low prevalence of 
neutralizing antibodies to LVs and the capacity to accommodate 
larger gene inserts. The new generation of replication-deficient 
vectors is gutted and nonpathogenic. Unlike gamma-retroviruses 
that favor integration near transcription start sites, LVs have 
been shown to integrate into active genes, making the chances 
of insertional mutagenesis and clonal expansion less likely (18). 
Potential innate and adaptive immune responses, which vary 
in magnitude, can develop toward the encoded transgene (19), 
envelope pseudotype or proteins acquired during the packaging 
process (20). LV-triggered innate immune responses such as type 
I IFN are primarily mediated by viral genome engagement with 
TLRs, possibly TLR9 and TLR7 (21–23).

Cytotoxic T  lymphocyte (CTL) responses to both viral anti-
gen and transgene have been observed with early-generation 
adenovirus and in preclinical models of in  vivo adenoviral  
gene transfer (24–26). Replication-deficient, first- and second- 
generation adenovirus vectors are now being used in cancer gene  
therapy clinical trials, particularly for solid cancers (NCT 0-
1811992, NCT02630264, NCT01310179, NCT00870181 and 
NCT01147965). The high immunogenicity of adenoviral vectors 
has also made them attractive candidates as vaccine carriers. For 
example, the recent devastating outbreak of Ebola prompted a 
rapid phase I clinical trial of the replication-defective, chimpanzee 
adenovirus type 3-vectored Ebola virus vaccine (cAd3-EBO) (27). 
There is interest in helper-dependent or gutless third-generation 
adenoviral vectors, because of reduced in vivo immune responses 
as compared to first- and second-generation adenoviral vectors 
(28). However, innate immune responses are still elicited (29).

For in vivo gene delivery, recombinant AAV is the vector of 
choice due to its ease of construction, wide tissue tropism, and 
presumed lack of pathogenicity as it does not efficiently trans-
duce macrophages, mature DC, and other antigen-presenting 
cells (APCs), although endocytosis of AAV has been associ-
ated with innate immune activation (30). It has been shown 
that the TLR9–MyD88 pathway is crucial for cross priming 
AAV capsid-specific CD8+ T cells, a process that requires the 
cooperation of both pDC and cDC subsets of dendritic cells, as 
well as for activating transgene-specific CD8+ T cell responses  
(31, 32). Anti-capsid effector T cell responses have been elic-
ited in trials where the vector was administered outside of the 
retina or CNS. These have been shown to be responsible for 
deleterious immune responses against transgene-expressing 
cells, affecting therapeutic efficacy (33–36). Anti-capsid effector 
T cell responses were not predicted by preclinical studies, high-
lighting one of the major preclinical challenges when working 
with AAV (34).

Treg TYPeS AND CHARACTeRiSTiCS

The molecular characteristics that enable Tregs to modulate the 
activation of responder T cells render them uniquely suitable to 
limit immune responses to a therapeutic gene. Tregs have potent 
immunosuppressive properties that can be harnessed to confer 
antigen-specific immunomodulation in a therapeutic setting 
(37). Treg activity is required to maintain immune homeostasis 
in the presence of autoreactive T cells. Thus, they have defined 
roles in diverse clinical conditions including cancer, autoimmune 
disease, and transplant rejection (38–40). The most commonly 
studied among them are the CD4+CD25+FoxP3+-expressing Treg 
subset, which are thymus-derived and called thymic, natural, or 
central Tregs (41). Natural Tregs commonly exhibit specificity 
to self-antigen and are essential for maintaining tolerance to 
self-tissues. Treg cells derived from outside the thymus are often 
referred to as induced, adaptive, or peripheral Tregs. These can 
be antigen-specific effector T cells induced to express FoxP3, or 
type 1 Treg (Tr1) cells that are FoxP3−, express surface LAG-3 
(CD223) and CD49b, and secrete IL-10 (42, 43). A recent FoxP3− 
subset, with a regulatory activity, expressing latency-associated 
peptide (LAP) on the surface as latent TGF-β complexes has also 
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been defined, which can be cleaved to release active TGF-β (44). 
Nonetheless, there is scientific consensus that each Treg subset 
has suppressive capacity and is integral to maintaining tolerance, 
as has been observed in treatment for autoimmune diseases and 
in gene therapy.

Resting natural Tregs are usually CD25hi, CD127−, L-selectin 
(CD62L)+, CTLA-4 (CD152)+, and ICOS±. Other natural Treg 
markers such as neuropilin are specific for mice (45, 46). The 
activation of both natural and peripherally induced Tregs (iTreg) 
is associated with inducible upregulation of markers, many of 
which are not Treg exclusive, but are common in activated effector 
and memory T cells. These include but are not limited to CD69, 
CD25, CD44 (47, 48), CD39, and CD73 (49), galectin-1 and -10 
(50, 51), glycoprotein A repetitions-predominant (GARP) and 
LAP (52, 53), CTLA-4 (CD152) (54), Ki67, GITR (TNFRSF18), 
TNFR2, and ICOS (55). In particular, CTLA-4 has been found 
to regulate many aspects of Treg suppression and can control 
the progression of autoimmune disease (56–59). In some cases, 
activated Tregs have been associated with an increase in FoxP3 
expression (60–62).

Regulatory T cell suppressive function has been shown to be 
primarily TCR contact-dependent. TCR signaling is crucial for 
Treg development, differentiation, and suppressive function (63). 
Tregs use multiple mechanisms to suppress immune responses, 
depending on the nature and tissue-specific location of the 
antigen (lymphoid and non-lymphoid tissues). These include 
antigen-specific and bystander suppression associated with the 
release of cytokines such as IL-10, TGF-β, and IL-35 (64), IL-2 
deprivation, direct cell killing (65), the production of metabolic 
intermediates (66, 67), and the modulation of dendritic cell 
maturation and stimulatory function (68, 69).

eviDeNCe THAT Tregs LiMiT iMMUNe 
ReSPONSeS iN MUSCLe GeNe 
TRANSFeR

Gene delivery into the muscle is attractive as a potential source 
for therapeutic protein expression. Muscle gene therapy is ideal 
for degenerative disorders like the muscular dystrophies, stor-
age disorders leading to metabolic myopathy such as Pompe 
disease or for the production of enzymes like alpha-1 antitrypsin 
(AAT) (70). A major barrier to muscle gene transfer is the need 
to deliver the replacement gene body wide, necessitating mul-
tiple injections into various sites throughout the body, thereby 
increasing the potential for inflammatory immune responses 
(71, 72). Further, the often-required high vector doses also 
enhance the risk of provoking an immunological response. 
Physiologically, delivery into the muscle environment causes 
inflammation, presumably due to the high frequency of resident 
macrophages.

Clinical trials using muscle gene transfer have shown promise 
for many disorders, some of which show very poor prognosis with 
conventional therapy. For example, gene replacement therapy is 
a feasible approach for the treatment of the lysosomal storage 
disorder, Pompe disease, which particularly affects the skeletal 
and cardiac muscle, and neural tissues. Initial clinical experience 

in Pompe disease shows that the direct delivery of AAV1–hGAA 
into the diaphragms of affected children is safe, well tolerated, 
and efficacious (73, 74). Neutralizing antibody development 
against the hGAA transgene product and the viral vector prevents 
therapeutic efficacy and vector readministration, respectively 
(75, 76). Interestingly, T cell reactivity toward the vector has not 
been observed to date (73). Preclinical data show that lentiviral 
correction of HSCs by ex vivo transduction was effective in ame-
liorating Pompe disease in a mouse model (77), which could be a 
viable alternative for preventing immune responses by facilitating 
central tolerance.

The detection of T cell responses to the capsid in peripheral 
blood mononuclear cells is not always associated with a deleteri-
ous immune response, as seen during gene transfer trials with 
AAT. Despite the detection of T cell reactivity against the vector 
and infiltrates into the treated muscle, the transgene was still 
expressed in subjects who received an AAV1 vector encoding 
for AAT (78–81). Interestingly, CD4+CD25+FoxP3+ Tregs were 
found within the infiltrating cells (~10%) in vector-injected 
muscle and were associated with a time-dependent decrease in 
muscle inflammation, which may have prevented the destruction 
of transduced myofibers (82).

Similarly, a population of Tregs was shown to accumulate 
in muscles of dystrophic mice and in muscle biopsies from 
Duchene muscular dystrophy (DMD) patients (83, 84). These 
IL-10-secreting Tregs improved the dystrophic phenotype 
by decreasing inflammation associated with the disease, and 
their depletion resulted in worsening of the disease phenotype. 
Therapeutic targeting of Tregs with IL-2/anti-IL-2 complexes 
had a beneficial effect of reducing muscle inflammation and 
injury in dystrophic mice. Thus, these observations demonstrate 
the potential of Treg-modulating agents to induce a local Treg 
population in muscle at the time of gene transfer to reduce 
muscle inflammation and favor the maintenance of transgene 
expression in DMD. Another feasible alternative is adoptive 
immunotherapy with polyclonally expanded or antigen-specific 
Tregs at or during the time of gene therapy. In an earlier pivotal 
study, the administration of exogenous transgene-specific Tregs 
concomitantly with AAV gene transfer was shown to lower 
anti-transgene immune reactivity and allow stable transgene 
expression in normal muscle (85). This established that adop-
tively transferred CD4+CD25+ regulatory T cells can induce a 
sustained transgene engraftment in solid tissues. Combinatorial 
treatments using adoptive Treg transfer as adjunct therapy may 
thus enhance the therapeutic effect of gene delivery by devel-
oping tolerance toward the gene delivery vehicle or transgene 
product.

THe LiveR AS AN iDeAL SiTe  
FOR iMMUNe ReGULATiON

The administration of gene therapy systemically leads to rapid 
accumulation of high levels of vector particles within the liver. 
Specialized liver-resident cells mediate the “liver tolerance effect,” 
which establishes local and systemic tolerance to self and foreign 
antigens. This has been attributed to the expression of inhibitory 
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cell surface ligands for T  cell activation and the production of 
anti-inflammatory mediators (86).

The utilization of liver tropic viruses, engineered vector sero-
types, and liver-specific promoter and enhancer elements have 
improved liver gene delivery and increased gene expression to 
clinically therapeutic levels (87). Much of the present interest 
in the development of liver-directed gene therapy stems from 
recent clinical success in treating the X-linked coagulation dis-
order hemophilia B, with restoration of clinical levels of factor 
IX (FIX) to hemophilia B patients for sustained periods greater 
than 5  years (7, 36). A transient increase in liver enzymes, 
presumably due to the reactivation of a memory CTL response 
to the vector, was earlier observed, although intervention with 
corticosteroid administration at the first sign of hepatocellular 
injury could halt the increases in liver enzymes and sustain 
FIX expression (34). Similarly, high endogenous levels of clot-
ting factor have been reported in recent clinical trials for both 
hemophilia A and B (88, 89).

The development of inhibitory antibodies that neutralize 
factor VIII (FVIII) or FIX is a major complication of protein 
replacement therapy as well as gene therapy for patients with 
hemophilia (90). Preclinical studies in small and large animal 
models of hemophilia have demonstrated that gene therapy 
strategies and the continuous exposure to clotting factor can 
promote tolerance and eradicate preexisting antibodies (91–94). 
Nonetheless, there is still a risk of developing neutralizing anti-
bodies to the coagulation factor product following hepatic gene 
transfer (95). There is strong evidence that Tregs are an important 
element of the mechanism by which self-tolerance is maintained 
and inhibitor development, a T helper-dependent response, is 
prevented (96–99). In many cases, immune tolerance to hepatic 
gene transfer of hFIX has also been associated with the induc-
tion of Tregs (100–102). We propose that the adoptive transfer 
of Tregs in the setting of liver gene therapy has the potential to 
avoid the general immunosuppression that many corticosteroid 
drugs pose, instead favoring tolerance to the transgene in an 
antigen-specific, safe, and transient manner.

Another field where liver gene therapy has garnered inter-
est is in the treatment of autoimmune disorders like rheuma-
toid arthritis, multiple sclerosis, and type 1 diabetes (T1D). 
Replacement gene delivery in these cases is complicated by the 
development of an immune response to the therapeutic gene. 
Studies have demonstrated that gene therapy into the tolero-
genic liver microenvironment can abrogate the development of 
experimental autoimmune encephalomyelitis (EAE) even if the 
target antigen for the inflammatory T cell response is in a distant 
organ, such as the central nervous system (103, 104). Protection 
from EAE was dependent on the induction of antigen-specific 
CD4+CD25+Foxp3+ Tregs (103, 104). Using the same principle 
in a preclinical mouse model T1D, Akbarpour et al. showed that 
targeting LV-mediated insulin gene expression to hepatocytes 
induced regulatory T  cells specific for insulin, which halted 
immune cell infiltration into the pancreatic islet and protected 
from T1D (105). Thus, it appears that targeting gene transfer 
to hepatocytes can favor the induction of antigen-specific Tregs 
systemically, making the liver an attractive target for achieving 
transgene tolerance.

IN VIVO TOLeRANCe iNDUCTiON  
wiTH Treg

Given the critical role of Treg in maintaining immune regulation 
of transgene-specific responses, an obvious treatment of choice 
is the in vivo induction of antigen-specific Treg by a specific or 
a combination drug treatment. Global immune suppression by 
steroid or chemotherapeutic drugs, while beneficial when given 
transiently, does not have the advantage that a more targeted 
and a lasting transgene product-specific Treg response can offer. 
One method of inducing Treg is to coadminister the antigen 
with the macrolide immunosuppressant rapamycin (sirolimus), 
which inhibits cell cycle progression of activated T  cells by 
mTOR pathway blockade, leading to T  cell anergy or deletion 
(106). At the same time, the inhibition of the T cell stimulatory 
activity of dendritic cells (107) and mTOR-independent signal-
ing by Tregs (108) result in the enrichment of antigen-specific 
CD4+CD25+FoxP3+ Treg (109–111). This effect can be enhanced 
by the addition of cytokines such as IL-10 or Flt3L, which have 
been shown to promote tolerance in protein replacement therapy 
(96, 99). Prophylactic therapy of IL-10 in combination with rapa-
mycin and antigen has also been successful in the prevention and 
reversal of inhibitory antibody responses in muscle gene transfer 
of therapeutic FIX in hemophilia B mice (96, 99, 112). Likewise, 
the introduction of rapamycin with liver gene therapy resulted 
in a markedly enhanced expression of human acid-α-glucosidase 
in nonhuman primates, likely due to the induction of hepatic 
autophagy and is being evaluated for readministration of the 
AAV vector (113).

Tolerance to antigens administered by the oral route is ano-
ther approach to inhibit antigen-specific immune responses by 
targeting the gut-associated lymphoid tissue (114). Multiple 
immune cell types have been shown to be involved in mediating 
this state of non-responsiveness, including gut resident dendritic 
cells, FoxP3+ Tregs and CD4+CD25−LAP+-expressing Tregs 
(115–117). Gut homing receptors and cytokines such as TGF-β 
and IL-10 have been shown to be responsible for the infiltration/ 
differentiation/local expansion of these Treg subtypes and the 
induction of tolerance (118). Significantly, oral tolerization 
improved long-term transgene persistence and expression as 
shown in a recent study using AAV-mediated gene transfer of 
the model antigen OVA (119).

CeLLULAR THeRAPY wiTH Treg

Extensive preclinical studies have demonstrated that Tregs play 
a key role in both the induction and maintenance of tolerance. 
Adoptive immunotherapy with autologous or donor Tregs has 
shown promise in several clinical trials for autoimmune disorders 
and in transplant conditions (120, 121). With new GMP protocols 
in place, FoxP3+ Tregs can undergo polyclonal or antigen-specific 
expansion with high purities (122, 123). Protocols to generate 
donor-specific Tr1 cells are also well established (124–126). 
Clinical trials with freshly isolated or ex vivo expanded FoxP3+ 
(127–130) or Tr1 cells (ALT-TEN trial) (131) (from umbilical 
cord blood or peripheral blood) as a cellular therapy given at 
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or shortly before/after transplantation have been carried out for 
tolerance to graft-versus-host disease (GvHD) in patients under-
going allo-HSCT for hematological malignancies. Alternatively, 
ultra-low-dose (ULD) IL-2 has been suggested to selectively 
expand nTreg in  vivo, suppressing alloreactive responses in 
GvHD prophylaxis and treatment (132–134). Supplementing 
Treg infusion with ULD IL-2 to promote Treg persistence and 
survival for the treatment of onco-hematological diseases is being 
tested (NCT02991898).

Studies testing the safety and feasibility of autologous polyclo-
nal or alloantigen-specific Treg infusion for conferring tolerance  
in solid organ transplantation are currently ongoing [NCT02145 3 25 
(TRACT), NCT02088931, NCT02711826 (TASK), UMIN-
000015789] (135). The ThRIL study (NCT02166177) has been 
initiated to evaluate the efficacy of Treg cell therapy, in com-
bination with immune-suppressive drugs, in liver-transplant 
recipients.

The ONE Study (www.onestudy.org) is a phase I/IIa clinical 
trial aimed at testing the safety and feasibility of seven dif-
ferent regulatory T  cell populations in living donor kidney 
transplants. This multicenter study compares autologous ex vivo  
expanded polyclonal CD4+CD25+ nTregs from peripheral 
blood, Tr1 cells, donor alloantigen-driven Tregs (darTreg), and 
alloantigen-driven T cells anergized by costimulation blockade, 
tolerogenic dendritic cells, and regulatory macrophages (Mregs). 
Comparisons will be made between patients receiving standard 
immunosuppressive treatment (basiliximab followed by tac-
rolimus, mycophenolate mofetil, and prednisolone) and those 
receiving immunotherapy (136).

Finally, Treg therapy has also been applied to autoimmune 
and inflammatory disorders (e.g., TRIBUTE trial for Crohn’s). 
An autologous antigen-specific Tr1 therapy for refractory 
Crohn’s disease is in development (Ovasave, Txcell). In a study 
of pediatric patients with T1D, single and repeat infusions of 
polyclonal expanded Tregs were found to be safe and effective 
in patients (137). As with GvHD, the effect of low-dose IL-2 on 
in vivo induction of Tregs for 12 autoimmune and inflammatory 
diseases is being tested in a multicentric trial (TRANSREG, 
NCT01988506). Moreover, studies to assess the safety of Treg 
immunotherapy supplemented with IL-2 and the persistence of 
infused autologous Tregs in patients with recent onset T1DM 
are being undertaken (TILT study, NCT02772679) (138). In an 
earlier report by the same group, a study of 14 adult subjects with 
T1D who received ex vivo expanded polyclonal Tregs saw a subset 
of Tregs remaining in circulation at 1 year after transfer (139).

Taken together, these studies reveal that infusions of ex vivo 
expanded FoxP3+ or FoxP3− (Tr1) cells are safe, well tolerated, 
and can aid in tolerance in many inflammatory and autoimmune 
conditions.

SUPPLeMeNTiNG GeNe THeRAPY  
wiTH Treg ADOPTive TRANSFeR

The immune suppressive properties of Tregs have generated 
interest in utilizing this cell population for tolerance toward the 
transgene product. Not only are Tregs critical for establishing 

central tolerance during development and in preventing auto-
immunity, they are also involved in inducing tolerance toward 
exogenous antigens, such as therapeutic proteins. Ideally, immune 
modulation to suppress vector or transgene-specific responses 
should eliminate undesired immune cells while sparing protec-
tive immunity.

There is ample evidence that adoptive immunotherapy with 
polyclonal or engineered Tregs can improve protein replacement 
therapy in inherited protein deficiencies (98). On the other hand, 
very few studies on infusing Tregs to improve tolerance to gene 
therapy have been carried out. So far, gene therapy into immune 
privileged sites like the eye has not been associated with a delete-
rious immune response. Likewise, gene delivery into tolerogenic 
organs, particularly the liver, has in fact been shown to induce 
Tregs in  vivo. However, liver-directed gene therapy, while suc-
cessfully diminishing immune responses toward the transgene 
product, does not completely eliminate the development of 
cytotoxic T  cells that can subsequently lead to the potential 
immune-mediated deletion of transgene-expressing cells (140). 
Similarly, although the development of neutralizing antibodies to 
the transgene product has so far not been observed in the small 
number of liver gene therapy clinical trials in humans, the pos-
sibility remains a concern as observed in preclinical studies for 
the immunogenic FVIII molecule (140, 141) (unpublished obser-
vations). Strategies such as using microRNA target sequences 
(miR-142-3p) in the LV to de-target transgene expression from 
professional APCs, coupled with restricted expression in either 
hepatocytes or liver endothelial cells, have led to improved 
transgene expression. This has been shown to correlate with the 
emergence of transgene-specific Tregs, which induced tolerance 
in preclinical models of hemophilia A and B (17, 142, 143).

In an earlier study on complementing gene therapy with 
Treg adoptive transfer, Gross et al. established that the injection 
of influenza hemagglutinin (HA)-specific CD4+CD25+ Tregs, 
concomitant with gene transfer, enabled persistent HA transgene 
expression in the muscles of mice (85). Cytotoxic T cell responses, 
as well as circulating anti-IgG antibodies to HA, were impaired 
in HA-Treg recipients. These findings were applied to a disease 
setting for hemophilia A, where nonviral gene transfer of the 
therapeutic FVIII plasmid resulted in supraphysiological levels 
of FVIII, but triggered inhibitory antibody development and loss 
of functional FVIII activity. Adoptive transfer of cells enriched 
for FVIII-specific Tregs into naïve hemophilic mice, followed by 
plasmid challenge, led to a significantly diminished inhibitory 
antibody formation for a prolonged period, as compared to 
control animals (144). These studies establish the potential of 
Tregs to modulate immune responses to the transgene product 
in an antigen-specific manner (Figure 1). Our group added to 
these initial studies by demonstrating that adoptively transferred 
ex vivo expanded Treg could be used to improve gene therapy 
of FIX in a mouse model of hemophilia B (98). In the study, 
polyclonal ex vivo expanded autologous CD4+CD25+FoxP3+ Treg 
administered at doses similar to those currently used in clinical 
trials (~5  ×  107 cells/kg) was able to prevent the formation of 
an adaptive immune response in hemophilia B mice receiving 
AAV1 hFIX muscle directed gene transfer. Despite limited 
in vivo persistence of the adoptively transferred cells, a sustained 
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FiGURe 1 | A scheme detailing combination regulatory T cell (Treg) adoptive 
therapy with gene transfer for tolerization of immune responses. FoxP3+ Treg 
cells with polyclonal specificity are harvested from the patient (1) and ex vivo 
expanded in the presence of high IL-2 concentrations and artificial APC 
(aAPC) or anti-CD3, anti-CD28 microbeads using GMP protocols (2); 
expanded Tregs are transplanted back into the patient (3), which is  
followed shortly by gene transfer (4).
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suppression lasting 10 weeks was observed. This was attributed to 
the emergence of antigen-specific suppression via the induction of 
endogenous Treg, which was facilitated by the transplanted Treg 
(Figure 2A). It has been shown that ex vivo expansion improves 
the suppressive properties of polyclonal Tregs, rendering them 
functionally superior to freshly isolated Tregs (145). Expanded 
Tregs highly upregulate CTLA-4 expression, which competes 
with the costimulatory molecule CD28 for binding to CD80/86 
on APCs. Suboptimally activated APCs facilitate the induction of 
iTreg cells (57, 146).

Although cell therapy with expanded polyclonal Tregs has 
many advantages, it has been demonstrated that antigen-specific 
Tregs are more potent at 10- to 100-fold lower frequencies (147). 
One way to recover a sufficient number of antigen-specific Tregs 
is to expand them in the presence of alloantigens through a 
process of indirect allospecificity. This has been successfully used 
to promote transplantation tolerance, by expanding the recipi-
ent’s Treg pool toward donor antigens (148–151). In some cases, 
Treg expansion and therapeutic potential were improved by the 
addition of IL-2 and IL-12 (152). However, it is unclear whether 
it would be possible to isolate rare antigen-specific Tregs to sup-
plement gene therapy, especially in the case of inherited protein 
deficiencies, where the antigen is not expressed and central toler-
ance may not be achieved.

THeRAPY wiTH GeNeTiCALLY MODiFieD 
CeLLS

More recently, the applicability of gene therapy has moved 
beyond gene correction to a wider spectrum of diseases. Gene-
modified cells, such as CAR-modified T cells for the eradication 
of hematologic cancers, have achieved breakthrough success in 
clinical trials (153–156). Glaxo Smithkline has introduced the 
first ex vivo stem cell gene therapy to treat patients with ADA-
SCID, Strimvelis, which received approval from the European 

Medicines Agency in 2016 (157). Zalmoxis, a donor cell-derived 
T cell therapy used for H-SCT, is also poised for the market. These 
novel and successful trials are making way for other cutting-edge 
technology, such as the development of gene-editing techniques 
using CRISPR-Cas to increase the stability of CAR-T  cells 
(NCT03166878) or for treating hematological malignancies in 
patients with HIV (NCT03164135).

Gene modification to increase antigen specificity has been 
recently applied to Tregs. The difficulty of isolating cells with a rare 
antigen specificity from the natural polyclonal T cell repertoire 
has hampered the clinical translation of targeted therapy with 
antigen-specific Tregs. On the other hand, treatment with poly-
clonally expanded Tregs requires the infusion of large numbers 
of clinical-grade autologous cells, with a possibility for general 
immunosuppression. Using clinical-grade LVs to genetically 
reprogram cells represents an attractive strategy to fine-tune Treg 
populations for a particular specificity (Figure 2B). One example 
is the ectopic overexpression of FoxP3 in conventional CD4+ 
T cells from healthy donors, with the aim of generating a large 
number of homogeneous and functional Treg cell populations. 
This technique has been applied successfully to conventional 
CD4+ T cells of patients with immune dysregulation, polyendo-
crinopathy, enteropathy, X-linked (IPEX) syndrome (dysfunc-
tion in FoxP3 gene), and in other preclinical animal models 
of autoimmunity (158–161). The possibility of reversion to an 
effector T cell phenotype is a concern, given the plastic nature of 
many Treg populations. However, adoptively transferred, FoxP3 
overexpressing Tregs were shown to be stable in steady-state and 
inflammatory conditions and continued to be suppressive in vivo 
(161). The requirement for antigen specificity of FoxP3 gene-
transferred cells and the dose of cells required for suppression, 
as well as persistence in vivo, are questions that still need to be 
addressed.

Another similar approach for engineering Treg specificity 
using TCR gene transfer has been shown to improve Treg potency, 
as observed in preclinical models for diabetes, transplantation 
tolerance, arthritis, and hemophilia A (61, 162–165). Engineered 
TCRs provide a viable alternative to redirect Treg specificity to 
a single antigenic epitope with a potentially high TCR affinity. 
However, this approach is HLA restricted and thus limits the 
number of patients to those with common HLA alleles.

Inspired by the clinical success of using CAR-T cells to treat 
certain types of cancers, a similar approach has been applied that 
engineers Tregs to express extracellular single-chain antigen-
binding domains (scFv) fused to intracellular signaling molecules 
(Figure  2C). CARs can directly recognize their corresponding 
antigen irrespective of HLA. Further, issues such as TCR chain 
mispairing, which is a potential concern with TCR gene transfer, 
do not arise. At present, it is unclear how CAR-Tregs exert their 
suppressive effect and which cell populations they interact with. 
It has been postulated that the optimal activation of CAR-Tregs 
requires the presence of APCs (62). It is possible that CAR-Tregs 
recognize antigen that is immobilized on the surface of the APC, 
although molecular interactions or receptors that may be involved 
remain to be defined. The ability of CAR-Tregs to respond 
directly to soluble antigen or to recognize antigen bound to a 
B-cell receptor (BCR) is also still an open question (Figure 2C).
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FiGURe 2 | Proposed mechanisms for immune suppression by adoptive transfer of polyclonal FoxP3+ regulatory T cell (Treg), chimeric antigen receptor (CAR)-Treg 
or TCR-transgenic (TCR-tg) Treg. (A) Adoptively transferred ex vivo expanded Treg with polyclonal specificity can interact with antigen-presenting cell (APC). 
Inhibitory receptors like CTLA-4 can compete with the costimulatory molecule CD28 to bind to CD80/86 receptors, and combined with other factors, it can lead to 
APC tolerization. Tolerogenic APCs interact with activated antigen-specific T effector (Teff) cells, which leads to conversion of Teff to induced Treg (iTreg). (B) Natural 
Treg engineered with TCR specificity for antigen (TCR-tg Treg) can recognize antigen presented by APCs, directly suppressing the APC’s capacity to costimulate Teff 
cells. TCR-tg Treg can also directly inhibit CD4+ T helper cells, which in turn affects T cell help to antigen-specific B-cells. (C) Putative mechanisms for antigen 
recognition and suppression by CAR-Treg. CAR-Tregs may recognize either a B-cell bound antigenic epitope or antigen on the surface of APC, which can trigger 
the activation and proliferation of the CAR-Treg through transmembrane and intracellular-signaling domains. The mechanisms by which CAR-Tregs exert their 
suppressive effects are not clearly defined, but may include interactions with key cell types.
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Chimeric antigen receptor regulatory T cells are being tested in 
preclinical models of EAE, allograft rejection, colitis, rheumatoid 
arthritis, and hemophilia A (62, 166–174). The first CAR-Treg 
trial, by the French company TxCell, for the prevention of trans-
plant rejection is expected to commence in 2018. Such clinical 
trials will be able to address questions such as immunogenicity 
of the novel CAR molecule (175), or the possibility of cytokine 
release syndrome, which is a serious side effect of CAR-T  cell 
treatments for cancer (176). Meanwhile, new CAR strategies are 
being developed to improve the specificity and function of CAR-
modified T cells/Tregs. For example, the transient expression of a 
CAR construct that recognizes the FITC molecule can be used to 
target Treg function to transplanted organs by binding to FITC-
conjugated monoclonal antibodies against donor MHC antigens 
(174). Alternatively, the surface expression of the antigenic 

domain, rather than the scFv, conjugated to primary and second-
ary signaling molecules, can bind the BCR of the correspond-
ing antigen-specific B-cell, thus promoting B-cell depletion or 
suppression, as demonstrated in a model for autoimmunity and 
hemophilia A (177, 178).

CHALLeNGeS AND FUTURe DiReCTiONS

Beginning with the discovery in 1990 and 1995 that adoptively 
transferred CD4+CD25+ Tregs can maintain tolerance in an 
autoimmune animal model (179), the clinical prospects of Tregs 
have expanded in the past decade (36). It is apparent from stud-
ies with disease models and clinical trials that Treg-suppressive 
mechanisms can counter immune activation caused by gene 
replacement therapy.
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Although clinical trials using adoptively transferred Tregs 
to supplement gene therapy have not been attempted thus far, 
this review highlights several benefits for combining these two 
approaches. For example, existing obstacles faced in recent clini-
cal trials such as unwanted immune responses to gene therapy 
and the inability to readminister vector could be mitigated by the 
codelivery of Treg with the vector. Adoptive immunotherapy with 
Tregs has shown clinical efficacy in autoimmune diseases such 
as T1D (which is characterized by a detrimental inflammatory 
response) and can tolerize against inflammatory reactions to a 
transplanted organ. We therefore propose that augmenting gene 
transfer applications, either by promoting the in vivo induction 
and expansion or Tregs or by immunomodulation with adoptively 
transferred Tregs can work synergistically and lead to successful 
gene transfer.

It is crucial, however, to emphasize the importance of good 
manufacturing practice-compliant cell therapy procedures, 
especially for the generation of polyclonal Tregs, which require 
dosing at larger cell numbers to reach therapeutic efficacy (180). 
A current challenge with using Tregs in the clinic is the need for 
the isolation and expansion of a pure population of functional 
and stable cells in sufficient numbers. FoxP3 is an intracellular 
marker and can be transiently expressed by activated CD4+ and 
CD8+ T  cells. Optimization of cell sorting, such as employing 
double sorting of CD4+CD25hiCD127lo cells can ensure increased 
purity of the starting population to help control for the outgrowth 
of effector T cells, which expand exponentially faster than Tregs 
in culture.

Regulatory T cell infusion may be beneficial not only in gene 
replacement settings to suppress capsid and transgene-specific 
immune responses but may also have the potential as adjunct 
therapy to prevent immune responses toward vector readmin-
istration. The formation of neutralizing antibodies constitutes 

a major obstacle to vector readministration, as they are elicited 
at high titers following gene transfer and can persist for years. 
Repeat administration of vector may be required when the gene 
product does not reach therapeutic levels, or when administered 
to pediatric patients, where an increasing organ turnover may 
limit the therapeutic dose over time. Successful gene therapy 
would expose the patient’s immune system to the newly delivered 
vector and/or transgene, generating B and T cell responses that 
would limit the ability to readminister vector. Plasmapheresis and 
transient immunosuppression (anti-CD40 Ab, CTLA-4 Ig, high-
dose corticosteroids, rapamycin, rituximab, or combinations of 
these treatments) are currently being tested to allow for repeat 
injections (NCT02240407) (76, 113, 181). The use of adoptive 
Treg therapy in these scenarios has not been tested, and thus it 
remains a possible combinatorial therapy product for blocking 
potential immune responses.
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