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ABSTRACT

ABC portal (http://abc.sklehabc.com) is a database
and web portal containing 198 single-cell transcrip-
tomic datasets of development, differentiation and
disorder of blood/immune cells. All the datasets were
re-annotated with a manually curated and unified
single-cell reference, especially for the haematopoi-
etic stem and progenitor cells. ABC portal pro-
vides web-based interactive analysis modules, es-
pecially a comprehensive cell-cell communication
analysis and disease-related gene signature analy-
sis. Importantly, ABC portal allows customized sam-
ple selection based on a combination of several
metadata for downstream analysis and comparison
analysis across datasets. ABC portal also allows
users to select multiple cell types for analysis in the
modules. Together, ABC portal provides an interac-
tive interface of single-cell data exploration and re-
analysis with customized analysis modules for the
researchers and clinicians, and will facilitate under-
standing of haematopoiesis and blood/immune dis-
orders.

INTRODUCTION

Blood/immune cells are involved in the normal and dys-
regulated functions of all human tissues. Haematopoiesis
and blood/immune disorder research has been significantly
driven by the breakthrough of single-cell technology (1,2).
High-resolution discrimination of the haematopoiesis lin-
eage and differentiation trajectories were discovered (3–
8). The development of the haematopoietic system was
meticulously depicted from fetus to adult (8,9), cover-
ing many haematopoietic lineages, such as haematopoietic
stem cells (10–12), macrophages (13), dendritic cells (14–
16), megakaryocytes (17), innate lymphoid cells (18) and
T cells (19). Meanwhile, heterogeneity of many types of
blood/immune cells was further unveiled with single-cell

sequencing, such as neutrophils (20), natural killer cells
(21,22), T cells (23) and myeloid cells (24,25). On the other
hand, novel cellular and regulatory mechanisms of blood
disease progression and therapy have been revealed with
single-cell analysis. It was demonstrated that the hetero-
geneous of malignant blood cells and stem cells under-
lie the disease initiation and progression of acute myeloid
leukemia (AML) (26,27), chronic myeloid leukemia (CML)
(28), acute lymphoid leukemia (ALL) (29), myeloprolifer-
ative neoplasms (MPN) (30–32), aplastic anaemia (AA)
(33,34), lymphoma (35), and multiple myeloma (MM)
(36,37). Sub-cell-type specific drug response and resistance
mechanisms were uncovered for AML (38), CLL (39) and
MM (37,40–42). Together, the massive studies using single-
cell methods become a large valuable resource for haematol-
ogy and immunology research. The effective re-access and
re-analysis of the resource will benefit the experimental re-
searchers and clinicians with weak computational skills in
the field of both haematology and immunology.

Many general single-cell databases were developed, in-
cluding Single Cell Portal (https://singlecell.broadinstitute.
org/single cell) of Broad Institute, Single Cell Expres-
sion Atlas (https://www.ebi.ac.uk/gxa/sc/home) of EMBL-
EBI, SCPortalen, PanglaoDB, scRNASeqDB, SCDevDB,
SC2disease, cancerSCEM and TISCH (43–49). Blood-
Spot is a database of gene expression of haematopoietic
cells in bulk samples. It was updated with several single-
cell/purified bulk datasets recently (50). However, a haema-
tology specific, interactive re-analysis allowed database of
single-cell transcriptome is still lacking. As non-solid tumor
malignancies, blood cancer was seldom collected by cancer
immune databases (47,49,51), due to the entanglement of
the malignant cells and immune cells. In addition, lacking
cell-type annotation of many downloaded datasets hinders
the effective reuse of the published datasets.

Here, we built ABC portal, a blood/immune cell spe-
cific database and tool with curated annotation for blood
cell type, especially hematopoietic stem/progenitor cells
(HSPCs), at single-cell resolution. ABC portal provides
four interactive modules for the exploration and analysis of
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gene expression, cellular composition, gene signatures and
cell-cell communication. 111 datasets of haematopoiesis
and development and 87 datasets of blood disease were
collected, all of which passed through a uniform analysis
pipeline. Curated cell type reference was generated from in-
tegrating four and six datasets for human and mouse, re-
spectively. All the datasets in ABC were re-annotated uni-
formly by the two references, which facilitates cross-dataset
comparison. More importantly, ABC allows the re-analysis
of user-selected subsets of data in one dataset or compar-
ison across datasets. Thus, ABC provides a comprehensive
and professional database and tool for the haematology and
immunology community.

MATERIALS AND METHODS

Data collection

We searched PubMed for the literature related to single-cell
RNA-seq and haematology. The search query was ‘Search:
((‘single-cell RNA’) OR (scRNA-seq)) AND (hemato* OR
leukemia OR blood) AND (human OR mouse OR pa-
tient OR murine) NOT (review) filters: Associated data’.
The literature was then manually confirmed if the data
were publicly available. We downloaded the data from
the Gene Expression Omnibus, ArrayExpress, FigShare
(52) and Zendo (https://zenodo.org/). Through manually
reviewing each literature and supplemental materials, we
curated the meta-information of each dataset, including
species, cancer type, technology, tissue source, flow cytome-
try gates and perturbations. Curated meta-information and
processing steps of each dataset were elaborated in the
database.

Data quality control and batch effect correction

We downloaded the quantification matrix (count or TPM)
of gene expression. If the quantification matrix is not avail-
able, we downloaded the raw FASTQ files and processed
them with Cell Ranger 3.0.2. Cells with a total count of
>500, gene numbers >200 and a percentage of mitochon-
drial gene counts <20% were kept. Human genes were lifted
over to hg38 and Ensembl v105, and mouse genes were lifted
over to mm10 and Ensembl v105 using biomaRt v2.38.0
(53). Each dataset was normalized and integrated across
samples using Harmony v0.1.0 (54).

Reference generation

Four datasets from Atlas of Human Blood Cells (ABC)
(3), fetal bone marrow (8) and Human Cell Atlas (HCA)
were integrated to generate the reference for human, in-
cluding nine samples derived from fetal bone marrow, adult
bone marrow and cord blood (Table S1). Six bone marrow
datasets (4,5,55–57) were integrated to generate the refer-
ence for mouse (Table S1). Cell filter criteria for each dataset
was shown in Table S1. DoubletFinder v2.0.3 (58) was used
to remove doublets for 10X platform generated datasets.
After quality control (Table S1), mitochondrial genes and
genes expressed in <10 cells were removed. To integrate
datasets, 2000 highly variable genes were selected for each
sample by FindVariableFeatures from Seurat v3.1.1 (59,60)

and 2000 highly variable genes were selected for each dataset
and then total datasets by SelectIntegrationFeatures from
Seurat. Datasets were integrated using Harmony v0.1.0 (54)
with 50 PCs to remove batch effects of samples and plat-
forms.

After integration, cells expressing two types of canoni-
cal marker genes were also removed as doublets. In detail,
data were first clustered into >200 small clusters using Seu-
rat with parameters ‘dims = 1:60, reduction = ‘harmony’,
k.param = 10, resolution = 15’. If any one of the canonical
marker genes of a lineage (Table S2) was expressed in >50%
of cells (30% for mouse) in a small cluster and its mean ex-
pression was more than a heuristic value, one-tenth of 99%
quantile of the marker gene expression level in all cells, the
small cluster was tagged by the lineage. A small cluster with
two types of lineage tags was recognized as a doublet clus-
ter. Clusters expressed both T and natural killer (NK) cell
markers, both megakaryocyte and myeloid cell markers or
both NK and myeloid cell markers were kept.

Doublet removed datasets were roughly clustered by lin-
eages and then each lineage was finely clustered by Seurat
using Louvain algorithm. The cell type annotations were
determined based on the marker genes of each cluster iden-
tified by Seurat and the original cell annotation from the
publications. Cluster similarity and cell cycle were checked
to confirm the cell clustering and cell-type annotation us-
ing function BuildClusterTree and CellCycleScoring from
Seurat.

Cell type re-annotation

Malignant cells were recognized using inferCNV v1.7.1
(61). Normal control samples in each dataset were used
as the control for CNV recognition. If not available, ran-
domly selected 2000 cells from the HCA bone marrow
datasets (or mouse dataset (57)) in the reference were
used as control. HLA genes and cell cycle-related genes
(c5.all.v7.4.cyclegene from MSigDB (62)) were removed
to exclude confounding segments. We used default pa-
rameters except for cutoff = 0.1 (cutoff = 1 for Smart-
seq/Smart-seq2 platforms) and scaled data = FALSE
(scaled data = TRUE for samples using external control)
to run inferCNV.

To automate the malignant cell recognition, we clustered
cells into five groups based on the CNV scores from infer-
CNV. For each group, the CNV scores were binarized, i.e.
genes with the maximum or minimum CNV scores in each
group were set to 1, and the rest scores were set to 0. In each
group, genes with an averaged binary score of >0.15 were
recognized as copy number changed genes. For a group with
>50% of cells, in which 95% of genes were lowly expressed
genes (total counts in all cells of the group <2), we increased
the averaged binary score cutoff to 0.6. Cells in a group with
15 continuous copy number changed genes were defined as
malignant cells.

The non-malignant cell types were re-annotated using
scmap v1.4.1 (63) and the single-cell transcriptome refer-
ence generated as described above. scmapCluster mode of
scmap was applied with the top 10 marker genes of each
cell type in the reference dataset as feature genes and a sim-
ilarity threshold of 0.4.

https://zenodo.org/
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Score of signature gene set

Score of a selected gene set in signature module were calcu-
lated using AUCell v1.4.1 (64).

Ligand–receptor network

We built the ligand–receptor interaction network mod-
ule, employing CellPhoneDB v2.0 (65) to predict the
communications between cell types. Parameters of ‘–
iterations = 1000 –subsampling –subsampling-log false –
subsampling-num-cells 1000 –threshold 0.01’ were used.
The mean strength was normalized to the total strength pre-
dicted in each dataset at a user-defined p-value cutoff, then
multiplexed by 104.

Web portal

The front end of the server was developed with VueJS
v2.6.0 (https://vuejs.org/) and ViewUI v4.0.0 (https://www.
iviewui.com/), and the back end was built in Java using the
SpringBoot web framework v2.1.13. The server is hosted
on a Linux Centos v7.0.1406 server running Apache Tom-
cat v9.0.31. Files of the raw data matrix, pre-processed
data and intermediate results were stored in the local Ext4
file system. Metadata and the analysis results were stored
in MySQL v8.0.18 database, which enables more efficient
querying, visualizing and archiving of the datasets and
analysis results. The interactive visualization diagrams were
implemented with the D3.js (https://d3js.org/), Echarts.js
(https://echarts.apache.org/) and CanvasXpress.js (http://
canvasxpress.org/).

RESULTS

Scheme of ABC portal

ABC portal currently contains 198 datasets from 150 pub-
lications and includes 12 blood disease types of human
and mouse (Figure 1). We performed unified quality con-
trol, normalization and batch correction, and manually ad-
justed the meta-information for each dataset. Cell types
of all datasets were re-annotated with the single-cell ref-
erence built in this study. We retained all types of cells in
ABC database, including malignant cells and non-blood
cells. Malignancy was labeled by implementing inferCNV
(61) for the cancer datasets. ABC portal provides modules
for gene expression, signature expression, cell composition
and ligand-receptor network analysis (Figure 1). The label
transfer, cell composition and ligand-receptor network were
pre-calculated for each dataset, allowing fast access to the
results in these modules. More importantly, users can select
a subset of cells by metadata and/or cell types to perform
these analyses and can compare across datasets.

Datasets in ABC portal

There are 122 human and 76 mouse datasets in the database
currently, and the source types mainly include bone mar-
row, PBMC, cord blood, fetal liver and others (Figure
2A and B). There are 111 normal haematopoiesis and 87
disease-related datasets (Figure 2C). The disease-related

datasets consist of 12 blood disorder types and 26 datasets
of inflammation, infections and other disease related to
blood and immune cells. Lymphoma, MM, AML and ALL
were the most frequently studied haematological malig-
nancies (Figure 2C).The normal haematopoiesis datasets
mainly come from the research of hematopoietic hierarchy
and hematopoietic system development, covering different
types of hematopoietic lineages (Figure 2D). Meanwhile,
our database contains datasets derived from a variety of
platforms (Figure 2E).

Reference datasets

Out of total 198 datasets, 64 datasets have an original cell
type annotation. To facilitate the reuse of the datasets,
we provided a unified cell-type annotation for human and
mouse datasets respectively in addition to their original an-
notations from publications. The unified annotation was la-
bel transferred from the single-cell transcriptome reference
we built.

For the human reference, we integrated three bone mar-
row (BM) samples from Atlas of Human Blood Cells (ABC)
project (3), two fetal bone marrow (FBM) samples (8) and
two BM and two cord blood (CB) samples from Human
Cell Atlas (HCA) to generate the reference for human. The
integrated reference was partitioned into 44 clusters, and
the cell identity of the clusters was determined by combin-
ing two types of information (Figure 3A). First, the cell an-
notation from the literature of ABC dataset, HCA dataset
and FBM dataset (Figure S1). Second, the expression of
canonical marker genes (Figure 3A–B and Supplementary
Figure S2A). Comparing the cellular composition of BM,
CB and FBM (Supplementary Figure S2B), GMP was en-
riched in both BM and FBM, HSC was enriched in CB and
adult BM (Figure 3D–E). CD14 monocyte1 was enriched in
FBM, CD14 monocyte2 was enriched in CB and adult BM,
CD16+ monocyte was enriched in adult BM, and naı̈ve B
and naı̈ve T cells were enriched in CB (Figure 3D–E and
Supplementary Figure S2C–E).

For the mouse reference, we integrated 30 samples from
six bone marrow datasets to generate the reference, and
hematopoietic stem and progenitor cells were especially en-
riched in each dataset (4,5,55–57). The integrated reference
was partitioned into 30 clusters and the cell identity of the
clusters was determined by combining the cell annotation
from the five literature and the expression of marker genes
(Supplementary Figure S3A–C and Figure S4). The differ-
ence in cellular composition across the datasets were shown
in Supplementary Figure S3D–E.

The references were used to pre-annotate the datasets in
ABC portal. Users can switch to the consensus cell-type an-
notation by the button on each dataset page.

Sample selection and filter function

ABC portal allows dataset searching by species, tissue
source, disease and publications (Figure 4A). An impor-
tant feature of ABC portal is that dataset-specific filters and
their combinations enable customized sample selection and
re-analysis (Figure 4B). Dataset-specific filters can be selec-
tively added using ‘+ Add’ button (Figure 4B and C). Dif-
ferent combinations of sample filters, including tissue type,
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Figure 1. Scheme of ABC portal.

patient phenotype, flow cytometry gating, and treatment,
are restored and can be applied to all analysis modules (Fig-
ure 4D). For instance, users can select flow cytometry sorted
CD45 + cells from B-ALL samples for subsequent analysis
and comparison (Figure 4B). In addition, metadata of each
cell are provided in the ‘Metainfo’ tab and steps of data pre-
processing are recorded in the ‘Process’ tab (Figure 4D).

Application modules

There are four interactive and user-friendly analysis mod-
ules developed in ABC portal.

UMAP module. This module contains two exploration
functions (Figure 5A). One function is the multi-level cell

annotation, including original sample information, original
cell type annotation (if available), unified cell-type anno-
tation and malignancy (Figure 5B). Users can switch eas-
ily between original and unified annotations with a slider
button (Figure 4B). Specially, we provide a switch button
to show the possible cell type of malignant cells, which al-
lows users to explore the characteristics and heterogeneity
of malignant cells (Figure 5B). For example, it’s shown that
the malignant cells in B-ALL samples were mostly pre-pro-
B and pro-B cells (Figure 5C). The other function is the
gene expression visualization by both UMAP and violin
plot (Figure 5D and E). For instance, DNTT, a marker gene
of B progenitor cell, was highly expressed in the malignant
cells in GSE153697 dataset (Figure 5D). These results con-
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Figure 2. Statistics of datasets in ABC portal. (A) Number of datasets summarized by species. (B) Number of datasets summarized by tissue source. (C)
Dataset summary by types of blood disorder. (D) Number of datasets from healthy conditions summarized by lineage. (E) Dataset summary by sequencing
platforms.

firmed the accuracy of cell type and malignant cell annota-
tion. Gene expression can also be compared across samples
for a given cell type, across cell types or across malignancy
(Figure 5E and Supplementary Figure S5A).

Composition module. The module shows the cellular com-
position in each sample or each patient (Figure S5B). The
cross-sample difference in cellular composition can be com-
pared. For example, in GSE130116 dataset, the proportion
of myeloid cells including monocyte and dendritic cell in
healthy samples is higher than those in primary B-ALL
patients at the diagnosis stage, whereas the proportion of
T/NK cells in patients is higher than in healthy samples.

These are consistent with the results reported in the origi-
nal publication (29) (Supplementary Figure S5B).

Signature expression module. This module displays the
scaled expression of genes in selected signatures and the
AUCell score of the selected gene set. Besides the canon-
ical gene sets, we collected 15 blood disorder-related gene
sets from the literature to facilitate users’ analysis, such
as ‘AML LSC + gene’ signature (Figure 6A). This mod-
ule allows the comparison of signature expression either
across patients in a selected cell type or across cell types,
indicating the signature variance across patients or the sig-
nature enrichment across cell types (Figure 6B and Sup-
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Figure 3. Reference for human datasets. (A) UMAP of cell types of the integrated reference dataset. (B) Feature plots for marker genes. (C) Heat map
of marker gene expression for each cell type. (D) UMAP of reference split by dataset. (E) Bar plot of cell fractions in HSPC and myeloid cells. Statistical
significance determined using chi-square test; *P < 0.05; **P < 0.01; ***P < 0.001. Red asterisk, FBM versus HCA BM; blue asterisk, FBM versus
HCA CB; green asterisk, HCA BM versus HCA CB.
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Figure 4. Data searching and exploration page. (A) Data searching page. (B) Data exploration page for the selected dataset. Red box highlights the switch
for using consensus cell annotation. (C) Pop-up window for adding more filter conditions. (D) Data exploration page with results, metainfo and process
tabs. Red box highlights the user-selected subsets of data saved for downstream analysis.
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Figure 5. UMAP module. (A) UMAP module with different coloring modes (red box). (B) UMAP of cells colored by cell types. (C) Annotated cell types
of malignant cells. (D) Gene expression of DNTT highlighted in UMAP. (E) Violin plot of gene expression by sample in selected cell type.
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Figure 6. Signature expression module and LR network module. (A) Signature expression module with signatures of blood disorder-related genes (red
box). (B) Signature expression comparing across cell types. (C) LR network module with three functional tabs (red box). (D) An example of LR network
results. (E) LR strength from ligands of a selected cell type to receptors of other cell types.
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Figure 7. Dataset comparison page. (A) Compare page (green box). (B) Dataset selection Pop-up. (C) Cell fraction comparison. (D) Gene expression
comparison for a selected gene and cell type across samples from different datasets.
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plementary Figure S5C). For example, the expression of
‘AML LSC + gene’ genes across cell types in AML sam-
ples shows the leukemia stem cell related genes were ex-
pressed highly in HSC/MPP, LMPP and GMP (Figure 6B).
Using this module, we also found that the gene expression
of glycolysis/gluconeogenesis pathway in yolk sac MK cells
was higher than that in the fetal liver in GSE144024 dataset,
which is consistent with the result reported in the original
article (17) (Supplementary Figure S5C).

Ligand-receptor network module. The ‘LR network’ mod-
ule exhibits the predicted ligand-receptor network of se-
lected cell types (Figure 6C). There are three levels of LR
analysis in this module: LR network, LR pair strength
and LR gene expression. For ‘LR network’, users can
customize and explore the LR network by filtering edge
strength or changing network layout (Figure 6C and D).
For ‘LR pair strength’, users can explore the strength
of LR interaction pairs between a selected cell type and
other cell types by switching the analysis type (Figure 6E
and Supplementary Figure S5D). The interaction pairs
are oriented from ligands to receptors and the strength
plots are separated into two by the orientation. Finally,
‘LR gene expression’ exhibits the expression levels of
the ligand and receptor genes. For example, LR network
showed that malignant cells tend to interact with CD14
and CD16 monocytes in GSE161801 dataset, and LR
pairs LILRA4-BST2, C5AR1-RPS19, CD74-MIF, LAIR1-
LILRB4, CCL4-GPRC5D, TNFRSF17-TNFSF13B and
ICAM1-AREG mediated the communication as reported
(41). In addition, more interactions, such as GPR37-PSAP
and CCL5-CCR1 that were not reported, were also discov-
ered with the analysis and may be worth further study.

Comparison across datasets

ABC portal provides a convenient utility for cross-dataset
comparison. Under the ‘Compare’ page, users can select
multiple datasets to compare cell composition and gene ex-
pression across samples (Figure 7A and B). Cell counts and
fractions for each cell type in each sample can be compared
and be highlighted across samples (Figure 7C). Plot of stan-
dard deviation versus mean cell fraction indicates the highly
variable cell types across samples. Gene expression can be
compared across samples in a cell type of interest (Figure
7D). P value of Kruskal–Wallis test is shown to indicate the
significance of difference.

DISCUSSION

Many single-cell databases were developed to collect vari-
ous types of single-cell datasets. However, a blood/immune
cell specific single-cell database with uniform cell type anno-
tation and analysis utilities is not available. Here, we devel-
oped ABC portal, a comprehensive blood/immune single-
cell data portal with meticulous cell annotation for re-
searchers to explore and re-analyze the data. There are three
special features of ABC. First, ABC is a blood/immune cell
specific database with refined cell type annotation and man-
ual curation. Second, ABC provides interactive analysis
modules for data re-analyze, especially the cell-cell commu-
nication module. Third, ABC allows comparison between
datasets and analysis of selected sample subsets.

In addition, as an important project of the consortium
of Atlas of Blood Cells, ABC portal will be kept updat-
ing. In the future, ABC will integrate other single-cell omics
data, such as scATAC-seq, protein data of CITE-seq and
scDNA-seq. More analysis modules will be launched. In
conclusion, ABC portal is a valuable resource and web tool
for researchers to investigate haematopoiesis, blood disease
and immunology.
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Chromatin mapping and single-cell immune profiling define the
temporal dynamics of ibrutinib response in CLL. Nat. Commun., 11,
577.

40. Waldschmidt,J.M., Kloeber,J.A., Anand,P., Frede,J., Kokkalis,A.,
Dimitrova,V., Potdar,S., Nair,M.S., Vijaykumar,T., Im,N.G. et al.
(2021) Single-Cell profiling reveals metabolic reprogramming as a
resistance mechanism in BRAF-mutated multiple myeloma. Clin.
Cancer Res., 27, 6432–6444.

41. Tirier,S.M., Mallm,J.-P., Steiger,S., Poos,A.M., Awwad,M.H.S.,
Giesen,N., Casiraghi,N., Susak,H., Bauer,K., Baumann,A. et al.
(2021) Subclone-specific microenvironmental impact and drug
response in refractory multiple myeloma revealed by single-cell
transcriptomics. Nat. Commun., 12, 6960.



D804 Nucleic Acids Research, 2023, Vol. 51, Database issue

42. Liu,R., Gao,Q., Foltz,S.M., Fowles,J.S., Yao,L., Wang,J.T., Cao,S.,
Sun,H., Wendl,M.C., Sethuraman,S. et al. (2021) Co-evolution of
tumor and immune cells during progression of multiple myeloma.
Nat. Commun., 12, 2559.

43. Abugessaisa,I., Noguchi,S., Böttcher,M., Hasegawa,A., Kouno,T.,
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