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Abstract
We show how a multi-resolution network can model the development of acuity and coarse-to-fine processing in the mam-
malian visual cortex. The network adapts to input statistics in an unsupervised manner, and learns a coarse-to-fine represen-
tation by using cumulative inhibition of nodes within a network layer. We show that a system of such layers can represent 
input by hierarchically composing larger parts from smaller components. It can also model aspects of top-down processes, 
such as image regeneration.
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Introduction

In a dynamical environment, it is essential for animals 
to react quickly, but they also need to finely discriminate 
between stimuli, like those associated with food and mates. 
To accommodate these dual requirements, perceptual net-
works in mammals represent information in both a coarse 
and a finely detailed manner. Several studies have suggested 
that cortical development is closely tied to the formation of 
these abilities (Hughes 1977; Boothe et al. 1985; Fagiolini 
et al. 1994; Huang et al. 1999; Prusky and Douglas 2003).

So far, biologically plausible models of such combined 
representations in artificial networks have been scarce. Mod-
els capable of unsupervised learning have been particularly 
elusive. In this paper, we attempt to address the issue of 
unsupervised learning of coarse-to-fine representation, and 
how it can be implemented in an artificial system.

A notable feature of mammalian cortical development 
is the presence of critical periods (Hensch 2005). During 
such periods, the cortex displays heightened plasticity, 
and it is thought that this reflects perceptual processes that 
adapt to the fundamental statistics of the sensorium (Free-
man and Marg 1975; Boothe et al. 1985; Bao 2015). Once 

these self-organizing processes have stabilized, plasticity 
decreases (Hensch 2005).

Interpreting critical periods as adaption would predict a 
longer critical period for more variable environments, as 
well as for a more complex sensory apparatus. This is indeed 
what has been found (Hensch 2005), with plasticity windows 
ranging from around a week for mice (Huang et al. 1999), 
up to several years for humans (Hensch 2005).

During the critical period, perception of detail, or acuity, 
increases (Huang et al. 1999). This increase is progressive 
and develops over time. Apart from the optics of the eye, 
visual acuity depends primarily on the density of retinal gan-
glion cells, and secondly on the interpretative ability of the 
visual cortex (Hughes 1977; Huang et al. 1999).

The requirement for multi-resolved representation is 
motivated by a need for both fast pattern recognition and 
detailed pattern recognition. Multi-resolved representation 
(Navon 1977; Schyns and Oliva 1994; Pomerantz 1983; De 
Valois et al. 1982; Ullman et al. 2002; Simoncelli 2003) 
implies that at least two representations are available: a 
coarse grained representation and a finer grained one. Acu-
ity measures the highest possible resolution of perceptual 
representation, and hence, the fine end of the multi-resolved 
spectrum. Whether more than two levels of detail is required 
or present in biological systems is a subject for further 
investigation.

Visual acuity increases significantly during the first post-
natal year in mammals (Boothe et al. 1985). This develop-
ment appears to be mediated by increasing innervation of 
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inhibitory inter-neurons in the primary visual cortex (Huang 
et al. 1999), and is dependent on the activity of pyramidal 
cell populations that receive signals from retinal ganglion 
cells (Freeman and Marg 1975; Fagiolini et al. 1994). A 
similar, but longer term process appears to be involved in 
the episodic memory system, and further along the occipi-
totemporal pathway (Keresztes et al. 2017).

As acuity increases, however, the need for rapid detection 
of ecologically important stimuli remains. Hence it appears 
reasonable that the brain does not outgrow its low-resolu-
tion representations, but rather maintains their approxima-
tions to afford quick appraisal. This leads to the concept 
of multi-resolution, which implies that a system learns and 
uses representations of differing resolution, depending on 
the requirements of the situation (Navon 1977; Schyns and 
Oliva 1994; Pomerantz 1983; De Valois et al. 1982; Ullman 
et al. 2002; Simoncelli 2003).

For biological systems, one of the most salient uses for 
multi-resolved representations is in the categorization of 
stimuli. In this context, coarse representations allow quick 
reactions in the presence of predators, while finer representa-
tions allow an animal to discriminate between what can be 
eaten and not, which con-specifics are of the opposite sex, 
or who can be groomed. For artificial neural networks, on 
the other hand, coarse representations can make for quicker 
response times and lower energy costs, while finer represen-
tations increase classification accuracy.

Briefly, the model presented here consists of a number of 
processing layers arranged in a hierarchical structure. The 
model takes in a gray-scale image, and each layer uses a 
filter bank that adapts to represent statistical regularities of 
the input. Using the weight update algorithm detailed below, 
the filters adopt their representations with varying levels of 
detail. Layers closer to the input have filters that cover a 
smaller area of the input, while the top most layer has filters 
that cover the area of the entire input image. Using linear 
combinations of the learned filters, the input can be regener-
ated through top-down processes. See Fig. 1 for a diagram 
of the model.

The model attempts to map to the biological mecha-
nisms described above, in the following way. The critical 
period in acuity development corresponds to the training 
period for the various layers, where layers nearest to the 
input must necessarily stabilize before layers further up in 
the hierarchy. This implies that more complex processing 
that involves more layers takes a longer time to stabilize. The 
multi-resolved strategies map to our proposed mechanism of 
cumulative inhibition.

Consequently, the major key points of the model are as 
follows. Firstly, it learns multi-resolution representations in 
an unsupervised way. Secondly, it can regenerate arbitrary 
representations in a top-down fashion. Thirdly, it suggests 
a possible mechanism for multi-resolution representation in 

biological networks by means of cumulative inhibition in 
the sensory cortices.

It is not obvious that a model concerning itself with how 
acuity develops needs to concern itself with multi-resolved 
organization. However, as we attempt to show, the proposed 
cumulative inhibition mechanism appears to tightly inter-
twine multi-resolution and acuity, such that the latter is an 
effect of the former. That is, the process of cumulative inhi-
bition forms receptive fields responding to varying degrees 
of complexity. As these fields develop, they support percep-
tion of more detail, and hence higher acuity.

The rest of this paper is structured in the following way. 
First, a background section will present past approaches to 
implementing multi-resolution functionality, and different 
theories of how multi-resolution relates to human percep-
tion. Reverse hierarchy theory of multi-resolved repre-
sentation will then be highlighted and discussed, before 

Fig. 1   MRNET computational graph. Bottom-up input is a set of 
36 × 36 arrays of floating point values, like intensity values from an 
image. In this particular configuration, two bottom-up inputs are used 
to be able to show the refinement process on a constant image while 
learning also from a variable image stream. The input images are fed 
into layer 1 of the model, where they are transformed into a represen-
tation which takes into account level of detail. Weights are updated 
by iterating over the set of inputs. In addition to the bottom-up input, 
each layer has also a set of top-down inputs, where the reverse opera-
tion is performed: By convolving the layers’ weights with the top-
down inputs, images of the same format as the bottom-up input is 
synthesized. At layer 1, the synthesized output is a 36 × 36 image. In 
the present model, by connecting the first bottom-up output of layer 4 
with the top-down input, input images are reconstructed
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anti-Hebbian learning and sparse coding is presented as a 
possible mechanism for achieving multi-resolution in bio-
logical networks. The background section will end with 
a presentation of the mammalian canonical microcircuit. 
These cortical networks appear to have in place the machin-
ery to support formation of multi-resolved receptive fields.

Under the method section, we describe the architecture 
and the experimental setup, along with an overall descrip-
tion of the novel multi-resolution network (MRNET) and its 
algorithms. This is followed by a short description of how 
the system was trained. Next, we present the results of the 
experiment with figures showing how the system adapts to 
the training input.

Finally, in the discussion, we attempt to compare the 
measured behavior of the experimental system with cur-
rent knowledge of how biological neural systems develop. 
We also address some criticisms against sparse coding, and 
suggest some ways they might be resolved in the context of 
cumulative inhibition.

Background

In this section, we present a selection of past approaches to 
multi-resolution representation, and theories on how multi-
resolution relates to perception. We present the reverse 
hierarchy theory of multi-resolved representation in par-
ticular. Possible mechanisms for such representations are 
anti-Hebbian learning and sparse coding, which is presented 
next. Finally, a brief overview of the mammalian canoni-
cal microcircuit is given. These circuits are candidate sites 
for mediating multi-resolved representation in mammalian 
brains.

Multi‑resolution representation

In the context of coarse-to-fine processing, Witkin (1984) 
noted that a signal’s extreme values are useful for compactly 
describing that signal, since they frequently point to edges 
or other semantically important features. Thus, extremes can 
be used to produce a coarse sketch of the signal. But it is 
difficult to determine at which scale to filter events. Using a 
method called scale-space filtering, Witkin showed how sev-
eral descriptions of a signal can be produced by convolving it 
with a Gaussian mask with a range of sigma values. A small 
sigma value will conserve high frequency information, while 
a large sigma will smooth out those frequencies, leaving only 
lower frequency information. The resulting representations 
were arranged into a tree structure. This structure is called 
the interval tree, and is constructed by the following process. 
First, the second derivative is applied to the product of the 
convolution operation. This yields a set of zero-crossings for 
each curve. Secondly, these zero-crossings are used to create 

the so-called undistinguished intervals. Such an interval is 
bounded by extremal points, but contains no extremal point 
within it. An undistinguished interval becomes a node in the 
interval tree. The node can be expanded by considering the 
curve of the next more detailed sigma value, and adding all 
the undistinguished intervals that are encompassed within. 
This process is continued until the curve with the small-
est sigma value has been processed. The interval tree hence 
contains information about the source signal at all scales. 
But to find the “right” scale, that is the scale which “pops 
out” to human perception, Witkin considered the stability of 
bounding extrema across scales. He found that those extrema 
which were most stable can be used to generate human-sali-
ent intervals. Less-stable intervals can then be discarded to 
simplify and constrain the interval tree.

Another type of multi-resolution strategy is used in one of 
the most successful object detection algorithms so far (Viola 
and Jones 2001). A cascade of coarse-to-fine templates is 
used to detect objects, such as faces, in an image. The input 
is then analyzed at progressively higher resolution. At each 
stage, input patterns that do not match adequately are dis-
carded. At the highest resolution, only a few candidates then 
remain to be analyzed.

For reinforcement learning, similar problems occur for 
classifying situations and associating them with the correct 
actions (Sutton 1996). Sutton (1996) employed sparse and 
coarse coding of function approximators to solve control 
problems. His approach built on the “cerebellar model arith-
metic computer” neural network (Miller et al. 1990) which 
allows inputs to overlap if they are close in the input space. 
The multi-resolution aspect comes from receptive fields 
being organized in this overlapping way.

The use of coding at several different resolutions has also 
been shown to speed up reinforcement learning with as much 
as an order of magnitude or more (Balkenius 1996; Sutton 
1996). Features at low resolution are first associated with the 
rewarded responses, and the finer scales are subsequently 
used to fine-tune the behavior to specific input patterns. The 
multi-resolution representation promotes fast generalization 
while still supporting fine grained discrimination, by simul-
taneously coding for multiple similarities and differences.

Navon (1977) investigated multi-resolved perception 
in human subjects. Participants were shown pictures that 
could be interpreted both from a global and a local perspec-
tive, e.g., a large character made out of smaller ones. In one 
particular experiment, participants were required to judge 
whether such images were the same or different. The images 
were only shown for a brief time and could differ either at 
the local or the global level. Navon found that global differ-
ences were detected more frequently than were local ones.

Similarly, Schyns and Oliva (1994) studied how scenes 
are perceived in very fast recognition tasks. In two experi-
ments, they investigated the roles of coarse and fine 
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information when attempting to categorize natural scenes. 
Their results indicate that coarse processing is done first, 
which allows the visual system to form a rough approxima-
tion. This can be used to quickly classify what the overall 
scene represents. With time, more detail is added which can 
in turn be used to update the representation, or to refute the 
initial, raw estimate. On the other hand, Pomerantz (1983) 
explored how the perception of local parts compares with 
perception of wholes comprising those parts. They conclude 
that global precedence is not necessarily given, but depends 
on discriminability of the global level compared to the local 
one.

Given the effectiveness and usefulness of processing at 
multiple scales, it appears reasonable to assume that evolu-
tion has incorporated this strategy into biological perceptual 
mechanisms. Indeed, it is well known that the visual cortex 
codes information at different resolutions (De Valois et al. 
1982; Ullman et al. 2002). According to the efficient coding 
hypothesis, the role of the early visual system is to produce 
an efficient representation for the visual input signal (Simon-
celli 2003). If this is the case, we would expect cells in the 
visual system to respond to the relevant variation in natural 
images.

This line of inquiry has been explored by Bonin et al. 
(2011). They used high-speed calcium imaging to investi-
gate the layout of the receptive fields in the primary visual 
cortex of rats. Random wavelet stimuli were used to allow 
the receptive fields of the neurons to be reconstructed from 
the calcium responses. The results show a global retinotopic 
shift in receptive-field position, but also a local scattering 
of cells with different receptive-field properties. Although 
not discussed by the authors, their results show considerable 
local variation in scale as well as orientation. They do not 
report finding any receptive fields for more complex pat-
terns, but that may be due to their excluding patterns that 
explained less than 10% of the variation.

Van den Bergh et al. (2010) found a considerable variabil-
ity on spatial tuning of cells in V1 and V2L in mice spanning 
almost two orders of magnitude, although most of the cells 
were tuned to approximately 0.1 cycles per degree. Similar 
results were found for V1 and V2 of macaque monkeys.

Interestingly, sensitivity to spatial frequencies has also 
been found in higher regions involved in scene perception, 
including the parahippocampal place area, the retrosplenial 
cortex, and the occipital place area (Kauffmann et al. 2015).

Reverse hierarchy theory and the function 
of multi‑resolved representation

Reverse hierarchy theory (Hochstein and Ahissar 2002; 
Ahissar and Hochstein 2004) proposes that top-down pro-
cesses are required for increasing detail in visual percep-
tion, while bottom-up pathways principally mediate coarse 

and holistic representations. Furthermore, since information 
available to conscious awareness comes from the top of the 
perceptual hierarchy, top-down processes also start from this 
level, and work their way downward toward simpler, but 
more detailed representations. Bouvet et al. (2011) indicate 
that this principle holds not only for the visual pathways, 
but also for the auditory ones. Connected to reverse hierar-
chy theory, Campana et al. (2016) hypothesized that if the 
visual hierarchy constrains conscious vision by means of its 
structure, global orientations encoded at high levels of the 
visual hierarchy should be reported quicker than local orien-
tations. They further hypothesized that if global orientations 
are prioritized, they might bias reports of local orientations.

They performed experiments with novel texture patterns 
designed to better distinguish local vs global processing than 
used by Navon (1977). Instead of Navon’s letters, they used 
circular textures made of oriented lines, and presented on 
a uniform gray background. A central rectangular area dis-
played aligned lines, but was surrounded by lines of random 
orientation. Among other things, they recorded magnetoen-
cephalographic (MET) signals from participants while they 
were reporting orientation of local and global features. To 
get a measure of whether local or global features were most 
salient to subjects, they had them spontaneously report the 
orientation of stimuli, but without specifying which of the 
two levels to use.

Their findings support the initial hypotheses, although 
the difference in reaction time between global and local pro-
cessing is in the order of 0.05s. Global orientation was also 
found to interfere with local orientation. Results from the 
MET experiment indicate that global information process-
ing precedes local processing. This occurs even if global 
information is not task-relevant, suggesting it is automatic. 
This concurs with reverse hierarchy theory.

According to Ahissar and Hochstein (1997), multi-
resolved receptive fields can be used for tasks with different 
complexities. For visual tasks, their findings indicate that 
learning of easier tasks uses more generalizations, but as 
tasks get more difficult, learning becomes more specialized. 
This maps to patterns of receptive-field selectivity along the 
visual pathway. Easy conditions generalize across position 
and orientation, while more difficult tasks narrow learning 
to particular orientations and positions.

Anti‑Hebbian learning and sparse coding

As stated above, reverse hierarchy theory of perception 
states that top-down processing begins at the top of the hier-
archy, and with the most general representations (Hochstein 
and Ahissar 2002).

This implies that both coarse and fine representations 
exist in the perceptual hierarchy, but that the fine repre-
sentations are not automatically activated. More detailed 
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representations are implicitly more specific to stimulus. 
Hence, their activation should be more sparse. That is, when 
one population becomes active, others should be inhibited.

Anti-Hebbian learning and sparse coding (Földiák 1990) 
is a candidate for the mechanism behind this aspect of multi-
resolution and reverse hierarchy theory.

Földiák (1990) proposed that inhibitive or anti-Hebbian 
connections in a neural population produce sparsely coded 
activation. That is, neural units tend to represent differences 
rather than similarities, and frequent patterns are represented 
by fewer units than infrequent ones. As the name implies, 
anti-Hebbian mechanisms produce decorrelated activation: 
Joint activity becomes less likely with time. This is in con-
trast with Hebbian-like association.

The advantages of sparse coding have been described by 
Olshausen and Field (2004), Földiák and Young (1995) and 
Barlow and Toraldo (1995). It allows multiple objects to be 
represented with little overlap and hence minimal ambigu-
ity. At the same time, learning can be quick, since a given 
active population only need to represent a small number of 
patterns, and hence do not need extensive exposure.

The mammalian canonical microcircuit

Given that the brain does indeed use multi-resolved recep-
tive fields mediated by sparsely activated neural populations, 
and that anti-Hebbian learning via inhibitive inter-neurons 
is the mechanism by which it is achieved, the questions still 
remain where in the brain these processes take place.

Bastos et al. (2012) describe the canonical microcircuit, 
repeated across cortical columns of the mammalian visual 
cortex. The cortical column is divided into six layers, con-
sisting of varying densities of pyramidal neurons and inter-
neurons. Forward-projecting inputs to this circuit can be 
found in layer 4, outputs in layer 5 and 6, while layer 1 con-
sists solely of inhibitory inter-neurons. Backward-projecting 
inputs from more frontal regions, are found in layers 1, 2, 3, 
as well as 5 and 6.

Hence, canonical microcircuits appear to have in place 
the required machinery for realizing multi-resolution and 
acuity, as well as top-down attentive processes that utilize 
them.

Methods

To test how multi-resolution coding could develop in the 
cortex, we have designed a computational model which 
consists of a set of hierarchically organized layers of multi-
resolution networks (MRNET). The model was implemented 
in the Ikaros framework (Balkenius et al. 2010) and trained 
on sequences of images to see how the receptive fields of the 
system would develop over time.

Architecture

Figure 1 shows the basic computational architecture of the 
regeneration experiment. The input module reads a bitmap 
image from disk and transforms it into a tensor of real val-
ues. All MRNET modules have the same design, but are 
parameterized with the values shown in Table 1. The sizes of 
the receptive fields relative to the input are shown in Fig. 2. 
The output of a layer is equal to the activation of the neural 
units of that layer. The activation is given by the dot product 
of the input and the unit weights (see Eq. 2).

As shown in Fig. 1, the computational graph used for 
the current work is a simple four-layer system, where two 
36 × 36 pixel gray-scale images are fed into layer 1, which 
uses filters of size 3 × 3 pixels, a stride of 1 pixel, and has 
a filter bank of 3 rows and 12 columns. The output of this 
layer is two matrices of 102 × 408 floating point numbers, 
one for each input image. The output tensor can be thought 
of as an array of 34 × 34 “cells”, each having a receptive 
field corresponding to a particular 3 × 3 patch of the input. 
Each such cell consists of a sub-tensor of dimensions 3 × 12, 
the same dimensions as the filter bank. This means that for 
each cell, the activity of each filter in the filter bank is given. 
The reason for using two-dimensional matrices like this is 
constraints of the Ikaros framework.

The above-described pattern is replicated for layers 2 to 
4, but with one difference. Since receptive fields are overlap-
ping in layer 1, and placed side by side in the output tensor, 
receptive fields in subsequent layers must be dilated (Yu and 
Koltun 2015; Wang et al. 2017), and use a stride equal to 
the size of the filter bank in the previous layer. For example, 
for layer 2, the receptive field should cover 3 × 3 of layer-1 
receptive fields. Layer 2 receptive fields must then have the 
size of 3 × 3, 3 × 12, or 9, 36. Furthermore, each 3 × 12 
block must be dilated or separated by 2 cells in the layer-1 
output, which comes out as 2 × 3, 2 × 12, or 6 × 24 elements 
in the output tensor. The rationale behind using dilation like 
this is to conserve computational resources and to more eas-
ily relate receptive fields to the image inputs.

The output of the layer 4 module was fed back to an input 
which uses the learned weights to reconstruct an approxi-
mation of the input. This approximation is further piped 
through all the layers until a complete image is produced 
at layer 1.

Table 1   Hyper-parameters for MRNET layers 1–4, given in a row and 
column format

Layer 1 Layer 2 Layer 3 Layer 4

Receptive field 3, 3 3, 3 2, 2 2, 2
Filters 3, 12 10, 20 12, 24 8, 16
Learning rate 0.0005 0.0005 0.0005 0.0005
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In the current implementation, each layer in the MRNET 
allows an arbitrary number of bottom-up and top-down inputs. 
The number of each is independent. This allows learning from 
several streams, and also allows synthesis of multiple streams. 
The rationale behind this is first to allow sharing of the filter 
bank among streams and hence not having to re-train or use 
a separate network for different streams. Secondly, in cases 
where the required number of bottom-up and top-down streams 
is not equal, it saves computational resources. For example, in 
a system with an attentional component, it allows the center of 
attention to be one stream, while the context can be another; 
the choice can be made to only regenerate the center of atten-
tion, while using the context only for potentially selecting sets 
of actions or controlling other context-sensitive processing.

The streams in both directions are organized such that 
each are cycled through for the various operations done 
within the layer, such as rearranging the input tensor so that 
every receptive-field patch becomes a row vector; updating 
the filter bank; multiplying the input tensor with the filter 
bank to get the activity tensor; and rearranging the internal 
activity tensor into two-dimensional form to get the output 
tensor. Similarly for the top-down streams, they are cycled 
through when rearranging the top-down input; multiplying 
the top-down tensor with the filter bank; and decoding the 
top-down reconstruction tensor to get the top-down output 
by summing up overlapping receptive-field patches.

For the experiment conducted here, layers were set up 
to accept two parallel upstream inputs and one downstream 
reconstruction input. This allowed the layers to learn from 
both upstream inputs while reconstructing only the static 
image seen in Fig. 6. Using dot product activation with unsu-
pervised learning has been demonstrated by Dozono et al. 
(2016), while Liu et al. (2015) show how self-organizing 
maps can be arranged in a hierarchical structure, though 

without using dot product activation and weight sharing. 
The work presented here differs from these previous works 
primarily in how weights are updated by means of cumula-
tive inhibition. This will be explained in detail below.

The multi‑resolution network

The central idea of the multi-resolution network is to add an 
unsupervised component to the location invariance of convo-
lutional neural networks (LeCun et al. 1989). Additionally, 
the weight update algorithm uses cumulative inhibition of 
higher-order features to force weights to represent increas-
ingly higher detail. The hypothesis behind cumulative inhi-
bition is that pyramidal cells in visual cortex are differently 
affected by mutual inhibition, and thus that some cells expe-
rience heavy inhibition, while others less so. This should 
result in a gradient of inhibitive pressure across pyramidal 
cell populations. Since an inhibited cell is less likely to 
respond to the patterns that its inhibiting cells respond to, 
our hypothesis is that highly inhibited cells are responsive 
to significantly more diverse, and hence more detailed pat-
terns than are less inhibited cells. Figure 3 shows a simple 
schematic representation for how this might work, with one 
pyramidal cell inhibiting two others, a second receiving 
inhibition from one, and inhibiting a third, and the third 
cell receiving inhibition by two others, but inhibiting none.

Each layer of the MRNET has a filter bank. This is a 
two-dimensional array of filter kernels, associated with an 
inhibition topology. In this work, all layers have the same 
filter bank topology, given by the function:

(1)

f ((j0, i0), (j1, i1)) =

{
1, if (j0 ≤ j1 OR (j0 = j1 AND i0 ≤ i1))

0, otherwise

Fig. 2   Size of receptive fields for layers 1 to 4, relative to 36  ×  36 
pixel input. Here, layer 1 consists of a 3 × 3 receptive field, with layer 
2 being made up of a 3 × 3 grid of these, covering 9 × 9 pixels. Layer 
3 doubles this, covering 18  ×  18 pixels, which is doubled again in 
layer 4 to cover the whole 36 × 36 pixel image. The first layer uses 
overlapping fields with stride 1. Subsequent layers use dilated sliding 
window dot product (convolution) (Yu and Koltun 2015) to maintain 

spatial relationship with input. For example, the second layer cov-
ers three of the first layers receptive fields. But since the first layer 
uses overlapping fields, the second layer must have its receptive fields 
dilated to skip two neighboring fields. This is done to keep the sizes 
of the receptive fields as small as possible while still allowing them to 
cover large parts of the input
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where j0 and j1 are row indices and i0 and i1 are column indi-
ces in the filter bank array. The function can be interpreted 
as the kernel at position (j0, i0) inhibiting kernel at (j1, i1).

The bottom-up activation A ∈ ℝ
n×j is achieved by mul-

tiplying the bottom-up input tensor I ∈ ℝ
n×i with the filter 

bank tensor W ∈ ℝ
j×i using standard matrix multiplication 

to get the dot product activation for each filter:

with i ∈ {3 × 3, 9 × 36, 20 × 40, 24 × 48} and n ∈ {34 × 34,

28 × 28, 22 × 22, 10 × 10} and j ∈ {3 × 12, 10 × 20, 12 × 24,

8 × 16} . Here, n, i, and j are ordered by layer. I is constructed 
by converting patches into rows using function im2row on 
the input, a row-based version of im2col (Function reference: 
im2col 2018b).

Similarly, since all operations involved in activation 
and weight update are linear, a MRNET can be used to 
generate images in a top-down fashion. This is done by 
multiplying the top-down input tensor ITD ∈ ℝ

n×j with the 
filter bank tensor W, to yield TD ∈ ℝ

n×i:

with W, n, i, j as given above. Rows of TD are converted 
to patches and assembled by a sliding version of function 

(2)A = IWT

(3)TD = ITDW

row2im, a row-based version of col2im (Function reference: 
col2im 2018a).

A central feature of the MRNET is the inhibition buffer, 
which models the influence on pyramidal neurons by inhibi-
tory inter-neurons. The inhibition exerted on a given level is 
the cumulation of inhibition exerted on previous levels, as 
illustrated in Fig. 3.

The inhibition buffer is implemented in several steps, 
involving the tensors I, A, W given above, as well as the inhi-
bition mask M ∈ ℝ

j×j . See Fig. 4 for a graphical overview of 
the tensors involved, and the weight update process.

The process of calculating the inhibition buffer is initiated 
by setting up the inhibition mask M. This is done by iterating 
over each element in the mask and applying the topology rule 
of choice. See Eq. 1 for the topology rule used here.

The next step is to apply the mask to the activity tensor. 
This is done by tiling both the inhibition mask and the activity 
tensor into Mr,Ar ∈ ℝ

j×n×i and multiplying by element:

Tiling operations are done to allow the use of efficient tensor 
operations and thus to conserve computational resources.

MA  and W  are again tiled yielding tensors 
MAr,Wr ∈ ℝ

j×n×ji . These are multiplied by element:

The inhibition buffer is then obtained from the product MAW 
by a summing dimensional reduction along the first dimen-
sion, resulting in the inhibition buffer tensor IB ∈ ℝ

n×ji . 
Given elements ibn,ji ∈ IB , and elements mawn,j,ji ∈ MAW:

with n, j, and i as given above.
Next, the bottom-up input I is tiled to a tensor Ir ∈ ℝ

n×ji . A 
temporary delta-buffer tensor DB is calculated by subtracting 
the inhibition buffer IB from the tiled input tensor:

The delta buffer is resized, and the activity tensor A is tiled 
to yield DB,AAr ∈ ℝ

j×n×i . A temporary tensor DW ′ is then 
obtained by multiplying the delta buffer by element with 
the tiled activity tensor AAr and the scalar learning rate �:

The final weight delta is obtained by summing elements 
dw�

n,j,i
∈ DW � along the first dimension to yield a tensor with 

elements dwj,i ∈ DW|DW ∈ ℝ
j×i:

(4)MA = Mr ⊙ Ar

(5)MAW = MAr ⊙Wr

(6)ibn,ji =

j∑

c=1

mawc,n,ji

(7)DB = Ir − IB

(8)DW � = DB⊙ AAr ∗ 𝛼

(9)dwj,i =

n∑

c=1

dw�
c,j,i

Fig. 3   Pyramidal cells and inhibitive inter-neurons exerting cumula-
tive inhibition in the cortical microcolumn of the visual cortex. The 
leftmost pyramidal cell here represents populations at the dense end 
of the sparsity gradient, and which respond to more general stimuli, 
while the rightmost pyramidal cell represents populations at the 
sparse end of the gradient. These respond to more particular, detailed 
stimuli
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Tensor DW can be then be added to the filter bank directly:

Training

Training was done layer-wise, starting with layer 1, on the 
CIFAR-10 dataset (Krizhevsky and Hinton 2009) until the 
smoothed absolute value of the derivative of the difference 
between the input and the reconstruction was less than a 
threshold value (1e−4). The rationale behind this somewhat 
complicated stopping criterion is that the optimum stopping 
point in time was unknown, as was the degree of reconstruc-
tion similarity that could be achieved.

Images of the weight filters (Fig. 5) were produced by 
activating each of the filters by turn and regenerating the 
receptive field in a top-down fashion.

As will be elaborated on below, the presented architecture 
potentially opens up intriguing possibilities for unsupervised 
learning of visual building blocks that might be used for 
robotic applications like obstacle avoidance. Furthermore, 
a system using a MRNET might be used to model aspects 
of visual abstraction by inhibiting high detail filters. The 
top–down constructive algorithm might be used to elucidate 
such cognitive processes as imagination and creativity.

Results

Figure 5 shows reconstructed weights for layers 1–4, where 
layer 1 is closest to the input. For each layer, the topmost 
row is at the coarse end of the coarse-fine spectrum, with the 
bottom-most row representing the finest detail.

As shown in Fig. 6, frequency content of the reconstructed 
image consists mostly of low frequencies before training, 
but is much closer to the original after training. There is a 

(10)Wt+1 = Wt + DW

noticeable dip above 15Hz in the trained image, and also one 
below 5Hz. Figure 7 shows average frequency content of 
weights in each row of layer 4. As can be observed, there is 
a clear progression, where the low-frequency power attenu-
ates, while high-frequency power increases. There is also 
a noticeable increase in power in middle frequencies. The 
difference is small, however, for row 7 and 8.

Figure 8 indicates that layer 4 is able to represent an 
appreciable portion of the information of an input image by 
1000 iterations. Though it still might lack enough detail for 
determining who the picture represents, there is qualitatively 
enough for category identification.

The input image and the reconstructed images were nor-
malized and cropped to remove dark framing artifacts. The 
cosine similarity was then calculated at every fifth iteration. 
Figure 9 shows how the similarity increases the first 10,000 
iterations, then begins to taper off from iteration 30,000.

To the extent that the results above support that the 
MRNET can represent input in a coarse-to-fine manner, 
there are several cases in which it might be of use. Starting 
with the bottom-up pathways, the MRNET affords unsuper-
vised learning of visual building blocks. This means that the 
network can be trained on unlabeled data. In a robotic sys-
tem, it would suffice for the robot to be active and observing 
the world for the network to begin learning.

The building blocks can also be used before the system 
has fully stabilized and can optimally represent input. A 
coarse outline of the world can be useful for such things as 
obstacle avoidance, and for beginning exploration. As Fig. 8 
shows, the outline of a face takes only a couple of thousand 
of iterations to be formed, when preceding layers have sta-
bilized. As a first approximation, this might be enough to 
distinguish people from other things.

Related to this, the approximations yielded by the top 
rows of the filter banks may be used for fast recognition of 
particular important categories. In humans and monkeys, 
such unrefined patterns appear to be used for avoiding dan-
gers in the natural environment, such as snakes and spiders 
(Globisch et al. 1999; LoBue and DeLoache 2008; Shibasaki 
and Kawai 2009). For a household robot, analogously impor-
tant categories might be staircases, people, or pets like dogs.

Moving into the more traditionally cognitive domain, a 
coarse-to-fine representation might prove to be highly useful 
as a mechanism for abstraction. Selectively attenuating the 
filters representing detail yields a more abstract representa-
tion of the input. Such representation might then be used 
for comparisons, enabling inputs that would otherwise be 
judged different to be judged same.

Depending on how the filter bank of the layers is con-
figured, the MRNET can be used to compress input repre-
sentations while retaining important features. The specific 
requirements of the application dictate how much detail 
is required, and hence how many rows and columns of the 

Fig. 4   Illustration of weight update calculation. Operation (1) cor-
responds to Eq. 4, and shows the mask tensor M and activity tensor 
A being tiled into tensors M

r
 and A

r
 , then multiplied per element 

to yield tensor MA. Operation (2) corresponds to Eq.  5, and shows 
tensor MA being tiled in the x dimension, yielding tensor MA

r
 , then 

being multiplied with tensor W
r
 , which is the result of tensor W being 

tiled along dimensions x and y. The per element multiplication yields 
tensor MAW. Operation (3) corresponds to Eq. 6, showing how ten-
sor MAW is summed along the z dimension to yield inhibition buffer 
tensor IB. Operation (4) corresponds to Eq. 7 and shows how tensor 
I is tiled along the x dimension to yield tensor I

r
 , from which tensor 

IB is subtracted, to yield the delta-buffer tensor DB. Operation (5), 
corresponding to Eq. 8, shows then how the activity tensor A is repli-
cated along dimension x to yield tensor AA

r
 , and multiplied per ele-

ment with tensor DB and the learning rate � , yielding intermediate 
tensor DW ′ . Finally, operation (6), which corresponds to Eq. 9, shows 
how tensor DW ′ is summed along the y dimension to yield the weight 
update tensor DW 

◂
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filter bank should be used. As is indicated by Fig. 7, there 
appears to be a limit to the number of filter bank rows 
that contain useful information. Hence for a given input 
resolution, it should be possible to determine by means of 
FFT analysis which configuration gives the required level 
of detail.

Since the MRNET affords linear combination of weights 
in a top-down fashion, it can be used as a component of 
a generative model. By connecting the topmost layer to a 
suitable probability distribution, samples can be produced 
within a target domain of choice.

Related to this, the MRNET can function as the genera-
tive end of a model of visual imagination. Such a system 
would likely require the MRNET to be connected to some 
form of sequential memory, i.e., a model of hippocampus 
(Hassabis and Maguire 2007; Hassabis et al. 2007; Balk-
enius et al. 2018), as well as a network storing object-related 
information to bias the MRNET toward producing meaning-
ful combinations.

By extending such a model of visual imagination to other 
sensory modalities, such as sound, and adding an associative 
network between them, as well as an evaluative component 
based on the human reward system (Runco and Chand 1994, 
1995), it is plausible that interesting models of creativity 
could be constructed. Here, the associative network would 
have the role of providing associations with low probabil-
ity, i.e., novel associations, while the reward system would 
be required to evaluate the usefulness, interest, or intrinsic 
value of those association.

Discussion

We have shown that a hierarchy of MRNET neural network 
layers can adapt to the statistics of input signals, such that 
those signals may be approximately regenerated. Further-
more, representations are learned in a coarse-to-fine manner 
with separate receptive fields for different levels of detail.

In this section, we discuss different aspects of cumulative 
inhibition. We start with comparing the performance of our 
algorithm with biological data from the perspective of the 
development of acuity. Next, we discuss how cumulative 
inhibition might be realized in the cortical microcircuit, and 
evidence supporting this notion. Then, the concept of multi-
resolution is discussed, and how the MRNET algorithm can 
be thought of as a transformation of input data into multi-
resolved space. Following this, we compare our model to 
other computational models of coarse-to-fine processing. 
We then address some criticisms against sparse coding and 
suggest how they might be resolved in the context of cumu-
lative inhibition. Lastly, we discuss limitations of the current 
model, and make suggestions for further work.

Although the measure of cosine similarity between a 
reconstructed image and the input it is constructed from as 
seen in Fig. 9 cannot be directly compared to a measure 
of neural response to sinusoidal grating stimuli shown in 
Fig. 10, there is nevertheless intriguing similarities between 
the two. Firstly, the argument can be made that the two 
measures are somewhat symmetrical, in that the former 

Fig. 5   The image of layer 4 weights shows the learned filters, cover-
ing the whole image, or 36 by 36 pixels. Close scrutiny of the top row 
reveals coarse patterns made up of finer ones. a The shapes are char-
acteristic of the cumulative inhibition algorithm, with broader and 
lighter patches limited by thinner darker strips. b 18 by 18 receptive 
field filters in layer 3. c 9 by 9 receptive field filters in layer 2. d 3 by 
3 receptive field filters in layer 1



97Cognitive Processing (2019) 20:87–102	

1 3

shows an increasing similarity between a detailed input 
and an increasingly detailed reconstruction, while the latter 
shows an increasing sensitivity to detailed input.

Comparison with the results of Freeman and Marg (1975) 
highlights some of the differences between our model and 
measurements of biological systems. Figure 10 shows how 
acuity increases rapidly the first 100 days and then plateaus 
within the first year or so. The time scale of measurements 
in our experiment, and shown in Fig. 9, is limited to 500,000 
iterations. The rapid adaptation is hence less salient in the 
model data, but the general shape of the curves is similar. 
Due to distribution of data points along a logarithmic time 
axis, the smoothed plot shows more variability in the first 
300 iterations. The time scale for the model is shorter than 
that of Freeman and Marg (1975), but the number of data 
points is much higher.

The exact rate of adaptation that corresponds to the bio-
logical changes, however, remains to be determined.

The functionality of a single MRNET layer can be 
mapped loosely to that of the canonical microcircuit found 
in cortical columns of mammalian visual cortex (Bastos 
et al. 2012). Given that the role of some inter-neurons 

are to mediate shaping of receptive fields for percep-
tion of higher detail, as indicated by Huang et al. (1999), 
their role corresponds to the calculation and application 
of the MRNET inhibition buffer. Forward activation in a 
MRNET layer corresponds naturally to activity of pyrami-
dal neurons.

The principle of cumulative inhibition suggests that 
pyramidal cells in visual cortex are heterogeneously inhib-
ited, which would appear to implicate that signals carrying 
more detailed information should be weaker than those car-
rying less detailed information. However, Xue et al. (2014) 
indicate that inhibition is balanced with excitation in this 
area. One possible way of reconciling these two notions is 
that pyramidal neurons that represent high detail, and which 
are therefore the target of much inhibition, are also balanced 
by an equal amount of top-down excitation. Alternatively, 
neurons representing coarse detail may be attenuated by top-
down inhibition.

Bastos et al. (2012) describe the canonical cortical micro-
circuit, which is also a building block of areas related to the 
visual pathway. Layer 2/3 receives backward projection from 
more frontal regions, and Wagatsuma et al. (2011) showed 

Fig. 6   Frequency spectrum for input image (top), with top–down 
reconstruction before training (middle), and after training (bottom). It 
can be seen that the input image is near log linear across spatial fre-
quencies. Artifacts due to the reconstruction process results in false 
peaks at about 3, 11, and 15 Hz in the reconstructed image before 

training. As training is completed, power increases across the spec-
trum in the reconstructed image, but power is cut off at about 18 Hz. 
Reconstruction is limited at the upper end of the frequency scale by 
the size of layer-1 receptive fields
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that some of these projections carry signals related to atten-
tion. Specifically, they tend to excite pyramidal cells in layer 
2/3, but inhibit pyramidal cells in layer 5.

Binzegger et al. (2009) performed a topological analysis 
of cat V1 microcircuits and quantified the number of syn-
apses for different cell types in the six layers. Intriguingly, 
they found that layer 2/3 pyramidal cells have the highest 
number of synapses, and also that inhibitory basket cells in 
these layers have the most effective synapses. Interpreting 
this from the perspective of cumulative inhibition, it could 
mean that attentional signals are required to overcome inhib-
itory pressure for cells that represent high detail. Another 
implication appears to be that attending to detail inhibits 
perception of overall structure. This would also fit well 
with reverse hierarchy theory (Hochstein and Ahissar 2002; 
Campana et al. 2016), which posits that automatic, bottom-
up perception is coarse and holistic, and requires top-down 
attention to become more detailed and localized.

Although our model currently does not have support for 
top-down excitation and inhibition, it does allow for it. In the 
version of the MRNET weight update algorithm presented 
here, top-down signals are only used for generation.

It is currently unclear how the processes of self-organ-
ization of receptive fields relate to the formation of recep-
tive fields that represent specific categories and patterns, but 
they might reflect different phases of maturation processes. 
It is likely that self-organization only happens during an 
organism’s critical period, while categorical sharpening can 
continue throughout the life span and hence reflects more 
plastic processes. These processes might also involve extra-
occipital structures like hippocampus and parts of temporal 
cortex (Keresztes et al. 2017).

While a conventional convolutional network performs 
a (usually) nonlinear transformation of inputs into a space 
determined at the highest level by the number of weights at 
that level (Schmidhuber 2015), the MRNET forward acti-
vation transforms inputs linearly into a space that contains 
discrete information about level of detail. The accumulated 
information can be passed on to a classifier, but since the 
transformation is linear and not class specific, we found that 

Fig. 7   Average of power spectrum of rows of weights for layers 2–4. 
Rows correspond here to the rows of receptive fields shown in Fig. 5, 
counting from the top down. Spatial frequency scale is relative to the 
size of receptive field, such that layer-2 frequencies should be read 
as being at the rightmost end of the layer 3 and 4 scales. a Layer-4 
plots indicate that the fields are not uniformly responsive across spa-
tial frequencies, and that they converge at two points: at around 2Hz, 
and around 16Hz. The plots reveals also that there is little difference 
in power response for rows 6, 7, and 8, indicating that the latter two 
may be omitted to reduce computational overhead without much 
affecting reconstruction quality, or the information encoded by the 
layer. b Layer 3 covers 2 × 2 of layer 2 receptive field, or 18 × 18 
pixels of input image. Rows 1 to 3 have clearly differentiable power 
responses, which converge at around 7 Hz. Rows 4 to 12 have very 
similar response after about 5 Hz, indicating that rows 5 to 12 may 
be omitted to reduce computational overhead. c Layer 2 covers 3 × 3 
of layer-1 receptive fields, corresponding to 9  ×  9 pixels of input 
image. Row 1 has the highest power response up to about 0.6 Hz, but 
declines from the onset. Row 2 has a flat response up to around 1Hz, 
where a knee appears. A second knee appears around 2 Hz. Subse-
quent rows are flat up to around 2 Hz then declines. Rows 4 to 10 
have a power response of 1dB or less across the frequency spectrum

▸
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the classifier performs no better than when fed raw image 
data.

Hence, the contribution of this work is not to improve 
classification, but to elucidate and improve understanding 

of the mechanisms involved in perception, and how they 
develop. Specifically, it suggests a way in which excitatory 
and inhibitory neural populations cooperate to adapt to sen-
sory stimuli.

The results indicating that the output of a MRNET stack 
gives similar classification performance as raw image data 
predict that a self-organized process by itself is not suf-
ficient to account for the discriminative abilities of mam-
mals in general, and humans in particular. Rather, it is 
likely that a process of specialization is also involved, 
whereby some neural populations form receptive fields 
that are specific to particular salient stimuli. This would 
allow fast recognition of such stimuli, and also associa-
tion of stimuli with specific behavior. Put another way, 
the self-organized process allows perception of all stimuli, 
but not necessarily recognition and categorization of those 
stimuli.

To elaborate, the receptive fields generated by the 
MRNET algorithm have a principal component-like nature, 
which means that they are used as building blocks to assem-
ble a signal. Similar building blocks may thus be the out-
come of processes taking place during the critical period of 
visual system development. Most inputs can be assembled 
from them, but they do not represent particular percepts. To 
represent specific categories, the building blocks must be 
put together in a particular way, and stored, perhaps, in a 
separate network.

Figure 5 shows that in layer 1, many weight patterns are 
repeated several times. It is also not obvious that the differ-
ent rows of weights represent different level of detail. One 

Fig. 8   Increasing detail of regenerated image at iterations 2, 50, 200, 
and 800, as layer 4 stabilizes. Square pattern and darkened frame 
are artifacts of the regeneration process, and formatting of receptive 
fields. First, dark patches around the eyes are formed, at iteration 2. 
At iteration 50, the contours of the face become visible. Most of the 
coarse detail is present at iteration 800; the contours of the face are 
salient, and the nose and mouth can be made out
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Fig. 9   Change in cosine similarity over time between input and 
reconstructed image, with fitted smoothing function and noise floor. 
Dataset has been thinned from 100,000 to 1800 data points. Logarith-
mic scale for iteration pushes most data points toward right-hand side 
of plot, highlighting the variance in similarity the first 300 iterations. 
From iteration 1000 to 30,000 similarity levels off, eventually reach-
ing about 0.97
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Freeman and Marg (1975), with fitted smoothing function
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reason for this is the small size of the receptive field. With 
only 3 by 3 pixels, the number of combinations is much 
more limited than in layers 2–4. It appears, though, that the 
dimensions of the weight matrix are not optimal, and that 
particularly the number of columns could be reduced to limit 
the number of very similar weight patterns.

The difference in detail level of the patterns is more eas-
ily seen in layer 4, where in particular the two topmost rows 
have coarser patterns than rows further down. By simple 
inspection of Fig. 7, it is hard to notice the increasing level 
of detail that the patterns represent, but by comparing each 
rows’ average power spectrum, there is nevertheless a vis-
ible trend, where lower frequencies are attenuated, and the 
highest frequencies steadily increase. This indicates that the 
mechanism of cumulative inhibition, whereby the inhibitive 
pressure increases with each additional row, does indeed 
force weights to represent ever finer detail.

The MRNET algorithm can be compared with the 
approaches of Földiák (1990), Witkin (1984), Viola and 
Jones (2001) and Sutton (1996). The common element 
between these is multi-resolution representation. Except for 
Földiák (1990), the difference between the MRNET algo-
rithm and the above is unsupervised learning of feature vec-
tors, and hence what kind of patterns those vectors represent. 
There is also a difference in how network units are activated. 
The MRNET units are activated using dot product computa-
tions, like in other types of convolutional networks (LeCun 
et al. 1998).

Witkin (1984) uses manually defined Gaussian filters 
with variable smoothing settings to achieve multi-resolution 
representations. The approach by Viola and Jones (2001), 
on the other hand, is to use rectangle representations, which 
are reminiscent of Haar basis functions (Haar 1910). That 
is, feature vectors are composed of adjacent high- and 
low-intensity rectangles oriented horizontally, vertically, 
or diagonally. Sutton (1996) achieves multi-resolution by 
using multiple overlapping tilings, each of which represents 
a smaller area of the input. Multi-resolution is here used 
in a reinforcement learning context, such that the tilings 
represent parts of a continuous state space, and are used to 
efficiently associate optimal action policies with areas of 
that space.

The MRNET learning algorithm is based on Földiák 
(1990), which proposed the concept of learning in the inhibi-
tory connections in artificial neural networks. This network 
learns also in an unsupervised manner, and produces decor-
related receptive fields. This again ensures that the network 
is sparsely activated for a given input. But Földiák (1990) 
does not arrange inhibitory connections in such a way that 
they become cumulative and hence can represent a coarse-
to-fine gradient. Thus, the MRNET algorithm can be viewed 
as an extension of Földiák (1990), achieved by changing 

the topology of the network with regards to inhibitory 
connections.

Spanne and Jörntell (2015) critique the concept of spar-
sity in neural simulation models, pointing out that empiri-
cal evidence for sparseness in biological systems is not 
strong, and furthermore that defining this property in a 
biological neural network is itself problematic. There are 
also indications that sparseness can decrease with expe-
rience and with wakefulness (Berkes et al. 2009). Their 
main argument against sparseness is, however, that it does 
not support generalization well. This criticism is valid; 
increasing sparsity implies less overlap between active 
sub-populations for a stimulus, which at the extreme 
means particular stimuli being represented by a single cell 
(Barlow 1972).

We propose that perceptual networks are neither homo-
geneously dense nor sparse, but that cumulative inhibition 
results in a dense-to-sparse gradient. With such a topology, 
generality is served by populations at the dense end of the 
gradient, while specificity is represented at the sparse end. 
The observation by Zylberberg and DeWeese (2013) that 
sparsity decreases with development is not reflected in our 
model, particularly not at higher layers. However, Zylber-
berg and DeWeese (2013) discuss mainly V1 simple cells. 
Such cells cover very small areas of the input fields and 
are usually thought to represent basic visual building blocks 
like edges (Hubel and Wiesel 1968). One interpretation is 
that receptive fields become with experience more diverse 
in terms of the edge angles they represent, but that as the 
angles grow less different, more cells are partially activated 
for a given input. Thus, the activation as a whole becomes 
less sparse.

Spanne and Jörntell (2015) pose the question of what is 
the role of inhibitory inter-neurons in perceptual networks. 
Our models suggest that one role might be the mediation of 
acuity and coarse-to-fine detail.

Some recent works have similarities with the work pre-
sented here. Trappenberg et al. (2015) show how a SOM can 
be augmented with back-propagation of errors and a hierar-
chical structure to improve clustering. The authors indicate 
that the overall accuracy of their system does not rival state-
of-the-art deep learning architectures, but that their main 
intention is to elucidate how biological networks solve clas-
sification problems. They found that back-propagation errors 
help to improve the visual representation of the clustering, 
but does not significantly improve classification performance 
as such. Trappenberg et al. (2015) do not employ the prac-
tice of convolution kernels and weight sharing. Their use 
of back-propagation to modify weights also sets their work 
apart from ours.

Liu et al. (2015) use a hierarchy of layers consisting 
of arrays of local SOMs, representing parts of the image. 
Each of these layers are coupled with a sampling layer 
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which for each SOM cell chooses only the winning unit. 
SOM layers and sampling layers are assembled to form a 
classifier that according to the authors outperform a super-
vised SOM architecture, but does not challenge state-of-
the-art deep back-propagation systems. Although this work 
uses local representations akin to that of convolutional 
networks, the authors do not use weight sharing or dot 
product activation.

Dozono et al. (2016) show two versions of how con-
volution and pooling layers can be used with SOMs in a 
hierarchical configuration. A sliding window is used to 
learn kernels using the batch SOM algorithm. Correlation 
coefficients are then computed of input vs kernels in the 
convolution layer. This array of correlation coefficients 
is then sent to a pooling layer. In the first version, stand-
ard max pooling is used. The output of the pooling layer 
is then used as input to a SOM layer again. The second 
version adds a layer that calculates the euclidian distance 
between each of the winning nodes, then passes the result-
ing array to a pooling layer which computes the minimum 
of these distances. The output of this min pooling layer 
is then passed to the next SOM layer. Each of the models 
repeat the layer pattern of SOM and pooling three times.

Dozono et al. (2016) are closest to the model presented 
here. In particular, the coefficient correlation array cor-
responds to the bottom-up activation array used in the 
MRNET layers. The practice from convolutional networks 
of using a sliding window to update weights and use of 
weight sharing across the input is also similar. The main 
differences between the works cited above and what we 
present here are firstly in how weights are updated, using 
cumulative inhibition, and secondly the support for regen-
eration in our model.

The current version of our model has several limita-
tions. The MRNET algorithms can transform input into 
a multi-resolved representation, but is limited in that this 
transformation is holistic. This means that there is no fig-
ure-ground separation. Additionally, since the learning is 
unsupervised, weights are not shaped to represent particu-
lar categories. Further processing is required to achieve 
good classification abilities. Lacking also are mechanisms 
for perceptual grouping, such as by size, color, and prox-
imity. Hence, in a perceptual system with abilities simi-
lar to that of mammals, additional functionality would be 
required for object recognition.

In future work, we plan to focus on establishing optimal 
hyper-parameters for the MRNET network, particularly 
what the minimum dimensions of the weight map should 
be to achieve acceptable detail representation. Further 
research is also necessary to clarify how effective cat-
egorization and object recognition can be achieved using 
the multi-resolution output of a MRNET based network. 
Finally, determining whether top-down activation can be 

used fruitfully to modulate the upward stream would be a 
highly interesting path of inquiry.
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