
369

Review

 Clujul Medical, Vol.90, No.4, 2017: 369-376

GASTRIC MICROBIOTA: TRACING THE CULPRIT
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Abstract 

The gastric environment has been long time considered bacteria-free, but the 
discovery of Helicobacter pylori (H. pylori) in 1982 superseded this conception. Over 
the last decades new diagnostic methods have been developed, starting with culture-
dependent and advancing to culture-independent ones. These modern techniques 
provide new insight into the composition and influence of this ecosystem on the entire 
gastrointestinal tract. H. pylori is no longer considered the only microorganism in the 
stomach, other non-H. pylori microbial species may populate the same environment 
and exercise their role. Current knowledge suggests possible links of these bacteria 
with gastroduodenal diseases, such as peptic ulcer and gastric cancer but most of them 
need further scientific evidence. This review summarizes current information on these 
complex interrelations between gastric microbial communities and host in health and 
disease.
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Introduction
The stomach, with its low pH, had been considered 

for many years a sterile organ. The discovery of 
Helicobacter pylori (H. pylori) in 1982 was revolutionary 
in many aspects and challenged the previous concepts in 
digestive pathology. After the isolation and identification of 
H. pylori, advances in both culture-dependent and culture-
independent techniques have been made. Serological 
assays, temperature gradient gel electrophoresis, next-
generation sequencing or metabolomic and proteomic 
studies are just some of the approaches which have tried 
to describe as extensively as possible the structure and 
function of these microbial communities. Indeed, this 
complex and dynamic biodiversity of bacteria comprises as 
much as 10-100 trillion microbial cells in different parts of 
the body [1]. Regarding the gastrointestinal tract, modern 
techniques have documented a bacterial load of 1010 to 1012 

colony-forming units (CFU)/mL in the colon, considerably 
higher than that of the stomach, where it reaches 102 to 104 

CFU/mL [2].
In 2000 Lederberg predicted that the human 

microbiota would become a hot research topic worldwide 
and time has indeed proven him right [3]. Although a large 
pool of data has been gathered until now, understanding 
the complex interaction between our bodies and our 
microbial communities is still in the beginning. The lower 
gastrointestinal tract microbiota has long been the subject 
of intensive studies, and lately the upper gastrointestinal 
environment research has been catching up, as reflected in 
published literature. The stomach is a unique environment 
which influences the rest of the microbiome through its 
local acidic conditions and resident microbial communities.

The pathogenesis, diagnosis and treatment of gastric 
illnesses will be better understood if we “read” well the 
resident biodiversity of bacteria. This article highlights 
the current knowledge of the human gastric microbiota by 
describing its structure, dynamics and interactions with 
gastrointestinal and extra-digestive diseases.

The Gastric Environment 
The stomach presents particular anatomical features 

that cause a particular composition of bacteria, different 
from that of bacteria in other GI segments. Acid secretion, 
the reflux of bile, mucus thickness and gastric peristalsis 
all contribute to the formation of this strong antimicrobial 
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environment. However, the discovery of H. pylori in 1982 
and further investigations with modern techniques put an 
end to the traditional view of the sterile stomach. 

There is a dynamic equilibrium of the gastric 
bacterial density in relation to the local pH fluctuations. The 
human gastric juice pH varies from 1-2 interprandial to >5 
after food ingestion [4]. Therefore, the time but also site of 
sampling are of great importance, as the species structure 
tends to be different in the stomach corpus than in the 
antrum [5]. A comprehensive systematic review on gastric 
acidity across 68 species, has revealed that humans seem 
to have a gastric juice pH closer to carrion feeders than to 
most carnivores and omnivores and that the stomach acts 
as an ecological filter for microbial communities prior to 
entering the intestines [6].

Exposure to other environmental factors, such 
as dietary habits and medication use, also plays a very 
important role in the composition of the gastric milieu. 
Despite numerous reports of dietary effects on the structure 
of the intestinal microbiota, little is known about the 
impact of diet on the gastric biodiversity. An animal model 
study compared the colonization of Lactobacilli in the 
stomachs of mice fed purified and non-purified diets [7] 
and found higher populations of microbiota in the latter, 
among which Lactobacilli were predominant. Nakae et 
al. treated 44 patients with functional dyspepsia (FD) and 
44 healthy controls with a yogurt containing a probiotic 
strain of Lactobacillus gasseri OLL2716 (LG21 yogurt) 
and investigated the effects on the gastric bacteriological 
parameters and symptoms [8]. The study found significant 
dysbiosis in the microbiota of patients with FD compared 
to controls and that dysbiosis was restored after treatment 
with LG21 yogurt with subsequent decrease in the 
gastric fluid volume and amelioration of symptoms. New 
treatment regimens using a more personalized approach for 
gastrointestinal disorders are expected to be developed in 
the near future. 

The use of antacid therapy has increased significantly 
over the last decade and this leads to important changes in 
gastric microbial biodiversity [9]. Acid suppressive therapy 
causes increase in gastric pH, which allows more microbial 
communities to colonize the gastric environment. From 
this viewpoint, a study in 2015 using 16S rRNA gene 
profiling documented changes in the microbiota of the 
gastric fluid in proton pump inhibitors (PPI)-users and 
PPI-nonusers and suggested a reduced bacterial clearance 
in PPI-users [10]. Likewise, Paroni et al. [11] using 16S 
rRNA gene pyrosequencing in patients with dyspepsia, 
showed that subjects treated with omeprazole exhibited 
different gastric microbial communities from untreated 
patients. Interestingly, Ahn and colleagues conducted a 
meta-analysis which reported that acid suppressive drugs 
are associated with an increased risk of gastric cancer [12]. 
Further prospective studies are needed in order to quantify 
more accurately the real impact of antacid medication on 

gastric diseases.
The administration of antibiotics fundamentally 

alters normal gastrointestinal microflora. A culture-
independent and culture-dependent study of the murine 
gastric microbiota showed that cefoperazone treatment 
perturbed the microbial communities of the stomach, 
causing overgrowth of Enterococci and a reduction in the 
number of Lactobacilli [13]. Rosenvinge et al. described 
the bacterial and fungal microbiota in the stomach fluid 
from 25 patients using PCR amplification of bacterial 
16S rRNA genes and fungal internal transcribed spacers 
and concluded that antibiotics reduced bacterial, but not 
fungal biodiversity [14]. Future research is expected to 
lead to more specific drugs against pathogens, ensuring 
protection of the healthy microbiome and minimal damage 
to symbiotic bacteria.

Helicobacter pylori
The discovery of Helicobacter pylori changed 

the long-held traditional view of the stomach as a sterile 
organ and improved our understanding of how microbial 
communities survive under hostile acidic environment. 
H. pylori is a Gram-negative, spiral shaped, motile and 
flagellated Epsilonproteobacteria that belongs to the family 
Helicobacteraceae and colonizes the gastric mucosa of at 
least 50% of the worldwide population. The prevalence of 
H. pylori shows large geographical variations and ranges 
between 25-37% in Western Europe, Australia, Oceania 
and the Northern America, with a rapidly decreasing 
trend, and up to 70-87% in Africa, Western Asia and South 
America, being correlated with multiple geographical 
and infrastructural factors [15]. In developing countries, 
infection is usually acquired early in childhood, unlike in 
industrialized countries, where it develops more commonly 
in adulthood [16].

To colonize the gastric epithelial layer and produce 
disease, H. pylori possesses peculiar characteristics 
which make it a‘special gastric pathogen [17]. The helical 
morphology, motile ability, adhesion factors, urease and 
ammonia production help the bacteria penetrate, colonize 
and survive in such an unfavorable acidic environment. 
Once established, it generates a complex inflammatory 
response that injures the gastric mucosa and determines the 
subsequent digestive diseases. The virulence of H. pylori 
is expressed through various markers of pathogenicity, 
such as cytotoxin-associated gene A (CagA), BabA adhesin 
and vacuolating cytotoxin (VacA), which represent the 
new focus of the current research into the development of 
gastric diseases [18].

H. pylori has the highest relative abundance among 
all gastric microbial communities when present in adults 
[19,20]. Another study that aimed to describe the gastric 
microbiota in pediatric patients once again confirmed that 
when present, H. pylori tends to prevail over the rest of 
the microbial ecosystem [21]. Importantly, the sensitivity 
across the methods of detection varies, 16S rRNA studies 
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identified H. pylori DNA in patients who were negative 
upon PCR testing [22]. 

An important feature of H. pylori is its great 
genetic diversity, which stems from a high mutation rate 
and a constant exchange of genetic material with their 
human host [23]. Various strains have been isolated from 
different locations worldwide, suggesting that H. pylori 
has coevolved with humans throughout history. The 
heterogeneous interaction between the bacterium, the host, 
and the environment influences the clinical outcome and 
may lead to either disease or possible protective effects, 
especially regarding esophageal adenocarcinoma [24]. 
Advances in metagenomics might determine researchers 
to reconsider current knowledge and elaborate a more 
personalized therapeutic approach.

Non-Hp Gastric Microbiota
The widely held view that H. pylori species were 

the only organisms capable to survive in the hostile gastric 
environment has been assumed over the last 3 decades. 
Further investigations overturned this concept and revealed 
a far more complex landscape in which different microbial 
communities reside in the stomach and the duodenum. 
Indeed, the gastric microbial density is now estimated at 
around 102 to 104 colony-forming units (CFU)/mL, with 
variations related to local pH, food ingestion, medication 
and site of isolation [2]. Due to a median pH of 1.4 in 
the gastric lumen, it is, however, considerably lower than 
compared to the microbial density of the colon, where it 
reaches 1010 to 1012 CFU/mL.

In order to identify the microorganisms in the 
stomach several different methodologies were developed. 
Initially, conventional methods such as gastric juice 
cultures and mucosal biopsies documented the presence 
of various gastric microorganisms and considered them 
as transient bacteria, which form small colonies that 
exist for short periods of time rather than true gastric 
colonizers [25,26]. Another culture-based study reported 
Clostridium spp, Veillonella spp and Lactobacillus spp as 
the most predominant gastric species in the normal acidic 
stomach [27]. However, these techniques underestimate the 
biodiversity of bacteria, as a great part of them cannot be 
cultured [28].

As a consequence several culture-independent 
molecular techniques have been developed. A pioneer study 
using temperature gradient gel electrophoresis of PCR-
amplified 16S rDNA fragments showed that Enterococcus, 
Streptococcus, Staphylococcus, Pseudomonas and 
Stomatococcus are the most abundant genera [29]. 
Although several of those bacteria inhabit the oral cavity 
and respiratory tract, the documentation of Pseudomonas 
spp other than P.aeruginosa led to the idea that the gastric 
milieu exhibits an indigenous microbiota. By using a 
small subunit 16S rDNA clone library approach, Bik et 
al. analysed gastric biopsy samples and identified 128 
phylotypes, which fell into five different bacterial phyla: 

Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, 
and Fusobacteria [19]. The wide bacterial diversity in this 
gastric environment was significantly different from that 
observed in the oral cavity and the esophagus, indicating 
that the human stomach may be home to a distinct 
microbial community. In 2013, Delgado et al. conducted 
the first study in which a combination of classical culturing 
and culture-independent techniques was used and found 
that the most abundant genera belonged to Streptococcus, 
Lactobacillus and Propionibacterium [2].

Recent interesting work tried to identify a possible 
influence of host genetic backgrounds on gastric microbiota 
by analyzing antral biopsies from four pairs of twins and 
eight unrelated individuals, but concluded that co-twins 
did not have higher similarity in the biodiversity of gastric 
bacteria [30]. 

The development of modern techniques [31], 
such as whole-genome sequencing, fluorescence in situ 
hybridization, metabolomic and transcriptomic analyses 
of the bacteria, may offer a deeper understanding of the 
gastric ecosystem and its role in health and disease. These 
studies, applied initially to the gut environment [32], should 
move beyond identifying bacteria towards a functional 
characterization and understanding of the complex 
interrelationship between microorganisms and hosts. 

Relationship between Hp and Other Gastric 
Microbiota

Microbial communities in the human body interact 
both with their host and also with each other. The relation 
between H. pylori and other gastric microbiota seems to 
be far more complex than originally thought. Research on 
the bacterial biodiversity within the stomach in H. pylori 
positive versus H. pylori negative gastric mucosa is still 
controversial.

Several studies revealed that H. pylori is capable to 
modify its own microclimate. This may be explained by 
various factors. H. pylori is known to produce ammonia and 
bicarbonate from urea which may serve as substrates for 
other microbial communities. Additionally, it reduces the 
gastric secretion and thus elevates the pH in the stomach, 
generating favorable ecological niches for the colonization 
of other microorganisms. H. pylori also induces the 
production of cytokines and antimicrobial peptides that 
cause chronic gastric inflammation and may inhibit other 
local microorganisms [33]. 

From this viewpoint Osaki et al. [34] documented 
an abundance of Eubacterium cylindroides and Prevotella 
species and a decrease of Bifidobacterium, Clostridium 
coccoides and Clostridium leptum species in H. pylori-
negative, but not in H. pylori-positive Mongolian gerbils. 
Another study performed on 12 subjects once again 
confirmed that human gastric microbial ecosystem showed 
important differences according to H. pylori status [22]. 
Interestingly, other reports also show that certain species 
such as Lactobacillus exhibit high antagonistic effects 
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and could inhibit the growth of H. pylori [35]. Similarly, 
Streptococcus mitis, a commensal bacteria of the gastric 
environment, is likely to induce growth inhibition and 
coccoid conversion from a spiral form of H. pylori cells [36].

However, other published data on the murine gastric 
microbiota [37] suggests that neither acute nor chronic H. 
pylori infection substantially modifies the gastric microbial 
ecosystem. Khosravi et al. [38] found no significant 
differences in the composition of the gastric microbiota 
between 131 H. pylori-positive and 84 H. pylori-negative 
individuals.

Several factors may account for the heterogeneity 
of these results, such as the time of H. pylori infection, the 
degree of mucosal inflammation and the different methods 
used to diagnose the infection of H. pylori and other 
bacteria. As the structure of the gastric ecosystem depends 
on a plethora of factors, further experiments are required 
to determine the exact relationship between H. pylori and 
other gastric microbiota and to achieve better knowledge of 
its function in health and disease.

Gastric microbiota in Relation to 
Gastroduodenal Diseases

Chronic Gastritis and Peptic Ulcer Disease
H. pylori infection produces various degrees of 

chronic inflammation of the underlying mucosa with only 
a subgroup to develop clinical manifestations and further 
pathological changes in the stomach [39]. The etiologic 
link between longstanding H. pylori and chronic gastritis is 
well-documented [40,41]. Despite fewer studies addressing 
the role of other microbiota in gastroduodenal diseases, it 
seems that different gastric microbial communities, such as 
the over-representation of the Streptococcus genus within 
the Firmicutes phylum, can lead to gastritis as well, even in 
the absence of H. pylori [42].

Peptic ulcer disease is a recognized complication 
of chronic H. pylori infection, with 95% of duodenal and 
70% of gastric ulcers being linked to it [43]. H. pylori’s 
genetic variability and diverse virulence factors (such as 
cytotoxin-associated gene A and duodenal ulcer promoting 
gene A) can determine various levels of risk for duodenal or 
gastric peptic ulcer [17]. Low acid output is a consequence 
of the loss of parietal cells and allows other microbial 
communities to colonize the gastric environment. A further 
study demonstrated a significant correlation between the 
isolation of Streptococci and peptic ulcer disease [38]. 
Accordingly, non-H. pylori bacteria may also play an 
important role in the pathogenesis of gastroduodenal 
diseases, through complex mechanisms and interactions 
that remain to be fully clarified. 

Gastric cancer
Gastric cancer is the fifth most common malignancy 

in the world and the third leading cause of cancer death 
[44]. H. pylori was the first bacterium to be considered 

carcinogenic and represents the main etiologic agent in 
non-cardia gastric cancer, causing approximately 90% of 
such cases globally [45]. This infection promotes gastric 
carcinogenesis through the Correa cascade of inflammation, 
gastric atrophy, intestinal metaplasia and dysplasia in 
a subset of cases. A significant correlation between the 
presence of H. pylori and the development of gastric cancer 
was found in several prospective studies [46,47,48], all 
leading to the idea that H. pylori is a necessary cause of 
most gastric malignancies. At the same time, the eradication 
of H. pylori reduces the risk of gastric cancer development, 
according to several international consensuses [49,50].

However, H. pylori coevolved with humans for 
millennia and only 1% to 2% of persons infected with these 
bacteria actually develop severe complications, such as 
gastric cancer or MALT- lymphoma [51]. Other bacterial, 
host and environmental factors were also associated with 
the increased susceptibility to gastric cancer [52]. From 
this viewpoint, specific H. pylori strains [53], host genetic 
susceptibility [54], hyperglycemia [55], smoking [56], 
diet [57] and other microbiota may also contribute to the 
outcome of infection.

An increasing pool of evidence suggests that 
other microbial communities play a causative role in the 
pathophysiology of gastric cancer. These non-H. pylori 
bacteria that overgrow in a hypoacidic environment could 
potentiate carcinogenesis through various mechanisms, such 
as promoting inflammation, stimulating cell proliferation, 
modifying stem cell dynamics and producing toxic 
metabolites [58]. Animal studies reported an inhibition in 
the development of gastrointestinal intraepithelial neoplasia 
in germ-free INS-GAS mice compared to H. pylori-infected 
INS-GAS mice containing a complex gastric microbiota 
[59]. To date, there are few studies investigating the effects 
of non-H. pylori communities on gastric carcinogenesis. 
Eun and colleagues found a greater diversity of gastric 
microbiota in the gastric cancer group in comparison to 
other chronic gastritis and intestinal metaplasia groups, 
especially in H. pylori – positive patients [60]. A recent 
study by Yu et al. [61] using 16 S ribosomal RNA gene 
sequencing analysis and PICRUSt bioinformatics software 
package suggested a possible role of the gastric biodiversity 
of bacteria in gastric cardia carcinogenesis. Another study 
performed on two human populations with high and low 
gastric cancer risk in Columbia reported two significantly 
more abundant operational taxonomic units (OTUs), 
Leptotrichia wadei and Veillonella sp., in the high-risk area 
and 16 OTUs, including Staphylococcus sp., more frequent 
in the low-incidence region [62]. In addition, no significant 
correlation of the gastric biodiversity with H. pylori 
phylogeographic population or carriage of the cagPAI was 
documented in this study.

However, in other human studies [63], no significant 
role of bacteria other than H. pylori was found in the gastric 
carcinogenesis. A further study revealed that the diversity of 
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gastric microbiota actually decreased along the progression 
from non-atrophic gastritis to intestinal metaplasia and 
intestinal-type gastric cancer [64] and ranged from 57 
genus in the first group to 8 genus in the last one. Given 
the emerging importance of novel biocomputational tools 
in the assessment of the structure and interactions of gastric 
microbiota, future studies on this issue are required.

Other implications
Interplay between gastric microbiota and different 

gastrointestinal and extra-digestive diseases is of great 
interest in many recent studies. Epidemiologic reports have 
provided strong evidence that there is a causal link between 
H. pylori infection and gastric MALT lymphoma [65], and 
that the eradication of this bacteria confers excellent long-
term outcome of the disease [66]. Acute gastrointestinal 
infection seems to be the trigger for post-infectious irritable 
bowel syndrome [67] and post-infectious functional 
dyspepsia [68], according to several studies. The correlation 
between Helicobacter pylori and colorectal neoplasia was 
underscored by many large-scale studies over the last 
years [69,70] which confirmed that this bacterial infection 
confers an increased risk for colonic neoplasm.

Regarding the extra-gastrointestinal involvement, 
reports found possible associations between gastric 
microbiota (especially H. pylori) and hematological 
diseases like idiopathic thrombocytopenic purpura [71] 
and anemia [72], cardiovascular [73], neurological [74], 
endocrine [75] and even dermatological diseases [76]. 
Moreover, eradication of H. pylori seems to have beneficial 
effects on many aspects of these diseases [77,78]. 

There has been a conceptual shift over the last 
decades from the theory of a sterile stomach towards the 
view of a far more complex and dynamic gastric ecosystem, 
with resident microbial communities that permanently 
interact with each other and the host. When present, H. 
pylori represents the main colonizer but it is certainly not 
the only one. In order to better characterize the composition 
of this harsh environment, several technical methodologies 
and even specific devices [79] have been developed, 
pushing the medical limits further and further.

This review focused on the potential harmful 
impact of this complex ecological system but the whole 
picture seems to be far more nuanced. Increasing evidence 
emerges showing possible protective effects of H. pylori 
and other gastric bacteria. The loss of our indigenous 
microbial flora could lead to the increase in modern allergic 
and metabolic diseases, as reflected in the “disappearing 
microbiota” hypothesis [80,81]. From this viewpoint, some 
studies found that the presence of H. pylori in the gastric 
milieu exhibits an inverse relationship with esophageal 
adenocarcinoma [82], asthma [83] and obesity [84]. 
Current research directions investigate the possible benefits 
of infecting people with benign strains of H. pylori [85].

In order to reconcile both of these aspects, we should 
cautiously interfere with the structure of the microbiome, 

trying to eradicate only bacteria that lead to inflammation 
and disease. To sum up, even if substantial progress in 
identifying the culprit has been made, the judgement 
cannot be absolute, as we should circumscribe it only to its 
unfavorable effects and allowing it to exercise its role as 
the body attempts to maintain homeostasis.

Conclusions 
The stomach may accommodate bacteria, the best 

known of them being Helicobacter pylori, involving 
different and potentially harmful pathological conditions. 
Other bacteria may coexist in the stomach. Practitioners 
should be aware of the bacterial colonization of the stomach 
and the indications to eradicate these infections.
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