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Abstract Identification of significant biological relationships or patterns is central to many

metagenomic studies. Methods that estimate association networks have been proposed for this pur-

pose; however, they assume that associations are static, neglecting the fact that relationships in a

microbial ecosystem may vary with changes in environmental factors (EFs), which can result in

inaccurate estimations. Therefore, in this study, we propose a computational model, called the

k-Lognormal-Dirichlet-Multinomial (kLDM) model, which estimates multiple association

networks that correspond to specific environmental conditions, and simultaneously infers

microbe–microbe and EF–microbe associations for each network. The effectiveness of the kLDM

model was demonstrated on synthetic data, a colorectal cancer (CRC) dataset, the Tara Oceans

dataset, and the American Gut Project dataset. The results revealed that the widely-used

Spearman’s rank correlation coefficient method performed much worse than the other methods,

indicating the importance of separating samples by environmental conditions. Cancer fecal samples
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were then compared with cancer-free samples, and the estimation achieved by kLDM exhibited

fewer associations among microbes but stronger associations between specific bacteria, especially

five CRC-associated operational taxonomic units, indicating gut microbe translocation in cancer

patients. Some EF-dependent associations were then found within a marine eukaryotic community.

Finally, the gut microbial heterogeneity of inflammatory bowel disease patients was detected. These

results demonstrate that kLDM can elucidate the complex associations within microbial ecosys-

tems. The kLDM program, R, and Python scripts, together with all experimental datasets, are

accessible at https://github.com/tinglab/kLDM.git.
Introduction

Microbes interact closely with the human body and the envi-

ronments in which humans live [1–3]. Metagenomic high-

throughput sequencing technology plays a vital role in the

study of microbes that inhabit various human body sites and

different natural ecological environments. Computational

tools have been developed to analyze the microbial con-

stituents of microbiota and the interactions within a microbial

community, specifically the interactions among microbes and

those between microbes and environmental factors (EFs).

EFs are known to be associated with variations of the abun-

dance of microbes, and include the states of human diseases,

genotypes of hosts, values of some physiological and biochem-

ical indicators, quantization of people’s lifestyle factors, and

concentrations of nutrients [4–8]. Recently, there has been a

rapid increase in large-scale metagenomic studies aiming to

discover biological interactions [9,10], specifically how

microbes interact with other microbes and EFs.

Biological interactions can be classified as positive or nega-
tive relationships among microbes and between EFs and
microbes. Commensalism among microbes and microbial

dependency on EFs are positive relationships, while para-
sitism, competition among microbes, and the inhibition of
microbes by EFs are negative relationships [11]. Such relation-

ships can be inferred indirectly by predicting the variation pat-
terns of microbial counts and EF values using association
inference methods. Furthermore, interactions among microbes
and between EFs and microbes depend on the conditions of

EFs (named EF conditions), which are defined as some specific
ranges of EF values in this study. Under similar EF conditions,
interactions in the microbial community are generally stable,

but they can change dynamically with the alteration of the
EF conditions (Figure 1A). For example, marine microbial
interactions may vary by season and depth [12], and interac-

tions among human gut microbes can change according to
the onset of diseases and disease states [4,13]. In these two
examples, the environmental conditions of the marine micro-
bial communities are specific seasons and ocean depths, and

those of the human gut microbes are particular diseases and
disease states. In summary, biological interactions are
dynamic, a phenomenon that is considered in the association

inference approach utilized in this work.
However, in some studies, environmental conditions are

sometimes neither obvious nor known in advance. For exam-

ple, the American Gut Project [14] collected information on
dozens of human lifestyle factors related to individuals’ diets
and living habits, as well as metagenomic sequencing data

for thousands of individuals. However, it is unclear which
subsets of these individuals belong to the same environmental
conditions, and therefore which individuals would, by defini-
tion, have similar values of some or all of these lifestyle factors,
and would also share identical microbial interactions. Besides,

even if hosts’ disease states have been obtained, grouping sam-
ples into cases and controls while ignoring other EFs may lead
to inaccurate analysis results. The underlying patterns of

microbial compositions and associations may be very complex
and consist of many subgroups, and can be aligned with
neither the cases nor the controls. These problems call for

novel computational methods with which to discover potential
environmental conditions and infer association networks.

In many previous studies, due to the limited numbers of

sequencing samples, association inference methods have esti-
mated static association networks using all the samples [15–
20]. These methods can be classified into two categories: meth-
ods that compute pairwise associations independently and

methods that estimate multiple associations simultaneously.
The widely-used Pearson’s correlation coefficient (PCC) and
Spearman’s rank correlation coefficient (SCC) methods belong

to the former category, as does local similarity association
(LSA) [19]. In contrast, CCREPE [16], SparCC [15], SPIEC-
EASI [20], CCLasso [18], and mLDM [17] belong to the latter

category. The latter methods consider compositional bias [21]
caused by the normalization process of microbial read counts,
by which microbial read counts are divided by the total sum of

read counts to determine the relative abundance. The relative

abundance of the jth operational taxonomic unit (OTU) is

defined as rj ¼ xjP
k
xk
, where xj is the read count andP

k–jCovðrk; rjÞ ¼ �VarðrjÞ. It is clear that the commonly-

proposed normalization process [22] introduces dependency

into microbial relative abundance, and, as such, it reduces
the efficiency of association inference (Figure 1D). CCREPE,
SparCC, and CCLasso estimate OTU–OTU (microbe–

microbe) correlations by computing the covariance among
microbes, while SPIEC-EASI and mLDM infer conditionally
dependent OTU–OTU associations by estimating the precision
matrix among microbes. With the exception of mLDM, none

of these methods consider associations between EFs and
microbes. Taking both the compositional bias and the large
variance of read counts into consideration, the method pro-

posed in our previous work, mLDM [17], estimates both
OTU–OTU and EF–OTU associations more accurately by
removing indirect associations among microbes induced by

common EFs (Figure 1E).
However, all the methods noted previously assume only a

single biological network, neglecting that biological interac-
tions can be different with the variation of EFs. In this case,

if samples from two different environmental conditions
are combined to infer associations, the results will reflect
the change of environmental conditions rather than real

https://github.com/tinglab/kLDM.git


Figure 1 Schema of the kLDM model

A. Multiple environmental conditions are assumed to exist in real environments, and the EF condition can change with time. An EF

condition refers to 1) a group of samples in which the EF values fall into a small and defined range, and 2) under this EF condition,

interactions within the microbial community are stable. B. Sequencing samples with related metadata, possibly from multiple EF

conditions, were collected. After data preprocessing, clustering, and annotation, OTU counts were obtained for each sample. The

information about which two samples belong to the same EF condition was unknown beforehand. C. The kLDM graphical model

assumes K EF conditions within N samples, and infers the number of EF conditions, the associations among OTUs, and the associations

between EFs and OTUs under every EF condition. Two matrices, Bk and Hk, respectively record direct EF–OTU associations and OTU–

OTU associations for the kth EF condition. Vectors xi and mi are respectively the OTU counts and values of EFs in the ith sample. At every

EF condition, it is assumed that the values of the EFs follow a multivariate Gaussian distribution, that is, they are parameterized by lk

and Rk. The rest of the variables include the following: hi represents the latent relative ratios of microbes in the ith sample, ai is the absolute
abundance of microbes, B

ðkÞ
0 represents the impact of unknown factors that affect the abundance of OTUs, ci indicates that the i

th sample

belongs to the EF condition ci, and pk is the mixture weight of the kth EF condition. D. Compositional bias caused by the normalization

process on the OTU counts. After normalization, the microbial relative abundance sums to one. E. The indirect association between

OTU-1 and OTU-2 induced by the common EF-1 can be recognized by kLDM, which takes the EF–OTU association into account. F. For

kLDM, the number of EF conditions and the association networks of every EF condition are estimated by a split-merge optimization

algorithm. Both the EF values and associations of microbes are taken into account to determine the EF condition. G. Parameters

estimated by kLDM can be visualized into EF conditions and association networks. The blue and yellow edges correspond to negative and

positive associations, respectively, and the thickness of an edge is proportional to the association value. EF, environmental factor; OTU,

operational taxonomic unit; OTU–OTU, microbe–microbe; EF–OTU, environmental factor–microbe.
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associations under these two environmental conditions; this
may lead to false associations and conclusions. For example,
association networks of gut microbes in patients with liver cir-

rhosis and healthy individuals are distinctly different [23], and
to predict gut microbial interactions of disease patients, sam-
ples from the healthy population should be excluded.

To estimate OTU–OTU associations and EF–OTU
associations conditional on environmental conditions, a new
hierarchical Bayesian model, the k-Lognormal-Dirichlet-Multi

nomial (kLDM) model, is proposed in this work (Figure 1).
kLDM can automatically determine the number of EF condi-
tions and simultaneously infer complex associations. kLDM
considers the compositional bias and large variance of read

counts under every EF condition, and estimates both condi-
tionally dependent OTU–OTU associations and direct EF–
OTU associations. Most significantly, associations that vary

according to environmental conditions can be elaborated by
kLDM. It should be noted that the direct or conditionally
dependent associations are mathematical concepts that

approximate biological interactions, rather than indicate direct
biological interactions or causal relationships. In addition,
considering that the sequencing of marker genes, such as 16S

rRNA / 18S rRNA genes, is widely used to investigate micro-
bial compositions of samples, kLDM is designed for data pro-
duced by such marker gene sequencing technology. To the best
of our knowledge, kLDM is the first method that infers multi-

ple association networks based on the variation of EF values.
The efficiency and robustness of kLDM are first validated on
synthetic datasets via comparing with state-of-the-art

approaches. It is then applied to a colorectal cancer (CRC)
dataset to demonstrate its ability to find well-defined EF con-
ditions. Its applications on the Tara Oceans dataset and the

American Gut Project dataset are also explored to discover
potential EF conditions and novel biological relationships.
Method

Materials used for kLDM evaluation

Gut microbial samples from a CRC study

The OTU table and metadata of metagenomic gut 16S rRNA
sequencing data of healthy individuals and patients with CRC
were obtained from Baxter et al. [13]. A dataset was con-

structed, which consisted of 5 known CRC-associated OTUs
(Peptostreptococcus, Parvimonas, Fusobacterium, Porphy-
romonas, and Prevotella), 112 common OTUs observed in
more than half of all 490 samples, and 4 EFs [including the

fecal immunochemical test (FIT) result, age, gender, and the
diagnostic state of each donor]. The ‘‘FIT” result referred to
the positive or negative result of FIT. The recorded diagnostic

states included ‘‘Normal”, ‘‘High-risk Normal”, ‘‘Adenoma”,
‘‘Advanced Adenoma”, and ‘‘Cancer”, all of which were deter-
mined by colonoscopy examination and the review of biopsies.

The diagnostic states were modeled as five numerical values
from 1 to 5, with a higher value representing a more serious
disease state.

Tara Oceans eukaryotic dataset

In the study of the Tara Oceans project [24], read counts of
marine eukaryotic OTUs were obtained by sequencing the
V9 region of 18S rRNA genes. This project also included 91
genus-level matched eukaryotic symbiotic interactions. After
filtering out the OTUs that existed in < 40% of samples

and removing samples with missing EFs or abnormal counts,
a subset of 221 samples with 67 OTUs related to genus-level
symbiotic interactions and 17 EFs was obtained. The 17 EFs

included the depth of water, chlorophyll maximum, maximum
Brünt-Väisälä frequency, maximum dissolved oxygen, mini-
mum dissolved oxygen, salinity concentration, oxygen concen-

tration, phosphate concentration, silica concentration,
chlorophyll concentration, temperature, sunshine duration,
moon phase, maximum Lyapunov exponent, residence time,
latitude, and longitude.

16S rRNA sequencing samples from the American Gut Project

The OTU table and metadata from the American Gut Project

[14] were downloaded from the FTP site (ftp://ftp.microbio.
me/AumericanGut), and 22 metadata regarding individuals’
diets and living habits were selected. Among these metadata,
3 factors were associated with living habits (alcohol, exercise,

and smoking frequency), and the remaining 19 factors were
related to diets (frequencies of the consumption of fermented
plants, frozen desserts, fruit, high-fat red meat, home-cooked

meals, meat, eggs, milk cheese, milk substitutes, olive oil, pro-
biotics, red meat, salted snacks, seafood, vegetables, vitamin D
supplements, vitamin B supplements, whole grains, and whole

eggs). The values of the metadata can be categorized as
‘‘Never”, ‘‘Rarely (less than once/week)”, ‘‘Occasionally (1–2
times/week)”, ‘‘Regularly (3–5 times/week)”, or ‘‘Daily”. For

convenience, these categories were recoded into integers from
1 to 5 according to their frequencies. Samples with large (first
1%) or small (last 2%) numbers of reads, as well as those with
evenness < 2, were removed. OTUs that existed in < 20% of

samples and with an average size of < 50% were filtered out.
Finally, 11,946 samples with 216 OTUs and 22 EFs were
obtained. The Python script to process the OTU ‘‘.biom” file

can be found on Github (https://github.com/tinglab/kLDM.
git). For every sample, information on individuals’ disease sta-
tuses was also recorded, and included cardiovascular disease,

small intestinal bacterial overgrowth, mental illness, lactose
intolerance, diabetes, inflammatory bowel disease (IBD), irri-
table bowel syndrome, Clostridium difficile infection, cancer,
and obesity.

Assumption of the kLDM hierarchical Bayesian model

The kLDM model assumes that interactions among microbes

are regulated by EFs and tend to be constant when environ-
mental conditions do not change, but may vary due to changes
of environmental conditions (Figure 1A). In other words,

kLDM accounts for variation in the values of EFs. Under
the same environmental condition, EF values may fluctuate
within a small range, core microbes stay the same, and their

associations remain stable. However, for different environmen-
tal conditions, EF values, microbial species, and their associa-
tions can be quite different. In addition, the distribution of
environmental conditions may be continuous and complex

[25]. Thus, kLDM uses mixtures of multiple clusters with
known distributions to approximate and capture patterns of
environmental conditions, with each cluster representing one

environmental condition.

https://github.com/tinglab/kLDM.git
https://github.com/tinglab/kLDM.git
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The hierarchical structure of the kLDM model

Let X ¼ fxigNi¼1 be N sequencing samples, where xi 2 NP is the

ith sequencing sample with P microbes, and xij corresponds to

the read count of the jth microbe or OTU. Values of EFs are

represented as M ¼ fmigNi¼1, where mi 2 RQ is a Q-

dimensional vector and mij records the value of EF j of the

ith sample. kLDM models the EF vector mi as a multivariate
Gaussian distribution, and assumes that the EFs and the entire
dataset consist of K mixtures of Gaussian components. Thus,

samples in which EF vectors belong to the same Gaussian
component can be considered as drawn from the same envi-
ronmental condition and to share identical OTU–OTU and
EF–OTU association networks. K EF conditions are denoted

as C ¼ fB kð Þ;H kð Þ;B kð Þ
0 ; l kð Þ;RðkÞgKk¼1, where matrices BðkÞ and

HðkÞ are the associations between EFs and OTUs and among

OTUs for the kth environmental condition, respectively.

B
ðkÞ
0 2 RQ is a basis vector, and lðkÞ and RðkÞ are the mean vec-

tor and covariance matrix of EFs for the kth EF condition,

respectively. In addition, the weights of K EF conditions are

p¼ fpigKi¼1, where pk is the weight of the kth EF condition,

and
PK

k¼1pk ¼ 1.

Figure 1C presents the structure of the kLDM model, in

which the vectors xi and mi represent the microbial read counts

and the EF values of the ith sample, respectively. The vector hi
is a P-dimensional latent variable, the value hij of which is the

latent relative abundance of the jth microbe in the ith sample,
and ai can be regarded as the absolute abundance vector cor-

responding to hi. kLDM assumes that the absolute abundance
ai determines the relative abundance hi of P microbes during
the sample preparation process, and that the microbial read

count vector xi is generated based on the relative microbial
abundance during the sequencing process. Sample i can be
considered as being collected from a specific EF condition

denoted by ci with the mixture weight pci . The absolute abun-
dance ai is decided by two sources of associations: 1) associa-

tions between EFs and microbes under the cthi EF condition,

which can be parameterized by a linear term BðciÞTmi; 2) asso-
ciations among microbes, the effects of which are included in

the EF condition-specific latent variable z
ðciÞ
i . The vector z

ðciÞ
i

follows a multivariate Gaussian distribution, the parameters

of which are determined by the basis vector B
ðciÞ
0 and the pre-

cision matrix HðciÞ, and it records OTU–OTU associations at

the EF condition ci.
The generative process of the hierarchical Bayesian model,

kLDM, is as follows:

ci�CategorialðpÞ

mijci�Nðlci
;RciÞ

z
ðciÞ
i jci�NðB cið Þ

0 ;HðciÞ�1Þ

aijci ¼ expðB cið ÞTmi þ z
ðciÞ
i Þ

hi�DirichletðaiÞ

xi�MultinomialðhiÞ ð1Þ
where BðciÞ is a Q� P matrix, in which BðciÞ
qp is the association

between the qth EF and the pth microbe, and HðciÞ 2 RP�P is

a P� P inverse covariance matrix. During the sequencing pro-
cess, millions of DNA molecules are randomly selected from
the DNA library; therefore, the sequencing count xi has a

multinomial distribution:

P xijhið Þ ¼
PP

j¼1xij

xi1; � � � ; xiP

 !XP

j¼1
hij

xij ð2Þ

where the relative abundance hi represents the microbial rela-

tive ratios within the DNA library and
PP

j¼1hij ¼ 1. Consider-

ing the conjugacy of Dirichlet and multinomial distributions,

hi follows the Dirichlet distribution as follows:

P hijaið Þ ¼ CðPP
j¼1aijÞQP

j¼1CðaijÞ
YP

j¼1
hij

aij�1 ð3Þ

where ai is the vector for the absolute microbial abundance in

the ith sample, which, in turn, determines the relative ratios in
the library. In a Dirichlet-multinomial distribution, the covari-

ance of two OTU counts xij and xik in the ith sample is

Covðxij; xikÞ / �PP
j¼1xij

aijPP

j¼1
aij

aikPP

j¼1
aij
, which corresponds to a

negative bias and is regulated by both the sequencing depthPP
j¼1xij and the OTUs’ relative abundance

aijPP

j¼1
aij
. The

Dirichlet-multinomial distribution is integrated into the hierar-

chical structure of kLDM to model the compositional charac-
teristics of sequencing count data.

Assuming that microbes in the ith sample come from EF

condition ci, their absolute abundances ai are affected by both
the EFs mi and interactions within the community. This is
modeled into a lognormal distribution that is suitable for most

microbial abundances [26,27]:

P aijci;B cið Þ;H cið Þ;B cið Þ
0

� �
¼ 1

2pð ÞP2H1
2

� expð� 1

2
ðlnai � l cið Þ

i ÞT

Hðlnai � l cið Þ
i ÞÞ

YP

j¼1

1

aij
ð4Þ

where l cið Þ
i ¼ B cið ÞTmi þ B

cið Þ
0 . This can be simplified into the

following equation using the relationship between the lognor-
mal and normal distributions:

aijci ¼ expðB cið ÞTmi þ z
ðciÞ
i Þ ð5Þ

where z
ðciÞ
i jci�NðB cið Þ

0 ;HðciÞ�1Þ.
Under the cthi EF condition, mi follows the multivariate

Gaussian distribution P mijcið Þ ¼ Nðlci
;RciÞ, and the weight

of the cthi EF condition is set to the categorical distribution

with the parameter p as follows:

P ci ¼ kð Þ ¼
YK

c¼1
pIðci¼kÞ
c ð6Þ

Of interest are the parameters B kð Þ and H kð Þ ðk ¼ 1; � � � ;KÞ,
where B

ðkÞ
ji infers direct association between the ith microbe and

jth EF at the kth EF condition, and � HðkÞ
ijffiffiffiffiffiffiffiffiffiffiffiffi

HðkÞ
ii

HðkÞ
jj

p is the condition-

ally dependent association between the ith and jth microbes
(Figure 1G).
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Sparse association inference of kLDM in theory

The generative model can be solved theoretically via the
expectation–maximization (EM) algorithm and maximum a

posteriori (MAP) estimation for the latent variable z
ðciÞ
i . It is

assumed that the microbe–microbe and EF–microbe associa-
tions are sparse and can be inferred by kLDM with sparsity

constraints. Detailed equations of inference and optimization
can be found in File S1.

However, two potential problems confront this theoretical

sparse association inference, thereby limiting the practicality
of the model. First, results are very sensitive to the initializa-
tion of parameters because the EM algorithm can converge

to a local minimum. Second, estimating the number of EF con-
ditions is very time-consuming. Therefore, more effective
approaches were explored and an efficient split-merge algo-
rithm was ultimately adopted, as subsequently detailed.

Implementation of a split-merge algorithm for kLDM

kLDM adopts a split-merge algorithm to estimate the number

of EF conditions and sparse OTU–OTU and EF–OTU associ-
ations under each EF condition [28]. First, samples are parti-
tioned into fine-grained clusters using the values of EFs,

such that samples within a cluster can be regarded as belonging
to the same environmental condition. Second, because this
partition is not perfect, multiple clusters are merged into one

if they share similar environmental conditions and association
networks. The final output is a set of sample groups, each with
distinct predicted association networks.

More specifically, the split process starts from a single clus-

ter with all samples, and then iteratively selects a cluster and
partitions it into two clusters until the number of samples in
each cluster is smaller than a pre-defined threshold Nmin. This

process results in the construction of a binary tree for EFs,
each node of which corresponds to one cluster of the samples,
and each leaf node of which corresponds to a set of samples

with similar values of EFs. It is assumed that the EF vector
mi follows the multivariate Gaussian distribution, and when
a cluster is split in two, two Gaussian mixtures are used to
model the distribution of the EFs of the cluster as follows:

P mið Þ ¼ p1N mijl1;R1ð Þ þ p2N mijl2;R2ð Þ ð7Þ
where p1 þ p2 ¼ 1 and pjðj ¼ 1; 2Þ is the weight of the jth com-

ponent. After estimating these parameters via the EM algo-
rithm, each sample of the original cluster is re-assigned to

one of the two new clusters with the larger posterior
probability.

Association networks are then estimated for the leaves via

mLDM [17], which is similar to kLDM when the number of
EF conditions is set to one (K ¼ 1). The mLDM algorithm
was re-implemented with C++ and OpenMP to improve its
stability and efficiency, and a comparison of the running time

and memory usage by kLDM and mLDM on a single associ-
ation network inference is presented in Table S1. Inferred asso-
ciations were used for the merge process.

The merge process aims to recover clusters that are parti-
tioned into multiple leaf nodes as a result of the greedy
approach of the split process. The merge process adopts a

bottom-to-top strategy, starting from internal nodes at the
lowest level and traversing up to the root, to identify leaf nodes
for merging. For each internal node, the algorithm traverses
down to its left and right branches to search for leaf nodes.
The two leaf nodes with the smallest inter-cluster distance, as

measured by the Euclidean distance between the mean values
of EFs, are merged. kLDM estimates the associations and
the extended Bayesian information criterion (EBIC) score for

the merged cluster; if its EBIC score is less than the sum of
the EBIC scores of the two leaves, then the merged cluster is
kept and substitutes the one that has closer mean values of

EFs, while the other is discarded. Otherwise, the merged clus-
ter is discarded. This split-merge process reduces the time com-
plexity by limiting the operation at each step to partition one
large cluster into two, or to merge two nearby clusters into

one. The algorithm can run in parallel, making kLDM very
efficient in practice.

Synthetic data generation process

Synthetic datasets were generated by specifying the numbers of
microbes, EFs, and clusters, as well as the range of the number

of samples per cluster. Samples were then separately con-
structed for every cluster via a generative process of the kLDM

model. For the ith cluster ði ¼ 1; 2; � � � ;KÞ, the EF–OTU asso-

ciation matrix Bi was produced by sampling uniformly from
the interval ½�0:5; 0:5�, with only 15% of the elements set to
non-zero. The OTU–OTU association matrix Hi was gener-

ated using the R package ‘‘huge” [29], which outputs a preci-
sion matrix for which the adjacency matrix can be random, a
cluster, scale-free, a hub, or a band graph. Every graph corre-
sponds to a specific association structure among microbes.

Values of the mean vector of the EF of the cluster can be
obtained by sampling uniformly from the interval
½i; iþ 0:5ð Þ � i�. The Dirichlet-multinomial samples were then

produced using the R package ‘‘HMP”. For parameters of
every setting, ten repetitions were conducted to generate syn-
thetic data, and the mean and standard deviation of the eval-

uation metrics were then calculated for comparison. The
public R-language codes of CCLasso and SPIEC-EASI were
used. The implementation of SparCC was provided by
SPIEC-EASI. SCC and SCC(all) were implemented directly

in the built-in functions of the R language. The ‘‘mb”
(Meinshausen-Bühlmann) estimation method was set for
SPIEC-EASI, and the default parameters of CCLasso,

SPIEC-EASI, and SparCC were utilized. In addition, the P
value was set to 0.05 for SCC and PCC to save the significant
associations.

Evaluation metrics on synthetic data

The receiver operating characteristic (ROC) curves and the

area under the curve (AUC) values were utilized to evaluate
the performance of association inference. Every cluster esti-
mated by kLDM is represented by two ROC curves, namely
the ROC curve of the OTU–OTU associations and that of

the EF–OTU associations. When the AUC values were com-
puted, the signs of estimated associations were neglected.
Regarding the thresholds for the computation of the AUCs,

the absolute values of the calculated associations were selected
for kLDM, SparCC, CCLasso, and SPIEC-EASI, and P val-
ues were used for SCC and PCC. When plotting the ROC

curves for SCC and CCLasso, the calculated coefficients were
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compared with the true correlation matrix, as deduced by the
inverse of the precision matrix Hi. One estimated non-zero
association is regarded as a true positive if its value is also

non-zero in the ground truth. If the values of the inferred
and real results of one association are both zero, the associa-
tion is a true negative.

Results

Comparing kLDM with other methods on synthetic datasets

The performance of kLDM was first assessed using synthetic

datasets, and then how the similarity of underlying networks
and missing information, i.e., EFs, affects the performance
of kLDM was evaluated.
Figure 2 Comparison of the performance of kLDM with other metho

The performance of kLDM was compared with that of three other ass

Q, K, and N represent the numbers of OTUs, EFs, EF conditions or cl

and K were fixed for all panels (P = 50, Q = 5, K = 2). SCC(all) is th

the dataset. A. and C. Comparisons of ROC curves (A) and AUC valu

curves (B) and AUC values (D) after setting N 2 ½200; 400�. The ROC c

are orderly plotted. The red line corresponds to the result of kLDM

operating characteristic; AUC, area under the curve.
Detailed experiments were conducted to demonstrate the
effectiveness of kLDM by comparing it with SCC, CCLasso,
and SPIEC-EASI. These three models were included because

they were tested in our previous study [17] and exhibited
advantages over other methods. SCC estimates both
EF–OTU and OTU–OTU associations, CCLasso solves the

covariance matrix among microbes, and SPIEC-EASI per-
forms well in inferring the precision matrix among OTUs.
For a fair comparison, because none of the methods consider

more than one network, data were partitioned into clusters
according to the results reported by kLDM, and these pro-
grams were applied on each cluster to infer associations. It
should be noted that the results of SCC using all samples,

denoted as SCC(all), were plotted as the baselines. The ROC
curve and AUC value of each cluster were used to compare
the performances.
ds on synthetic data

ociation inference methods (SCC, CCLasso, and SPIEC-EASI). P,

usters, and samples per EF condition, respectively. Values of P, Q,

e result of SCC by assuming that there is only one EF condition in

es (C) after setting N 2 ½100; 200�. B. and D. Comparisons of ROC

urves of the OTU–OTU and EF–OTU associations of two clusters

. SCC, Spearman’s rank correlation coefficient; ROC, receiver
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First, the relationship between the number of samples per
cluster (N) and the efficiency of kLDM was examined by set-
ting the following parameters: K= 2 clusters, P = 50

microbes, Q = 5 EFs, and N samples with two ranges sepa-
rately denoted as Nmin;Nmax½ � ¼ ½100; 200� and
Nmin;Nmax½ � ¼ ½200; 400�. These two settings of N had identical

associations among microbes and between EFs and microbes.
As shown in Figure 2, the ROC curves and AUC values of
kLDM were consistently better than those of the other meth-

ods, and the ability of kLDM to recover OTU–OTU and
EF–OTU associations increased with the increase of N. How-
ever, it was observed that the ROC curves of SCC(all) in most
situations were lower, demonstrating the importance of sepa-

rating samples by environmental conditions. It should be
noted that SPIEC-EASI did not efficiently estimate the associ-
ations due to its strict model selection. Samples from different

EF conditions may introduce many noises and disturb the
results of SPIEC-EASI. Additionally, the sensitivities and
specificities of the top associations estimated by the five meth-

ods were compared using the synthetic dataset with K= 2,
P = 50, Q= 5, and N 2 [100,200]. As shown in Table S2, it
was evident that kLDM inferred the OTU–OTU and

EF–OTU associations with higher sensitivity and superior
specificity as compared to the other methods.

The scalability of kLDM was then investigated with
P = 100 and P = 200, and the results are plotted in Figure 3A

and B. In both situations, the AUC values of kLDM were all
higher than those of the other approaches, which verifies its
fine scalability due to the re-implementation of mLDM with

the C++ language and the utilization of parallel computing.
Next, kLDM was tested by increasing the number of clusters
Figure 3 Evaluation of the scalability of kLDM after increasing the n

A. AUC values with 100 OTUs, 8 EFs, and 2 clusters. The number of s

200 OTUs, 10 EFs, and 2 clusters. The number of samples of each clus

and 3 clusters. The number of samples of each cluster ranges from 200

number of samples of each cluster ranges from 200 to 400.
to 3 and 4 (Figure 3C and D), and kLDM again achieved
the best results.

Because the split process of kLDM is affected by the simi-

larity between the EFs of clusters, only the distances between
the mean values of EFs of two clusters were changed, and
the other parameters were kept the same to examine the per-

formance of kLDM. As is revealed in Table S3, as expected,
when the distance between two EF mean vectors was suffi-
ciently large, such as 1.5 or 2.0, which are respectively denoted

as ‘‘1.5 baseline” and ‘‘2.0 baseline”, kLDM accurately
inferred the associations. However, the effectiveness of kLDM
was found to decrease when the distance became smaller, such
as 1.0 (‘‘1.0 baseline”), especially on the inference of OTU–

OTU associations. This can be attributed to the tendency of
kLDM to group samples together to infer common associa-
tions when two clusters have similar values of EFs but differ-

ent associations.
To test the effect of the similarity of EF–OTU or OTU–

OTU associations among clusters on the performance of

kLDM, two new datasets were generated for each distance
(1.0, 1.5, and 2.0 baseline) by separately setting the value of
Bi orHi of two clusters (i= 1,2) to be equal (‘‘same EF–OTU”

or ‘‘same OTU–OTU” in Table S3). Compared with the results
of the corresponding ‘‘baseline”, the AUC values of ‘‘same
EF–OTU” and ‘‘same OTU–OTU” were not significantly
changed. From this, it was concluded that the similarity of

EFs influences kLDM more than does the similarity of
associations among environmental conditions.

In the simulated experiments, all EFs were used to estimate

association networks, which may not be feasible in reality
because some EFs can be missing. Therefore, new datasets
umbers of microbes and EF conditions

amples of each cluster ranges from 400 to 800. B. AUC values with

ter ranges from 800 to 1600. C. AUC values with 50 OTUs, 5 EFs,

to 400. D. AUC values with 50 OTUs, 5 EFs, and 4 clusters. The
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with only partial EFs were simulated to test the effectiveness of
kLDM. As shown in Figure S1, the AUC values of kLDM on
two clusters are shown with different proportions of EFs

retained (20%, 40%, 60%, and 80%) to infer association net-
works. With the subsets of EFs, the AUC values of kLDM
were found to decline. This indicates the importance of includ-

ing as many EFs as possible. Furthermore, with only 60% of
the EFs, kLDM achieved results comparable to those of
CCLasso and SCC on the whole dataset, which again demon-

strates the superiority of kLDM (Table S4).
kLDM captures variation in associations of gut microbiota

of CRC patients

The relationship between human gut microbiota and CRC has
been explored in previous studies [30–32]. In this work, the

metagenomic 16S rRNA sequencing dataset from Baxter
et al. [13] consisting of 117 OTUs and 3 EFs was chosen,
and the efficiency of kLDM in capturing the variation of asso-

ciations in the microbial community was evaluated. kLDM
reported two clusters: Cluster 1 was annotated as ‘‘Cancer”,
and included 90% of ‘‘Cancer” samples with significantly

higher positive FIT values (P = 7.18 � 10�22) (Table S5);
Cluster 2 was denoted as ‘‘Healthy”, and contained 83.7% of
healthy samples (‘‘Normal” and ‘‘High-risk Normal”)

(Table S6). ‘‘Adenoma” and ‘‘Advanced Adenoma” samples
existed in both Cluster 1 and Cluster 2. kLDM did not split
samples simply according to the diagnostic state; instead, it
took all EF values, microbial abundances, and microbial asso-

ciations into account.
Different patterns of microbial abundances and associa-

tions were found between these two clusters. Prevotella was

abundant in samples from both clusters, while the other four
CRC-associated OTUs were significantly over-represented
Table 1 Top associations of CRC-associated microbes for two cluster

Cluster OTU

Cluster 1 (cancer) Parvimonas

Prevotella

Peptostreptococcus

Peptostreptococcus

Parvimonas

Porphyromonas

Peptostreptococcus

Fusobacterium

Porphyromonas

Prevotella

Prevotella

Prevotella

Parvimonas

Prevotella

Porphyromonas

Fusobacterium

Peptostreptococcus

Cluster 2 (healthy) Prevotella

Note: Results of CRC-related OTU–OTU and EF–OTU associations, sel

microbes related to CRC, as reported in previous studies, are labeled in

‘‘Normal”, ‘‘High-risk Normal”, ‘‘Advanced Adenoma”, ‘‘Adenoma”, and

unit; EF, environmental factor; OTU–OTU, microbe-microbe; EF–OTU,
(P < 0.001) in the samples of Cluster 1 (Figure S2). By com-
paring the OTU–OTU association networks between Cluster 1
and Cluster 2, as presented in Figure S3, it was found that

most gut microbes of ‘‘Healthy” samples were connected quite
closely and the distribution of associations among microbes
was balanced, while few associations were observed between

the aforementioned 5 known CRC-associated OTUs and other
microbes (Figure S3B). In contrast, associations among the gut
microbes of ‘‘Cancer” patients were relatively sparse (Fig-

ure S3A), and strong correlations were found between specific
bacteria (Table 1). Peptostreptococcus, Parvimonas, Fusobac-
terium, and Porphyromonas were found to have strong correla-
tions with each other, but did not connect with other microbes,

while Prevotella was found to be more associated with other
common OTUs, such as Phascolarctobacterium and Clostrid-
ium_XlVa. Based on the differences in microbial abundances

and the distributions of associations within the two clusters,
the gut microbiota translocation in cancer samples can be
found, and Prevotella may play a specific role in tumorigenesis.

Previous studies have shown that Peptostreptococcus and
Fusobacterium are associated with inflammation [33,34]. The
results of the present study also confirmed that Peptostrepto-

coccus was positively correlated with Fusobacterium in
‘‘Cancer” patients, and that it was over-represented in CRC
fecal samples. Table 1 reveals that Porphyromonas and Pep-
tostreptococcus were found to have positive correlations with

diagnostic states in Cluster 1, suggesting the significance of
these two bacteria in CRC diagnosis. On the other hand, Pre-
votella was found to be positively associated with the diagnos-

tic states in Cluster 2, indicating a high predictive value, and
could be a useful indicator for CRC diagnosis. Research has
shown that Fusobacterium may act as a passenger microbe to

perpetuate tumorigenesis, as a higher load of Fusobacterium
is related to disease severity [35]. From the results of the pre-
sent study, patients with cancer that have a positive FIT result

are more susceptible to carry Fusobacterium.
s of the CRC dataset found by kLDM

EF or OTU Association

Porphyromonas +0.238

Phascolarctobacterium �0.234

Porphyromonas +0.220

Parvimonas +0.191

Fusobacterium +0.180

Prevotella +0.173

Fusobacterium +0.155

Porphyromonas +0.155

Akkermansia +0.121

Clostridium_XlVa �0.095

Clostridium_sensu_stricto +0.091

Clostridium_IV �0.090

Prevotella

Clostridium_XlVa

+0.085

�0.082

Diagnostic state (EF) +0.294

FIT (EF) +0.245

Diagnostic state (EF) +0.281

Diagnostic state (EF) +0.274

ected from top 1% weighted associations from the two clusters. Five

bold and the EFs are underlined. The ‘‘Diagnostic state” consists of

‘‘Cancer” states. CRC, colorectal cancer; OTU, operational taxonomic

environmental factor–microbe; FIT, fecal immunochemical test.



Table 2 Top 1% associations of two clusters on the Tara Oceans dataset with support from literature

Cluster OTU EF or OTU Association Refs.

Cluster 1 Amphibelone Phaeocystis +0.172 [41]

Phaeocystis Amphibelone anomala +0.161 [41]

Amoebophrya ceratii Cochlodinium_01 fulvescens +0.120 [42]

Amoebophrya ceratii Cochlodinium_01 fulvescens +0.118 [42]

Blastodinium mangini Salinity (EF) +0.536 [43]

Phaeocystis PO4 (EF) +0.508 [44]

Amphibelone anomala PO4 (EF) +0.439 [45,46]

Cluster 2 Blastodinium_06 Temperature (EF) +0.549 [43]

Blastodinium_06 Oxygen (EF) +0.410 [43]

Phaeocystis Oxygen (EF) +0.389 [47]

Note: Top 1% weighted OTU–OTU and EF–OTU associations are chosen from two clusters, and associations with related literature support are

listed in the table. OTUs are labeled in bold and EFs are underlined.
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Elaborating relationships between marine eukaryote associations

and EFs

Next, kLDM was applied on the Tara Oceans eukaryotic data-
set [24] to explore the associations in natural environments and

compare associations predicted by kLDM with known genus-
level interactions. kLDM found two clusters corresponding to
two EF conditions, namely Cluster 1, consisting of 168 sam-

ples with 67 OTUs, and Cluster 2, consisting of 53 samples
with 26 OTUs. 41 OTUs in Cluster 2 were filtered out because
the number of samples was less than the number of OTUs, and

kLDM removed small OTUs to infer associations efficiently.
The EFs of the two clusters are listed in Table S7. Cluster 1
had a significantly higher salinity and temperature, but lower

oxygen, phosphate, and silica concentrations than Cluster 2.
The top 1% associations found in these two clusters, including
23 OTU–OTU and 12 EF–OTU associations in Cluster 1, and
4 OTU–OTU and 5 EF–OTU associations in Cluster 2, were

analyzed, and associations with support from the existing liter-
ature are listed in Table 2.

The associations were then matched with known genus-

level interactions among the top-N associations within each
of the two clusters discovered by kLDM. Because known inter-
actions were at the genus-level, an association between two

OTUs was regarded to be matched if the OTUs’ genera were
identical to two corresponding genera of the known interac-
tion. The results were compared with those when the environ-

mental conditions were not considered and all samples were
regarded as one cluster, denoted as ‘‘Static”, by limiting
kLDM to predict one set of EF–OTU and OTU–OTU associ-
ation networks. As shown in Table S8, it was clear that the

combined predicted associations from the two clusters were
similar to the ‘‘Static” results, with each cluster consisting of
both common and specific OTU–OTU associations.

Different types of known associations detected by kLDM
are listed in Table S9. Four known associations, namely
‘‘Phaeocystis–Amphibelone”, ‘‘Vampyrophrya–Copepoda”,

‘‘Amoebophrya–Acanthometra”, and ‘‘Blastodiniaceae–
Copepoda”, may be dominant in the ocean because they were
inferred from both the whole dataset and the larger cluster
(Cluster 1), and the association between Amoebophrya and

Protoperidiniaceae may be strong in a specific EF condition
related to Cluster 2. More specifically, the association between
OTU-38 and OTU-25, respectively belonging to the genera

Amoebophrya and Protoperidiniaceae, was found to only exist
in Cluster 2, in which the mean values of oxygen concentra-
tion, phosphate concentration, and silica concentration were

higher than those in Cluster 1, and the abundance levels of
two OTUs were significantly higher than those in Cluster 1
(P< 0.05). The EF condition in Cluster 2 could be more suit-

able for the growth of the genus Protoperidiniaceae, and Amoe-
bophrya would then benefit from parasitism with the former.
Based on the results from the Tara Oceans dataset, the effec-

tiveness of kLDM in elaborating the relationships between
OTU–OTU associations and EF values is confirmed.

Characterizing changes in the association networks of human gut

microbes with different lifestyle factors

kLDM has the advantage of analyzing complex datasets with
large numbers of samples to infer multiple EF conditions and

the corresponding association networks, and this capability
was verified on the American Gut Project dataset [14]. kLDM
was applied to cluster samples according to lifestyle-related

factors and association networks, and two large clusters, Clus-
ter 1 with 6831 samples and Cluster 2 with 5003 samples, and
one small cluster, Cluster 3 with 112 samples, were obtained.

Compared with Cluster 1 and Cluster 2, Cluster 3 exhibited
different lifestyle patterns and microbiota distributions (Tables
S10–S12). Cluster 1 and Cluster 2 together contained almost
all disease and healthy people, while Cluster 3 was mainly com-

posed of IBD patients (94.64%), who made up about a quarter
of all IBD patients (26.77%). Individuals in Cluster 3 had sig-
nificantly higher frequencies of alcohol, high-fat red meat, and

red meat consumption than those in Cluster 1 and Cluster 2,
but they also ate more vegetables and took vitamin D and B
supplements and probiotics more frequently. However, their

exercise frequency, milk substitute consumption frequency,
and milk cheese consumption frequency were distinctly lower
(Table S10). For genus-level microbial abundances, the genera
Prevotella, Ruminococcus, and Sutterella were more abundant

in Cluster 3, but Bifidobacterium and Bacteroides were less
abundant (Table S13). If only IBD samples in each cluster
were considered, it can be observed that the IBD samples in

Cluster 1 and Cluster 2 were found to be substantially different
from those in Cluster 3 based on the aforementioned diet
frequencies and genus abundances (Table S14). By comparing

the IBD samples in Cluster 1 and Cluster 2, similar lifestyle
quantification values and genus abundance levels can be
observed, excluding the frequencies of vegetables, fruit,
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home-cooked meal consumption, and smoking, and the abun-
dance of the genus Lachnospira.

The top 1% EF–OTU associations predicted by kLDM

were subsequently analyzed (Table S12), and various associa-
tions among the three clusters that matched with the findings
of published literature are presented. A positive correlation

between probiotic frequency and Bifidobacteria was found in
both Cluster 1 and Cluster 2, which was previously reported
by Rajkumar et al. [36]. In people with high animal-protein

diets, positive correlations were found between red meat
frequency and Bacteroides and between poultry frequency
and Ruminococcus in Cluster 1, and between seafood
frequency and Clostridiales in Cluster 3, which were all consis-

tent with other research [37]. Associations between high-fat red
meat frequency and Bacteroides in Cluster 1 and Clostridiales
in Cluster 2 matched with a rat study that found that the

intake of a high-fat diet resulted in disproportionate increases
in propionate- and acetate-producing species such as
Clostridiales and Bacteroides [38].

Discussion

Considering the dynamic nature of microbial interactions, a

new hierarchical Bayesian model, kLDM, was proposed to
infer associations among microbes and associations between
EFs and microbes, under different environmental conditions.

Two algorithms, namely a theoretical EM algorithm and a
more practical and efficient split-merge algorithm, were then
developed to simultaneously estimate both the number of EF

conditions and the associations for each EF condition. The
effectiveness of kLDM was verified on simulated datasets, as
well as the real CRC, Tara Oceans, and American Gut Project

datasets. Although kLDM was implemented with OpenMP, it
can also be accelerated in MPI.

For the synthetic experiment, when the scalability of
kLDM was tested (Figure 3A and B), the AUC values of

CCLasso were the second-best in most cases, but CCLasso
predicted more associations than kLDM, and its ROC curves
increased slowly at the beginning and then faster with the

increase of the false positive rate. However, the initial high true
positive rate is arguably more crucial for scientists wanting to
select candidate interactions for validation; in this instance,

kLDM presented an advantage. In addition, the influence of
the similarity level of EF values between different EF condi-
tions on the performance of kLDM was further explored in

detail. The relationship between AUC values and the absolute
distance (see the equation in Table S3) between the EF values
of two clusters (Figure S4) was plotted based on the ‘‘baseline”
dataset used in Table S1. When the distance was small (< 2), it

was observed that the AUC values of the OTU–OTU and EF–
OTU associations increased rapidly with the distance, and
when the distance was greater than 2, the power of kLDM

tended to be stable. To maintain all AUC values > 0.7, the
distance of the EF values of two clusters should be greater
than 1.0. The mean values of the inverse Simpson index neff
of the synthetic datasets were also compared, and the results
are exhibited in Table S15. The values of neff of the two syn-

thetic datasets with P = 100 and P = 200 were � 13 and
had high compositionality [39]. By considering the results in

Table S15 and the AUC values of kLDM in Figure 3, it is clear
that kLDM can handle high compositional effects.
For the CRC dataset, the diagnostic state of the donors was
included as one EF by kLDM. The diagnostic state was classi-
fied according to colonoscopy examination and the review of

biopsies, instead of by the microbial compositions and associ-
ations; therefore, patients with the same diagnostic state may
not have the same underlying microbial associations. In addi-

tion, cancer may have different subtypes, and each subtype
may have a different association network. Patients who will
potentially develop cancer may also have different association

networks from those who will not. kLDM was also tested on
the CRC dataset using three EFs and excluding the diagnostic
state. It was found that the two clusters stayed the same, and
the compositions of the diagnostic states in the two clusters did

not change. The reason for this may be that the underlying
microbial networks of these two clusters were distinct. In addi-
tion, kLDM was also compared with a probabilistic clustering

model called MicrobeDMM [40], which clusters sequencing
samples according only to the microbial composition. From
Table S16, it was clear that MicrobeDMM did not distinguish

the healthy samples from the CRC samples well, and the gut
samples of these two groups were mixed evenly into two clus-
ters. In comparison, in the results of kLDM, most of the ‘‘Nor-

mal” samples were clustered into one group, while the
‘‘Cancer” samples were clustered into the other, which is con-
sistent with the prior knowledge. This demonstrates that using
only microbial compositions may not be sufficient, and this

result, together with the results of kLDM on the synthetic
dataset with partially observable EFs (Figure S1), proves the
importance of collecting all EFs.

On the Tara Oceans dataset, the top associations found by
kLDM were associated with previous studies (Table 2). For
Cluster 1, the four listed OTU–OTU associations belonged

to two kinds of known microbial interactions. More specifi-
cally, the symbiosis between Phaeocystis and Amphibelone
anomala, and the parasitism between Amoebophrya ceratii

and Cochlodinium_01 fulvescens, were captured by kLDM
[41,42]. Associations related to EF values were also found.
Blastodinium mangini was found to tend to live in seawater
with high salinity [43], and the concentration of PO4 was found

to affect the growth of Phaeocystis [44]. In addition,
Amphibelone anomala has been found to be associated with
PO4, because it has a close phylogenetic relationship with

Pfiesteria piscicida [45], which is regulated by phosphate [46].
For Cluster 2, the parasite Blastodinium_06 was found to be
linked to temperature and oxygen, and Skovgaard et al. [43]

reported that some Blastodinium spp. living in warm tempera-
tures can perform photosynthesis. The concentration of oxy-
gen was associated with some Phaeocystis, and it has been
reported that the bloom of Phaeocystis globose causes oxygen

depletion [47]. Because most interactions among marine
microorganisms are unknown, the explanation in the present
study is limited.

For the American Gut Project dataset, kLDM was used to
analyze the relationships between lifestyle factors and micro-
biota, as well as associations within the microbial community.

The resultant three clusters exhibited differential frequencies of
lifestyle factors, compositions of microbes, and OTU–OTU
and EF–OTU associations. Diet preference is among the most

influential EFs of the gut microbiome, and it can even deter-
mine microbial compositions in the mammalian evolution pro-
cess [48]. These findings were again reflected in the results of
the present study. IBD patients in three clusters were analyzed,
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and the results indicated the gut microbial heterogeneity of
IBD patients; subgroups could therefore potentially be classi-
fied by individuals’ lifestyles and microbial communities. The

concept of enterotypes in gut microbial communities has been
extensively discussed [49,50], and kLDM may be a useful tool
for the discovery of special subgroups of IBD patients.

Whether IBD patients in Cluster 3 differed from other IBD
patients in Cluster 1 and Cluster 2 in pathogenesis, clinical
characteristics, treatment, and prognosis was also of interest.

Notably, although patients in Cluster 3 consumed more probi-
otics, they still exhibited low abundances of Bifidobacterium.
Probiotic diets can induce the anti-inflammatory factor
IL-10, which improves the gut microenvironment and reduces

IBD symptoms [51,52]. Individuals in Cluster 1 and Cluster 2
had low frequencies of probiotic consumption, which is in
agreement with the results of previous studies, but IBD

patients from Cluster 3 had high-frequency probiotic con-
sumption (Table S8). Philpott and Girardin [53] reported that
IBD patients carrying NOD2 mutations exhibited decreased

transcription of IL-10; thus, it is suspected that patients in
Cluster 3 are more likely to carry NOD2 mutations.

By further comparing the IBD diagnoses among the three

clusters (Table S17), all IBD patients in Cluster 3 were found
to be those with colonic Crohn’s disease (CD), but such infor-
mation of IBD samples in the other two clusters is missing.
Patients with CD may lack vitamins B and D [54]; therefore,

the use of vitamin B and D supplements in Cluster 3 indicates
the treatment for such patients. Recently, an ‘‘anti-inflamma
tory” diet, in which high-fat meats are avoided, has been

reported to reduce symptoms in patients with IBD [55]. How-
ever, the frequency of high-fat red meat consumption was
observed for colonic CD patients in Cluster 3, and adjustment

in this category may help them in the future. Whether the life-
styles of patients with colonic CD are affected by a doctor’s
advice was not included in the dataset, which limits further

interpretation.
Taking into account healthy cohorts in Cluster 1 and Clus-

ter 2, it was observed that the genus abundances of the IBD
samples in Cluster 1 and Cluster 2 shared more similarity with

those of the healthy samples when compared to the IBD sam-
ples in Cluster 3 (Table S18). Recently, many microbiota-
assisted models have been proposed for the detection of gut

lesions, but there have been mixed results [50,56,57]. Adding
microbial abundance improves sensitivity, but at the cost of
specificity. The results of the present study indicate that such

decreased specificity may result from the close microbial com-
positions between some patients and healthy people. There-
fore, when microbiota-based prediction models are designed,
the heterogeneity within patient samples should be considered.

While it was demonstrated that kLDM is an excellent tool
for biologists to interpret microbial associations under multi-
ple environmental conditions, there are some implementation

challenges, as well as several possible improvements. For
example, the mathematical score (e.g., EBIC score) may not
be sufficiently sensitive to separate two environmental condi-

tions. Studies on differential gene co-expression networks
may be useful for kLDM. For example, characteristics of
nodes in networks, such as the degrees, clustering coefficients,

and other mathematical measures that summarize the changes
in associations, may be included to develop a more suitable
approach to the merging of sub-clusters [58]. In addition, the
assumption of Gaussian distributions for the EFs may not
be very suitable in the case of categorical data types, and other
probabilistic distributions can be considered to model categor-
ical metadata. The scalability of kLDM must also be further

expanded so that a large number of rare OTUs with low occur-
rence can be included in the model. Prior knowledge of
microbes and their interactions from known studies may also

be very helpful for kLDM to reduce the complexity of associ-
ation inference and further improve its efficiency [59]. The
sample sizes of the real Tara Oceans and CRC datasets are rel-

atively small, which is a common phenomenon in current
metagenomic studies. However, it is believed that more
large-scale datasets like the American Gut Project and Human
Microbiome Project datasets will be collected in the future.

For these large-scale datasets, kLDM could be the perfect tool
for the analysis of complex associations.

Conclusion

In this work, the kLDM model was proposed to infer EF con-

ditions existing in microbial communities and to predict direct
EF–OTU and conditionally dependent OTU–OTU associa-
tions under every EF condition while simultaneously consider-
ing compositional bias. Compared with traditional methods

that estimate static association networks, kLDM has the
advantage of illuminating the influences of EFs on associations
in microbial communities. The EF condition estimated by

kLDM is the result of the comprehensive consideration of
EFs, OTU abundances, and associations in the community,
which can provide biologists with more insight into the hetero-

geneity of microbial communities and can identify microbes
and interactions regulated by EFs, such as nutrients, lifestyle,
and health status. The superiority of kLDM was validated on

both synthetic data and real datasets related to the human gut
and marine ecosystems. With the deepening of research on the
relationship between microorganisms and human diseases, it is
expected that kLDM will enable new discoveries of the varia-

tions of microbes and OTU–OTU and EF–OTU associations
with human health and diets.
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