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Abs trac t .  The role of Raf and MAPK (mitogen- 
activated protein kinase) during the maturation of 
Xenopus oocytes was investigated. Treatment of oo- 
cytes with progesterone resulted in a shift in the elec- 
trophoretic mobility of Raf at the onset of germinal 
vesicle breakdown (GVBD), which was coincident 
with the activation of MAPK. Expression of a kinase- 
defective mutant of the human Raf-1 protein (KD- 
RAF) inhibited progesterone-mediated MAPK activa- 
tion. MAPK activation was also inhibited by KD-Raf 
in oocytes expressing signal transducers of the recep- 
tor tyrosine kinase (RTK) pathway, including an acti- 
vated tyrosine kinase (Tpr-Met), a receptor tyrosine 
kinase (EGFr), and Ha-Ras w2. KD-RAF completely 
inhibited GVBD induced by the RTK pathway. In con- 
trast, KD-RAF did not inhibit GVBD and the progres- 
sion to Meiosis II in progesterone-treated oocytes. In- 

jection of Mos-specific antisense oligodeoxy- 
ribonucleotides inhibited MAPK activation in response 
to progesterone and Tpr-Met, but failed to inhibit 
these events in oocytes expressing an oncogenic dele- 
tion mutant of Raf-1 (AN'Raf). Injection of antisense 
oligodeoxyribonucleotides to Mos also reduced the 
progesterone- and Tpr-Met-induced electrophoretic 
mobility shift of Xenopus Raf. These results demon- 
strate that RTKs and progesterone participate in dis- 
tinct yet overlapping signaling pathways resulting in 
the activation of maturation or M-phase promoting 
factor (MPF). Maturation induced by the RTK path- 
way requires activation of Raf and MAPK, while 
progesterone-induced maturation does not. Further- 
more, the activation of MAPK in oocytes appears to 
require the expression of Mos. 

T I-IE c-raf-1 gene is the normal cellular counterpart of 
the v-raf transforming gene of the murine sarcoma 
virus 3611 (59). The proto-oncogene product encoded 

by the c-raf-1 gene, Raf-1, is a 70-74-kD phosphoprotein 
with intrinsic kinase activity towards serine and threonine 
residues (for review see Morrison [45]). The Raf-1 protein 
consists of a carboxyl-terminal kinase domain and an amino- 
terminal regulatory region that is deleted in v-raf, generating 
a constitutively active kinase (29, 68, 69). Raf-1 is ubiqui- 
tously expressed and is hyperphosphorylated, primarily on 
serine residues, in many cell lines in response to mitogen 
treatment (30, 46). A close correlation has been established 
between Raf-1 hyperphosphorylation and activation of its ki- 
nase activity in cells stimulated by growth factors (30, 40). 
Moreover, Raf-1 activity is required for growth factor- 
induced proliferation of NIH/3T3 cells and certain erythroid 
cells (11, 34). 

Recently, genetic and biochemical evidence has placed 
Raf-1 in a signal transduction cascade downstream of both 
receptor tyrosine kinases (RTKs) 1 and ras, and upstream of 

1. Abbreviations used in this paper: EGFr, EGF receptor; GVBD, germinal 
vesicle breakdown; IGF, insulin-like growth factor; KD-Raf, kinase- 

mitogen-activated protein kinase (MAPK) (for review see 
Roberts [60]). Furthermore, recent reports suggest that the 
protein which activates MAPK (also known as MAPK ki- 
nase [MAPKK]) is a substrate of Raf-1 both in vitro and in 
vivo (16, 32, 38). MAPK is activated in many mitogenically 
stimulated cell types (1-3, 7, 8, 31, 61) as well as in differen- 
tiating PC12 cells (9, 22, 24-26, 44, 70) and maturing Xeno- 
pus oocytes (4, 23, 27, 28, 53, 55). MAPK becomes phos- 
phorylated on both threonine and tyrosine residues in 
response to activation of MAPKK, an event that correlates 
with an increase in its kinase activity (3, 4, 24, 36, 43, 56). 
The observation that MAPK is activated during processes as 
diverse as proliferation and differentiation of somatic cells as 
well as meiotic maturation of oocytes suggests that this pro- 
tein has an important role in many signal transduction 
pathways. 

Fully grown Xenopus oocytes are arrested in prophase of 
meiosis I, and are induced to mature upon exposure to 
progesterone (42). Progesterone stimulates the synthesis of 

defective Raf; MAPK, mitogen-activated protein kinase; MAPKK, MAPK 
kinase; MPF, maturation promoting factor; RTK, receptor tyrosine kinase; 
TBST, TBS containing 0.2% Tween 20. 

© The Rockefeller University Press, 0021-9525/93/08/645/8 $2.00 
The Journal of Cell Biology, Volume 122, Number 3, August 1993 645-652 645 



the Mos protooncogene product, pp39m% which is required 
for the activation of maturation promoting factor (MPF), an 
activity responsible for coordinating the biochemical events 
of meiosis I and II (14, 33, 63, 64). During meiosis I, the 
rise in MPF activity is coincident with phosphorylation and 
activation of MAPK (23, 27, 55). 

Insulin-like growth factor (IGF-1) is also capable of induc- 
ing maturation of Xenopus oocytes, through activation of its 
cognate RTK that is present on the surface of oocytes (21, 
41). Similarly, maturation of oocytes has been induced by the 
expression and activation of the RTKs for EGF and NGF 
(trk) (48, 50), and by expression of an activated oncogenic 
form of the receptor for hepatocyte growth factor (Tpr-Met) 
(15). Although signal transduction by progesterone and 
RTKs results in the synthesis of Mos and the induction of 
MPF, the two pathways differ in several aspects. While matu- 
ration induced by Tpr-Met and IGF-1 requires the stimula- 
tion of a phosphodiesterase (15, 62), maturation induced by 
progesterone does not. Further, maturation-signaling cas- 
cades induced by IGF-1, but not those induced by progester- 
one, require the specific involvement of p21 ~s, GAP, and 
PKC-~" (5, 17, 19, 20, 35). 

Since Raf plays an essential role in transducing prolifera- 
tive signals in somatic cells and can induce MAPK activa- 
tion, we examined the effects of a kinase-defective Raf pro- 
tein (KD-Raf) on Xenopus oocyte maturation. In this report 
we show that microinjection of RNA encoding KD-Raf in- 
hibits MAPK activation in oocytes stimulated by either 
progesterone or the injection of RNA encoding the tyrosine 
kinases Tpr-Met, epidermal growth factor receptor (EGFr), 
or oncogenic Ha-Ras vt2. We also demonstrate that injection 
of KD-Raf blocks the tyrosine kinase- and Ha-Ras w2- 
induced G'VBD, but does not prevent progesterone-stimu- 
lated maturation. Furthermore, injection of Mos-specific an- 
tisense oligonucleotides blocks MAPK activation promoted 
by either progesterone or Tpr-Met. 

Materials and Methods 

Frogs and Oocytes 
Xenopus laevis females were purchased from Xenopus I (Ann Arbor, MI). 
Oocytes were removed and defolliculated by incubation in modified Barth 
solution (MBS; 88 mM NaCl, 1 mM KC1, 2.5 mM NaHCO3, 10 mM 
Hepes, pH 7.5, 0.82 mM MgSO4, 0.33 mM [CaNO3]2, 0.4 mM CaC12) 
containing collagenase A (1.5 mg/ml; Boehfinger Marmheim Biochemicals, 
Indianapolis, IN) for 2 h. Oocytes were washed several times in MBS 
and cultured overnight in 50% Leibovitz-15 media (GIBCO BRL, Grand 
Island, NY). 

cDNAs and RNA Transcription 
The human c-raf-1 construct used for mutagenesis (pKS:cRaf) was created 
by filling in a 2.1-kh NdeI-XbaI fragment of the human c-raf-1 cDNA (en- 
coding amino acids 1-648) with klenow, followed by ligation into the 
BamHI site of Bluescript KS by use of a linker. The KD-Raf mntant contains 
a serine to alanine substitution at position 621 ($621A) and was created by 
in vitro mntagenesis of pKs:cRaf using the oligonucleotide 5"AAC- 
CGGAGCGCTGCCGAGCCATCC-3' and the procedure described by 
the vendor (Biorad Mutagenesis Kit, Richmond, CA). The resulting mutant 
construct (designated pKS:KD-Raf) was subsequently sequenced using a 
custom primer and the Sequenase Version 2.0 DNA Sequencing Kit (United 
States Biochemical Corp., Cleveland, OH) to confirm the specific base 
change. For the production of RNA in vitro, the coding regions of the wild- 
type and KD-Raf versions of the e-rafl gene were subcloned into the BgllI 
site of the vector pSP64T (37). The AN'Raf construct, pKS:AN'P-,af, con- 

tains the coding region for amino acids 306-648 of the human Raf-1 kinase 
domain inserted in the EcoRV restriction site of the Bluescript KS vector 
(kindly provided by Martin McMahon of DNAX, Palo Alto, CA.). A 56-bp 
5'-untranslated leader sequence from the Xenopus/~-globin gene was added 
upstream of the ATG start site of pKS:AN'raf as a HindIH-NcoI fragment, 
resulting in the plasmid pGlo:AN'raf. The transcription vectors for A-N'Raf 
and A-KD-Raf were created by excising a 1.7-kb HindIII-BglII fragment 
(encoding amino acids 1-568) of pSP64T:Raf-1 and pSP64T:KD-Raf as and 
replacing them with an 0.8-kb HindIH-BglII fragment (encoding amino 
acids 306-568) from pGlo:AN'raf. 

The eDNA encoding the Tpr-Met oncogene product (51) had been in- 
serted into the EcoRI restriction site of the Bluescript SK vector 
(Stratagene, La Jolla, CA). Ha-ras w2 cDNA was inserted into SmaI-Bam 
HI restriction sites of the Sp65 vector (Promaga, Madison, WI). The human 
EGF receptor, EGFr, cDNA (a gift of Lee Opresko and H. Steven Wiley, 
University of Utah Medical Center) was engineered into the SP64 polyA 
vector (50). All plasmid constructs were linearized with the appropriate re- 
striction enzyme and capped RNA transcripts were synthesized as specified 
by the vendor (Amhion, Austin, TX) using either the T7 or Sp6 poly- 
merases. 

Injections 
18 h after oocyte isolation, microinjections were performed using the atto- 
cyte injector (ATTO Instruments, Rockville, MD) with an injection volume 
of 30 nl. KD-Raf RNA transcripts (1.0 mg/ml) were microinjected 18- 24 h 
before a subsequent injection of Tpr-Met or Ha-Ras w2 RNA. Experiments 
using the EGFr RNA were performed by microinjecting EGFr RNA (1.0 
mg/ml), culturing the oocytes in 50% L-15 media with 5% FCS and 1% 
BSA for 24-30 h, and then microinjecting KD-Raf RNA (1.0 mg/ml) 4 h 
before adding EGF (0.1 #g/ml) to the medium. The experiments involving 
the EGFr were performed in this manner to ensure adequate translation of 
the EGFr. Mos-specific antisense or sense oligodeoxynucleotides (63) (90 
ng per oocyte) were injected 1.5 h before injections of Tpr-Mct RNA or 
the addition of progesterone (2 #g/ml). Oocytes were scored for germinal 
vesicle breakdown (GVBD) as evidenced by the appearance of a white spot 
at the animal pole. This observation was verified in many cases by manual 
dissection of oocytes after fixation in 8% TCA. 

Western Blot Analysis 
Oocytes were homogenized with 10 #1 per oocyte of lysis buffer (137 mM 
NaC1, 20 mM Tris, pH 8.0, 2 mM EDTA, 1% NP-40) containing 1 mM 
PMSF, aprotinin (0.15 U/mi), 20 #M leupeptin, and 0.5 #M sodium vana- 
date. Insoluble material was removed by centrifugation at 14,000 g for 10 
min at 4°C. Lysates were resolved by SDS-PAGE and electrophoretically 
transferred to 0.2 #M-pore nitrocellulose membranes (Schleicher & Schuell 
Inc., Keene, NH). Filters were blocked with 2% BSA (fraction 5; Sigma 
Immunochemicals, St. Louis, MO) in TBS (pH 8.0) for 1 h, washed three 
times in TBS containing 0.2% Tween 20 (TBST), and incubated overnight 
at 4°C with primary antibody diluted in TBST. For Western hybridization 
analysis a cattmxy-terminal antipeptide Raf-1 antibody (65) and a MAPK- 
specific antibody (gift of John Blehis at Harvard Medical School) were used 
at dilutions of 1:2,000 and 1:5,000, respectively. Antibody against phos- 
photyrosine (4(310) was obtained from Upstate Biocbemicals Incorporated 
(Lake Placid, NY) and was used according to the manufacturer's instruc- 
tions. The filters were washed three times with TBST, incubated for I h with 
HRP-coupled secondary antibody (Boehringer-Mannheim Corp.) diluted 
1:20,000 in TBST, washed with TBST, and developed using enhanced che- 
miluminesconco (Amersham Corp., Arlington Heights, IL). Data from 
Western blots were quantified using an LKB UltraScan XL densitometer. 

Myelin Basic Protein In Vitro Kinase Assay 

Immunoprecipitations were performed by incubating oocyte lysates with a 
MAPK specific antibody (74) for 3 h at 4°C. Protein A-scpharose beads 
were used to collect the antigen-antibody complexes which were then 
washed three times with lysis buffer plus 0.5 #M sodium vanadate and once 
with kinase buffer (20 mM Tris, pH 8.0, 10 raM MgCI2, 1 mM DTT, 10 
#M ATP). The immune complexes were resuspended in 60 #1 of kinase 
buffer containing 10#Ci [732p] ATP (3,000 Ci/mmol; Amersham Corp.) 
and 15 #g of myelin basic protein (kindly provided by Michael Weber at 
the University of Virginia, Charlottesville, VA). Reactions were incubated 
at room temperature for 20 rain and were terminated by the addition of gel 
loading buffer (4% SDS, 80 mM DTT, 10% glycerol). 
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Histone H1 Kinase Assays 
Crude MPF extracts were prepared by homogenizing 5-20 oocytes with 
10-40/~1 of extraction buffer (80 mM/~-glycerophosphate, 20 mM EGTA, 
15 mM MgCI2, 20 mM Hepes, pH 7.2, 1 mM ATE 1 mM DTT, 5 mM 
Nab') and centrifuging at 16,000 g for 5 rain at 4"C. 2 td of extract was trans- 
ferred to 50/~1 of stabilization buffer (80 mM B-glycerophosphate, 20 mM 
EGTA, 15 mM MgCl2, 20 mM Hepes, pH 7.2, 1 mM DtrT, 2.5 mM 
PMSF, 20 ttM leupeptin, 10 #M protein kinase A inhibitor). The histone 
HI kinase assay was performed by adding 10/~1 of stabilized extract to 6 
/~l of a mixture containing 2 ttg histone HI (Signut Immunochemicals), 1 
mM ATP, and 1.5/~Ci of [3,32p] ATE The reaction was incubated at room 
temperature for 15 rain and then terminated with sample buffer. Samples 
were resolved by SDS-PAGE (10% polyacrylamide gel) and phosphorylated 
histone H1 was detected by autoradiography. 

Results 

Induction of a Signal Pathway Involving Xenopus Raf 
during Oocyte Maturation 
Previous studies have shown that Xenopus Raf mRNA is 
maternally expressed and abundant in oocytes (39). It has 
also been shown that Xenopus MAPK, Xp42, becomes acti- 
vated during progesterone-induced oocyte maturation (23, 
27, 54, 55). Therefore, we initiated experiments to inves- 
tigate the functional relationship between Raf and MAPK 
during Xenopus oocyte maturation. Oocytes were stimulated 
with progesterone and collected at 1-h intervals over a 5-h 
time period. The stimulated oocytes were then lysed and ex- 
amined by Western blot analysis using antibodies specific for 
Raf, MAPK or phosphotyrosine. As shown in Fig. 1, the 
Xenopus Raf protein is present in unstimulated oocytes and 
undergoes a shift in electrophoretic mobility at 3 h after 
progesterone treatment (•0.5-1.0 h before GVBDso). Fur- 
thermore, the shift in Xenopus Raf mobility was found to be 
coincident with tyrosine phosphorylation of MAPK and a 
shift in its electrophoretic mobility (Fig. 1). In mammalian 
cells, the shift in the electrophoretic mobility of Raf-1 has 
been found to be the result of hyperphosphorylation and 

correlates with an increase in Raf kinase activity (47). Like- 
wise, the shift in MAPK mobility and phosphorylation of 
MAPK on tyrosine residues is concurrent with MAPK acti- 
vation (6, 12, 52, 55). 

Oncogenic Raf-I Can Induce Meiotic Maturation of 
Xenopus Oocytes 
Since Xenopus Raf appears to become activated during oo- 
cyte maturation, we next asked whether introduction of a 
constitutively active oncogenic form of the human Raf-1 pro- 
tein could induce maturation of oocytes in the absence of 
progesterone. Deletion of 305 amino acids from the amino- 
terminal regulatory region of Raf-1 has been shown to gener- 

Figure L Progesterone- 
induced GVBD is coincident 
with Xenopus Raf and MAPK, 
Xp42, activation. 80 oocytes 
were treated with progester- 
one (2/~g/ml) and the percent- 
age of oocytes undergoing 
GVBD was determined as a 
function of time. At the in- 
dicated time, five oocytes 
were arbitrarily collected and 
lysed. Samples were resolved 
by SDS-PAGE (7.5% poly- 
acrylamide gel), using 2.0 oo- 
cyte equivalents of lysates per 
lane, and examined by West- 
ern blot analysis using specific 
antibodies for Raf (ot-Raf), 
MAPK (tx-MAPK) or phos- 
photyrosine (,P-Tyr). Molec- 
ular weight markers are indi- 
cated at the left side of the 
ctP-Tyr autoradiograph. 

Figure 2. Induction of oocyte maturation by oncogenic Raf-1 RNA. 
Fully grown oocytes were either stimulated with progesterone 
(2 ~g/ml) or microinjected with 30 ng of capped transcripts encod- 
ing the following proteins: oncogenic truncated Raf-l (A-N'Raf), a 
kinase-defective form of oncogenic Raf-1 (A-KD-Raf), full length 
human Raf-1 (Raf-1), or a kinase-defective full length Raf-1 (KD- 
Raf). The percentage of oocytes undergoing GVBD are represented 
by the histogram bars, and the ratio of the number of oocytes with 
GVBD to the number injected is displayed above each bar. The full 
length Raf-1 peptide and the truncated version of Raf-1 (A-lVRaf) 
are depicted schematically below the histogram. The amino (N) 
and carboxyl (C) termini are labeled as well as the three evolution- 
arily conserved regions (CR/, CR2, and CR3) found in all Raf pro- 
teins (for review see Morrison [45]). The location of the serine to 
alanine substitution at position 621 ($621A) is denoted by an arrow 
for both the truncated and full length kinase-defective mutants 
(A-KD-Raf and KD-Raf, respectively). 
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ate a constitutively active kinase capable of transforming 
mammalian fibroblasts at a high frequency (29, 68, 69). We 
injected fully grown oocytes with 30 ng of RNA encoding 
either full length or truncated versions of the human Raf-1 
protein (Fig. 2, Raft1 and A-N'Raf, respectively). No GVBD 
was observed in oocytes injected with the full length Raf-1 
RNA, while >80% of the oocytes injected with the truncated 
A-N'Raf RNA underwent GVBD within 12 h (Fig. 2). 

It was important to confirm that the ability of the A-N'Raf 
RNA to induce oocyte maturation was due to the constitutive 
kinase activity of the truncated Raf-1 protein, A-N'Raf. We 
therefore injected oocytes with RNA encoding kinase- 
defective versions of the full length and truncated human 
Raf-1 proteins; designated KD-Raf and A-KD-Raf, respec- 
tively. Both the KD-Raf and A-KD-Raf mutants have a serine 
to alanine substitution at position 621 in the Raf-1 catalytic, 
CR3, domain. Serine 621 is a critical in vivo site of phos- 
phorylation in all Raf proteins, and mutation of this residue 
inactivates the serine/threonine kinase activity of Raf-1 
(47a). In addition, introduction of the $621A mutation in 
the A-N'Raf protein has been found to inactivate the serine- 
threonine kinase activity of this protein such that it is no 
longer able to transform mammalian fibroblasts (Morrison, 
D., and J. Fabian, unpublished data). As expected, oocytes 
injected with RNA encoding either KD-Raf or A-KD-Raf did 
not undergo GVBD. 

Kinase-defective Raf-1 Inhibits Activation of MAPK 
during Maturation 
When expressed in NIH-3T3 cells, an enzymatically inactive 
human Raf-1 protein has been shown to act in a dominant 
negative manner, inhibiting growth factor induced prolifera- 
tion and transformation mediated by oncogenic ras proteins 
(34). Similarly, we used the kinase-defective mutant, KD- 
Raf, described in the above section to determine whether Raf 
function is required for Xenopus MAPK, Xp42, activation 
during oocyte maturation. 

Stage VI oocytes were either left uninjected or microin- 
jected with 30 ng of capped RNA encoding KD-Raf and 
maintained overnight. Oocytes injected in this manner ex- 
pressed the KD-Raf protein at levels 15-30-fold higher than 
the endogenous Xenopus Raf protein (data not shown). 
These oocytes were either treated with progesterone or in- 
jected with RNA encoding an oncogenic truncated form of 
the hepatocyte growth factor receptor (Tpr-Met), Ha- 
Ras vl2, or A-N'Raf. In oocytes stimulated by progesterone, 
Tpr-met, and Ha-ras v~2, KD-Raf reduced detectable 
MAPK tyrosine phosphorylation by 95-100 % relative to oo- 
cytes lacking KD-Raf and prevented the electrophoretic mo- 
bility shift of MAPK (Fig.3). Moreover, phosphorylation of 
myelin basic protein by MAPK immune complexes was 
markedly reduced in oocytes injected with KD-Raf (Fig. 3). 
Inhibition of MAPK activation was also observed in oocytes 
expressing KD-Raf along with EGFr in the presence of 
ligand (data not shown). Activation of MAPK by AN'Raf was 
not blocked by KD-Raf (Fig. 3). Furthermore, injection of 
the A-Nq~af RNA induced a shift in electrophoretic mobility 
of the A-N'Raf protein as well as that of the KD-Raf product. 
This result demonstrated that the constitutively active Raf is 
not inhibited by the presence of KD-Raf. 

Collectively, these findings indicate that the KD-Raf pro- 

Figure 3. Inhibition of MAPK activation by kinase-defective Raf-I 
(KD-Raf). Oocytes preinjected with KD-Raf (+), or not (-), were 
either treated with progesterone or microinjected with the capped 
transcripts (30 ng/oocyte) encoding Tpr-Met, Ha-ras vt2, or 
A-N'Raf. After 12 h, oocytes were collected and lysates were pre- 
pared. Samples were resolved by SDS-PAGE (8.0% polyaerylamide 
gel), using 2.5 oocyte equivalents of lysate per lane, and examined 
by Western blot analysis using specific antibodies for Raf (c~-Raf), 
MAPK (ct-MAPK) or phosphotyrosine (c~-P-Tyr). Molecular 
weight markers are indicated at the left side of the a-Raf autoradio- 
graph. For the in vitro MBP kinase assay, lysates were prepared (10 
oocytes per treatment) and MAPK proteins were immunoprecipi- 
tated with a MAPK specific antibody. The immunoprecipitates 
were then washed and an in vitro kinase assay was performed using 
myelin basic protein as a substrate. Samples were resolved by SDS- 
PAGE (12 % polyacrylamide gel) and phosphorylated MBP was de- 
tected by autoradiography. 

tein acts as a dominant negative inhibitor of MAPK activa- 
tion and this supports a model whereby MAPK functions 
downstream of Raf during the meiotic maturation of Xenopus 
oocytes. 

Kinase-defective Raf-1 Blocks GVBD Induced by the 
Activated Receptor Tjmosine Kinase Pathway But Not 
by Progesterone 
Next, we determined whether Raf-1 function was essential 
for oocyte maturation. When oocytes previously microin- 
jected with KD-Raf were stimulated with progesterone, 
GVBD occurred in 86 % of the oocytes (Fig. 4), even though 
Raf-1 and MAPK function were blocked (Fig. 3). The his- 
tone H1 kinase activity associated with maturation promot- 
ing factor activity was also present (Fig. 4). The oocytes ex- 
pressing only Ha-ras vl2, Tpr-met, or EGFr in the presence 
of EGF displayed GVBD and Histone H1 ldnase activity, 
while those oocytes co-expressing KD-Raf did not (Fig. 4). 
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Figure 4. Inhibition of tyrosine kinases and other inducers of GVBD 
by kinase defective Raf-1 (KD-Raf). Oocytes preinjected with KD- 
Raf (+), or not (-) ,  were either treated with progesterone or 
microinjected with the capped transcripts (30 ng per oocyte) encod- 
ing Tpr-Met, Ha-ras v12, or A-N'Raf. In the case of the EGFr, 
EGFr RNA was injected 24 h before KD-Raf RNA injection (+), 
or not (-) ,  then stimulated with EGF (0.1/~g/ml). GVBD was ex- 
amined 12-18 h later. The ratio of the number of oocytes with 
GVBD to the total number injected is displayed above each bar. 
Histone H1 kinase assays were performed on extracts from five ap- 
propriately injected oocytes and the autoradiograph is displayed be- 
low each bar. 

The differences in the ability to induce maturation was not 
due to variations in the levels of KD-Raf between progester- 
one stimulated or injected oocytes, since roughly equivalent 
levels of protein were present in lysates when assayed by 
Western blotting analysis (Fig. 3). Furthermore, inhibition 
of Tpr-Met-induced GVBD by KD-Raf did not appear to be 
due to a non-specific effect on translation caused by the KD- 
Raf RNA or protein for the following reasons: (a) KD-Raf 
did not inhibit translation of the A-N'Raf protein (Fig. 3); (b) 
GVBD was observed in oocytes injected with the KD-Raf 
RNA and subsequently injected with wild-type Raf-1 RNA 
and Tpr-Met (Fig. 4). Therefore, injection of KD-Raf ap- 
pears to specifically inhibit maturation induced by activation 
of the RTK pathway, but not by the progesterone pathway in 
Xenopus oocytes. 

Dominant Negative Raf Delays Progesterone 
Induced GVBD, but Maturation Progresses Through 
Meiosis H 
To further examine the effect of KD-Raf on progesterone in- 
duced maturation, oocytes were preinjected with either KD- 
Raf RNA or buffer and were analyzed at 1.5-h intervals over 
a 7.5-h time period after progesterone treatment. Although 
80-90% of the progesterone-treated oocytes expressing KD- 
Raf displayed GVBD, the GVBDso occurred 1.6-2.0 h later 
than buffer injected oocytes (Fig. 5). By Western blot analy- 
sis there was no detectable tyrosine phosphorylation or elec- 
trophoretic mobility shift in MAPK during oocyte matura- 
tion in the KD-Raf injected ooeytes, while the normal 
phosphorylation and mobility shift was seen in the control 

Figure 5. Effect of kinase-defective Raf-1 (KD-Raf) on proges- 
terone-induced GVBD. 60 oocytes preinjected with either buffer 
(,.) or 30 ng of KD-Raf RNA (n) were treated with progesterone 
(2 #g/ml) and GVBD was determined over a 7.5-h period. At the 
indicated times, oocytes were collected (5 oocytes per treatment) 
and lysates were prepared. Samples were resolved by SDS-PAGE 
(8.0% polyacrylamide gel), using 2.5 oocyte equivalents per lane, 
and examined by Western blot analysis using specific antibodies for 
Raf (c~-Raf), MAPK (c~-MAPK), or phosphotyrosine (ctP-Tyr). 

oocytes (Fig. 5). This result suggests that MAPK is not tran- 
siently activated during progesterone-induced maturation of 
KD-Raf injected oocytes. It is worth noting that a shift in the 
mobility of the KD-Raf protein occurred around the onset of 
GVBD (Fig. 5). The shift in mobility of the KD-Raf protein 
suggests that an upstream activator (or activators) of Raf is 
probably functioning but is unable to transmit its signal to 
the endogenous Xenopus Raf due to the presence of the KD- 
Raf protein. 

Since GVBD occurs during meiosis I, we determined 
whether oocytes injected with KD-Raf RNA advanced 
through Meiosis I to metaphase of meiosis II. Extracts were 
prepared from progesterone-treated oocytes preinjected with 
either KD-Raf RNA or buffer and were assayed for histone 
H1 kinase and MPF activity over a 2.5-h period after GVBD. 
Regardless of whether the oocytes were injected with KD- 
Raf RNA, Histone HI kinase activity decreased shortly after 
GVBD and reappeared, corresponding to meiosis II (Fig. 
6). Histone H1 kinase activity remained high 6 h after 
GVBD (data not shown). Similar results were observed 
when the extracts were tested for MPF activity by microin- 
jection into cycloheximide-treated fully grown oocytes (data 
not shown). MPF can induce GVBD even in the presence of 
cycloheximide (13, 72). Cycling of histone HI kinase activity 
between Meiosis I and I/required approximately 1 h longer 
in the KD-Raf injected oocytes when compared to the buffer 
injected controls (Fig. 6). 

The above results suggest that induction of meiotic matura- 
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Figure 6. Kinase-defective Raf (KD-Raf) does not block meiotic 
progression to metaphase II. Oocytes were injected with buffer or 
KD-Raf RNA (30 ng), and later stimulated with progesterone (2 
#g/ml). At the indicated times following GVBD, groups of six oo- 
cytes were lysed and assayed for Historic HI kinase activity. Sam- 
pies were resolved by SDS-PAGE (10% polyacrylamide gel) and 
phosphorylated histone HI was detected by autoradiography. 

tion by progesterone differs from induction by the tyrosine 
kinase-mediated pathway (Tpr-Met, EGFr, Ha-ras w2) in that 
progesterone does not appear to require detectable Raf and 
MAPK function. Furthermore, Raf and MAPK activities do 
not appear to be necessary for cell cycle progression from 
G2/M of Meiosis I to M-phase of Meiosis II. 

pp39~ Synthesis Is Required for MAPK Activation and 
Affects the Shift of Xenopus Raf 
pp39~ can induce MAPK activation in cycloheximide 
treated oocytes (57) and its synthesis has been shown to be 
required for progesterone and tyrosine kinase-induced matu- 
ration (14, 33, 63). Therefore, we examined whether Mos is 
necessary for the electrophoretic mobility shift of Xenopus 
Raf and MAPK. Oocytes were microinjected with either 
Mos-specific antisense oligonucleotides or sense oligonucle- 
otides and then either injected with Tpr-met RNA or treated 
with progesterone. Extracts were prepared 12 h later and 
subjected to Western blot analyses. Oocytes injected with 
antisense Mos oligonucleotides displayed 0-2% GVBD and 
did not show the maximal mobility shift of Raf when stimu- 
lated by progesterone or injection of the Tpr-Met RNA (Fig. 
7). However, both progesterone and Tpr-Met did cause some 
intermediate shifted forms of Raf to appear (Fig. 7). As ex- 
pected, GVBD (72-88%) and a maximal mobility shift of 
Raf was observed in the extracts from sense oligonucleotide 
injected oocytes stimulated by either reagent. Moreover, the 
tyrosine phosphorylation and electrophoretic shift associ- 
ated with MAPK activity was also absent in the oocytes 
where Mos synthesis was precluded, despite the existence of 
some partially shifted forms of Raf induced by Tpr-Met and 
progesterone (Fig. 7). In contrast, oocytes pre-injected with 
Mos specific antisense oligonucleotides did undergo GVBD 
(91%) and possessed tyrosine phosphorylation of MAPK 
when injected with A-N'Raf RNA (Fig. 7). 

Discussion 

In this study we have examined the requirement for Raf and 
MAPK function during the maturation of Xenopus oocytes. 
Consistent with previous studies (4, 23, 27, 55), we found 
that in progesterone-treated oocytes, MAPK underwent sev- 

Figure 7. Mos is required for the activation of MAPK and the maxi- 
mal electrophoretic mobility shift of Raf. Oocytes were either left 
uninjected (U) or injected with Mos-specific antisense (A) or sense 
oligonucleotides (S) and were cultured for 1.5 h. Oocytes were then 
injected with RNA encoding Tpr-Met, AN'Raf, or treated with 
progesterone (2 #g/ml). GVBD was determined and lysates were 
prepared 5-8 h later. Samples were resolved by SDS-PAGE (8.0% 
polyacrylamide gel), using 2.0 oocyte equivalents per lane, and ex- 
amined by Western blot analysis using specific antibodies for Raf 
(c~-Raf), MAPK (a-MAPK) or antiphosphotyrosine antibodies 
(ctP-Tyr). The above results were reproducibly observed in three 
separate experiments. 

eral readily observable physical changes at the onset of 
GVBD. These changes included the tyrosine phosphoryla- 
tion of MAPK, an alteration in its electrophoretic mobility 
and an activation of its serine/threonine kinase activity. Con- 
current with MAPK tyrosine phosphorylation and at a time 
closely associated with MPF activation (•0.7 GVBDso) we 
observed a shift in the electrophoretic mobility of Xenopus 
Raf. In addition, we found that introduction of a constitu- 
tively active form of Raf, ~-N1~af, resulted in MAPK activa- 
tion and GVBD. In contrast, expression of a kinase defective 
mutant, KD-Raf, inhibited MAPK activation induced by 
progesterone or by proteins associated with tyrosine kinase 
signaling pathways (Tpr-met, EGFr, Ha-ras~2). This result 
demonstrates that MAPK functions downstream of Raf dur- 
ing the maturation ofXenopus oocytes and is consistent with 
observations of Raf function in mammalian somatic cells as 
well as genetic evidence from studies of Raf function during 
Drosophila development (16, 18, 32, 38, 49, 67, 71). 

Previous studies have shown that the IGF-1 and progester- 
one activate MPF through different signal transduction path- 
ways. For example, p21 r~, GAP, PKC-~" are necessary for 
IGF-1 and not progesterone mediated activation of MPF (5, 
17, 19, 20, 35). In this study, we found that expression of KD- 
Raf in oocytes blocked MPF activation and the resulting 
GVBD induced by Tpr-Met, EGFr, and Ha-Ras w2, but 
failed to prevent progesterone-stimulated GVBD and pro- 
gression of maturation to meiosis II. Progesterone induction 
of GVBD and the progression to meiosis II was delayed in 
the presence of KD-Raf, indicating that Raf function en- 
hances the progesterone signaling of cell cycle progression. 

The oncogenic AN'Raf product was found to induce 
MAPK and MPF activation in the presence of KD-Raf. In 
addition, injection of Raf-1 RNA rescued "l~r-Met induced 
maturation in oocytes expressing KD-Raf, demonstrating 
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that the inhibitory effects of KD-Raf are specific. Our data 
suggests that Raf and MAPK are common intermediates for 
both tyrosine kinase and progesterone signaling pathways. 
However, while Raf is an essential signaling component of 
the tyrosine kinase pathway, its activities may only expedite 
cell cycle progression induced by progesterone. 

The pp39 m°S product is a required component of both the 
tyrosine kinase and progesterone signaling pathways (14, 
63). When introduced into oocytes, pp39 ~°~ is able to in- 
duce MPF activation during meiosis I, but not meiosis H in 
the absence of protein synthesis (75). Furthermore, Mos is 
required for MPF activation throughout maturation (14, 33, 
63). It has recently been shown that injection of Mos into oo- 
cytes activates MAPK and that the Mos product can phos- 
phorylate MAPKK in vitro (57). The present study shows 
that the absence of Mos only partially inhibited the Raf mo- 
bility shift induced by progesterone and Tpr-Met, while 
preventing detectable tyrosine phosphorylation of MAPK. 
pp39~ may be necessary for the full activation of Raf dur- 
ing oocyte maturation. Perhaps, Mos is required for the 
maximal activation of Raf that is necessary for signaling the 
activation of MAPK through MAPKK and possible 
MAPKKK. Consistent with this idea, Williams et al. (73) 
have shown that maximal Raf activation requires both ras- 
dependent and -independent signals (73). It may also be pos- 
sible that Mos directly, or indirectly, phosphorylates Raf on 
critical serine or threonine residues necessary for full activa- 
tion. Therefore, in the absence of Mos, progesterone and 
Tpr-Met may induce the partial or inappropriate phosphory- 
lation of Raf that may effect Raf activity levels or substrate 
specificity. The mechanism by which Mos affects Raf activ- 
ity may not be elucidated until the true substrate for Raf has 
been determined. Regardless, it is clear that Mos is required 
for detectable MAPK activation in both the tyrosine kinase 
and progesterone signaling cascades. 

In somatic cells, Raf and MAPK appear to function in a 
signal transduction pathway which is initiated by growth fac- 
tor binding to RTKs at the cell surface and results in the acti- 
vation of transcription factors involved in cell proliferation 
(6, 10, 40, 52, 58, 66). An analogous role for Raf and MAPK 
in the maturation of Xenopus oocytes is unlikely since gene 
transcription is not needed until later in development. In- 
deed, our results suggest that Raf and MAPK may not be 
necessary for the progesterone-induced release of oocytes 
from arrest at G2/M of prophase I as well as for the progres- 
sion to Meiosis H. However, it may very well be that Raf and 
MAPK function are critical to other processes involved in 
the production of mature eggs or during later stages of Xeno- 
pus development when gene transcription is required. 
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