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a b s t r a c t 

The recent outbreak of Coronavirus Disease 2019 (COVID-19) has led to urgent needs for reliable diagnosis 

and management of SARS-CoV-2 infection. The current guideline is using RT-PCR for testing. As a com- 

plimentary tool with diagnostic imaging, chest Computed Tomography (CT) has been shown to be able to 

reveal visual patterns characteristic for COVID-19, which has definite value at several stages during the 

disease course. To facilitate CT analysis, recent efforts have focused on computer-aided characterization 

and diagnosis with chest CT scan, which has shown promising results. However, domain shift of data 

across clinical data centers poses a serious challenge when deploying learning-based models. A common 

way to alleviate this issue is to fine-tune the model locally with the target domains local data and anno- 

tations. Unfortunately, the availability and quality of local annotations usually varies due to heterogeneity 

in equipment and distribution of medical resources across the globe. This impact may be pronounced in 

the detection of COVID-19, since the relevant patterns vary in size, shape, and texture. In this work, we 

attempt to find a solution for this challenge via federated and semi-supervised learning. A multi-national 

database consisting of 1704 scans from three countries is adopted to study the performance gap, when 

training a model with one dataset and applying it to another. Expert radiologists manually delineated 945 

scans for COVID-19 findings. In handling the variability in both the data and annotations, a novel feder- 

ated semi-supervised learning technique is proposed to fully utilize all available data (with or without 

annotations). Federated learning avoids the need for sensitive data-sharing, which makes it favorable for 

institutions and nations with strict regulatory policy on data privacy. Moreover, semi-supervision poten- 

tially reduces the annotation burden under a distributed setting. The proposed framework is shown to be 

effective com pared to fully supervised scenarios with conventional data sharing instead of model weight 

sharing. 

© 2021 Elsevier B.V. All rights reserved. 
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2  
. Introduction 

The COVID-19 pandemic has caused millions of confirmed cases 

nd hundreds of thousands of deaths globally. Early and effective 

iagnosis is among critical measurements to control the infectious 

isease and manage its spread. Current standard test for potential 

ARS-CoV-2 infection is via RT-PCR. However, this technique can 

ave high false negative/positive rate for coronavirus due to multi- 

actorial issues ( Drosten et al., 2003 ). 

As a complimentary approach, medical imaging, specifically 

hest CT, is undergoing investigations on its capability of revealing 

mportant characteristics of COVID-19. Although its specificity for 

iagnostic purposes lacks consensus and is not recommended ac- 

ording to the guidelines from the ACR American College of Radi- 

logy , researchers have been looking for visual patterns related to 

iral infection from the images. A better understanding of the ap- 

earance of COVID-19 in chest CT may serve as an epidemiologic 

ool for mitigating outbreaks. Current consensus on the imaging 

attern is the presence of infiltrates, from ground glass opacity to 

onsolidation, usually bilateral, multilobar, with a peripheral distri- 

ution ( Guan et al., 2020; Bernheim et al., 2020 ). 

Quantification and characterization over the region of infiltrates 

ay further help the understanding and tracking of disease pro- 

ression, and provide important information of this novel virus in 

n outbreak situation ( Colombi et al., 2020 ). In order to achieve 

his goal, detection and delineation of disease patterns are re- 

uired. Unfortunately, such processes can be extremely tedious and 

ime-consuming, especially at this time when many experts are 

lready working around the clock on their clinical duty during a 

andemic. Therefore, automated computerized methods are being 

eveloped and deployed to facilitate the understanding of the find- 

ngs from medical images ( Shi et al., 2020 ). Among them, methods 

ased on deep learning techniques often achieve the state-of-the- 

rt accuracy ( Li et al., 2020a; Fan et al., 2020; Ouyang et al., 2020;

ang et al., 2020; Kang et al., 2020 ). 

To design and develop an artificial intelligence (AI) system that 

an properly and robustly handle this problem, large amounts of 

ata, as well as annotations, from diverse sources are required. 

owever, in reality: 1) data access is often limited by strict shar- 

ng policies on sensitive private patient information, and 2) an- 

otations have great variances in both quantity and quality due 

o experts’ experience, availability and cost across imaging sites. 

ence, most existing methods are trained using limited amount 

f data from a single site. On the other hand for model deploy- 

ent, a well-known challenge for deep learning is the “domain 

hift” caused by the distribution difference between source data 

nd target data, often leading to significant performance variance 

r degradation among different sites. Therefore, a mechanism en- 

bling cross-institution collaboration under the constraint of sig- 

ificant difference in annotation availability and strict data sharing 

olicies is highly desirable and may facilitate AI model develop- 

ent for COVID-19. 

In this work, we propose a novel system to address the afore- 

entioned challenges, which is based on federated and semi- 

upervised learning. Federated learning ( Li et al., 2020c ), especially 

nes with secure features ( Li et al., 2019 ), can often give sufficient

exibility to different institutions to collaboratively train deep 

earning models without data sharing, as shown in Fig. 1 ; while 

emi-supervised learning can ensure effective training even when 

ome sites have only limited amount of annotated data but large 

mount of unannotated data. In addition, the semi-supervised set- 

ing could reduce the burden of experts annotation, which is very 

aluable in current pandemic situation. 
1 Authors contributed equally 
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To test the proposed framework, we chose the task of segmen- 

ation for abnormal regions related to COVID-19, which is the most 

ime-consuming as compared with other tasks like classification. 

his is because for most cases, slice-by-slice delineation is needed. 

ith various configurations of the proposed framework, we show 

hat our method’s design can naturally benefit from multiple het- 

rogeneous data sources under semi-supervise scenario. Finally, 

ur method is task and training pipeline independent which makes 

t easy to be adapted to other deep learning tasks, such as COVID 

lassification in CXR/CT, and non-COVID imaging tasks. 

. Related work 

Federated Learning is an advanced distributed learning con- 

ept that takes advantage of datasets across multiple institutions 

ithout any explicit training data centralization or sharing ( Yang 

t al., 2019; Li et al., 2020c ). Although federated learning (FL) was 

nitially designed for mobile edge devices, it has attracted increas- 

ng attention in healthcare domain because of its privacy pre- 

erving nature of the patient information. FL is agnostic to the 

ype of the input data. It is capable of analyzing various medical 

ata modalities, from free-text clinical reports to high-dimensional 

edical images ( Xu and Wang, 2019 ). Brisimi et al. (2018) adopted 

L to train a predictive model and solve a support vector machine 

roblem for analysis of electronic health record (EHR) data. FL was 

pplied for wearable healthcare using personalized machine learn- 

ng models ( Chen et al., 2020 ). Li et al. (2020c) built an FL frame-

ork for multi-site fMRI classification with preserved privacy. Re- 

ently, FL has been successfully applied on multi-institutional brain 

RI for tumour segmentation with deep neural networks and im- 

roved privacy preserving of patient information ( Sheller et al., 

018; Li et al., 2019 ). 

Semi-Supervised Learning leverages the available information 

f unlabeled data, together with the supervision from labeled 

ata, to improve the effectiveness and generalizability of machine 

earning models. In computer vision, semi-supervised learning has 

een investigated from different perspectives for various appli- 

ations (e.g. image recognition). To take advantage of unlabeled 

ata, consistency constraints have been investigated to mitigate 

he gap within and between domains of labeled and unlabeled 

ata ( Verma et al., 2019; Berthelot et al., 2019b; 2019a; Sohn 

t al., 2020; Liu et al., 2020a ). One research trend is the frame-

ork of teacher-student models, which perform well utilizing con- 

istency constraints between models for labeled and unlabeled 

ata, respectively ( Tarvainen and Valpola, 2017; Luo et al., 2018 ). 

nother similar framework, “noisy-student”, achieved the state- 

f-the-art performance on ImageNet classification when jointly 

rained with a large amount of unlabeled data ( Xie et al., 2019 ).

eanwhile, consistency-based model regularization can be im- 

lemented using model predictions of unlabeled data with data 

ugmentation or pre-processing ( Berthelot et al., 2019b; 2019a; 

erma et al., 2019; Sohn et al., 2020 ). Another trend is to de- 

ign auxiliary supervised tasks for unlabeled data, such as solv- 

ng jigsaw puzzles ( Noroozi and Favaro, 2016 ), predicting rotation 

ngles ( Gidaris et al., 2018; Zhai et al., 2019 ). Alternatively, co- 

raining ( Qiao et al., 2018 ) has been applied to semi-supervised 

mage recognition where different models are trained on differ- 

nt “views” in order to learn complimentary information from the 

ata. In general, most studies in the field focus on large-scale 

mage recognition using 2D convolutional neural networks. Some 

orks covered semantic segmentation ( Hong et al., 2015; Papan- 

reou et al., 2015 ), object detection ( Misra et al., 2015; Tang et al.,

016 ) in 2D, as well as in graph-structured data analysis ( Kipf and

elling, 2016 ). 

Semi-Supervised Learning in Medical Imaging becomes a 

opular topic as large-scale datasets are made publicly available 
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Fig. 1. Federated learning with privacy preserving in medical imaging. The central federated server communicates with clients from multi-national institutions by sharing 

weights and gradients of models, without exchanging any sensitive data information. 
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e.g. Cheplygina et al. (2018) ). But in the meantime, it is difficult 

o collect annotation for all datasets from experts or radiologists 

n practice. Bai et al. (2017) introduced a semi-supervised learning 

ethods for cardiac image segmentation, using both deep neural 

etworks and conditional random field (CRF). Li et al. (2018) pro- 

osed to add model regularization based on image rotation and 

ipping for unlabeled data in skin lesion segmentation. 

Several works used self-ensembling and teacher-student in- 

eraction for medical image analysis, e.g. Liu et al. (2020a) . 

ui et al. (2019) proposed an adapted mean teacher model to im- 

rove accuracy of brain lesion segmentation leveraging both anno- 

ated and unannotated data. Yu et al. (2019) added an uncertainty- 

ware scheme to the teacher-student framework improving consis- 

ency regularization at training for left atrium segmentation in 3D 

RI. 

The multi-plane information from 3D medical images was used 

o enhance the supervised training model for prediction consis- 

ency in a co-training approach ( Zhou et al., 2019 ). This method 

as further extended leveraging multi-view information of 3D 

edical images for full volumetric segmentation ( Xia et al., 2020 ). 

oreover, some researchers studied the usage of mixed supervi- 

ion for medical image analysis ( Shah et al., 2018; Mlynarski et al., 

019 ). 

Federated Semi-Supervised Learning brings up challenges and 

omplexity about how to exploit unlabeled data under a dis- 

ributed learning setting ( Jin et al., 2020 ). Unsupervised federated 

earning has been investigated for representation learning in a dis- 

ributed setting ( van Berlo et al., 2020 ). Federated self-learning was 

hown to be capable of detecting abnormality without any data 

abel ( Nguyen et al., 2019 ). Moreover, one-shot federated learning 

as introduced to conduct single-round communication between 

lients and server for both supervised and semi-supervised learn- 

ng ( Guha et al., 2019 ). 

It is important to note that, in the context of federated learn- 

ng, “semi-supervised learning” has a new dimension beyond the 

entralized training scenario, such as teacher-student model or co- 

raining methods listed above. This new dimension is introduced 

y the multi-client setting and that different clients can have com- 

t

3 
letely different annotation availability. We call it “global semi- 

upervision”, as compared with “local semi-supervision” that is 

otentially viable for each individual client. As a matter of fact, 

he client-level network is compatible with other semi-supervised 

echniques, such as teacher-student model. In this paper, we 

ropose an efficient and robust solution for the “global semi- 

upervision problem. To the best of our knowledge, there are very 

imited existing works on such federated semi-supervised learn- 

ng or federated self-learning on unlabeled medical imaging data. 

n this paper, we propose a federated semi-supervised learning 

ramework which utilizes unlabeled data to improve FL training 

nd validate it in COVID region segmentation task. Our frame- 

ork enables cross-institutional training on large-scale heteroge- 

eous datasets without sharing sensitive private information. 

. Coronavirus affected region segmentation 

Nowadays, machine learning based methods have been devel- 

ped for medical imaging data acquisition, segmentation, and di- 

gnosis of COVID-19 ( Dong et al., 2020; Shi et al., 2020 ). Relying

n the success of deep learning in medical image analysis, imaging 

haracteristics of COVID-19 have been studied and analyzed from 

arious perspectives. Some examples of affected regions of COVID- 

9 is given in Fig. 2 . For the identification and segmentation of 

uch regions, there are two major research directions using deep 

eural networks. The first one is to use classification models to dis- 

inguish normal subjects and patients. Class activation maps (CAM) 

an be extracted from these models that correspond to the affected 

egion inside the lung area ( Bai et al., 2020; Li et al., 2020b; Mei

t al., 2020; Wang et al., 2020 ). The second direction is to apply 3D

egmentation networks, typically fully convolution networks (FCN), 

nd directly extract the COVID-19 affected regions following an 

mage-to-image fashion ( Fan et al., 2020; Huang et al., 2020; Liu 

t al., 2020b; Shan et al., 2020; Xie et al., 2020; Zhang et al., 2020;

hou et al., 2020 ) shown in Fig. 3 . 

In this paper, we follow the second approach, using 3D U- 

hape FCN ( Liu et al., 2018 ) as our baseline model, to segment 

he ground glass-like opaque (GGO) regions (COVID-19 affected re- 
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Fig. 2. The axial planes of chest CT scans from three different sites. Areas inside 

green contours represent COVID-19 affected regions annotated by radiologist. The 

appearance of the affected region identified as “infiltrates” range from diffused 

ground glass opacity (COVID, upper row) to focal nodules (lower row). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 3. The general architecture of fully convolutional network (FCN) for COVID-19 

affected region in medical imaging. Dashed lines denote skip connections which 

feed earlier feature maps to later neural network layers. 
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ions, or COVID for short) of the lung from the 3D chest CT. How- 

ver, it is noteworthy that our framework is independent of the 

xact neural network architecture used. This 3D U-shape FCN can 

e initialized with 2D model. Specifically, during the model ini- 

ialization, weights of the 3D encoder are directly transferred from 

he pre-trained 2D ResNet with necessary operation conversion. 

or instance, 2D 3 × 3 convolutions are converted to 3D 3 × 3 ×1 

onvolutions with the same amount of parameters. The parame- 

ers of batch normalization can be transferred directly without any 

odification. Each voxel is predicted as either foreground (COVID) 

r background. The output of models is a two-channel probabil- 

ty map after soft-max activation. The model is partially initialized 

ith pre-trained weights of ResNet ( He et al., 2016 ) from ImageNet 

lassification for the encoder layers. We use the Adam optimizer to 

inimize the soft Dice loss ( Milletari et al., 2016 ) given as 

 dice = 1 − 2 

∑ 

i y i ̂  y i ∑ 

i (y i ) 2 + 

∑ 

i ( ̂  y i ) 2 
. (1) 

ere, y represents ground truth label and ˆ y is the prediction from 

he deep learning model. 

Implementation Details. The CT volumes are converted to the 

ost frequent resolution 0 . 8 mm × 0 . 8 mm × 5 . 0 mm of the chest CT

atasets before training and testing/inference. The actual input of 

he model is a cropped region-of-interest (ROI) with fixed size of 

60 × 160 × 32 during training. The patches sampled from the CT 

olumes are fed into the network for training. Patches are sam- 

led with equal chance from foreground or background regions to 

aintain the training sample balance. The intensity of CT is clipped 

etween Hounsfield units (HU) 0 and −10 0 0 , and mapped to the 

ange of [ 0 , 1 ] . The data augmentation strategy includes random 

ipping, random rotation, and random intensity shift. Moreover, 

he deep learning model is trained using 16GB NVIDIA Tesla V100 
4 
PUs, with the pipeline developed using NVIDIA Clara Train SDK 

latform ( Clara, 2020 ). To achieve segmentation of the entire CT at 

nference, we use a crop size of 224 × 224 × 32 to increase infer- 

nce speed and to avoid artifacts caused by cropping. The sliding 

tep is 16 along three axes. The batch size for training is 4, and 

earning rate is set to 0.0 0 01. 

. Federated semi-Supervised learning 

In this section, we introduce our framework, federated semi- 

upervised learning, for COVID region segmentation in 3D chest CT. 

he framework is designed to leverage unlabeled data for federated 

earning. In the following sub-sections, we explain the mechanism 

f our frameworks in details: the fundamentals of federated learn- 

ng for COVID region segmentation are introduced in Section 4.1 ; 

hen we illustrate the settings of federated semi-supervised learn- 

ng in the segmentation task in Section 4.2 ; last but not least, the 

etailed implementation is further discussed in Section 4.3 . 

.1. Federated learning 

In our paper, the federated learning framework follows the con- 

entional settings as ( McMahan et al., 2016; Li et al., 2019 ). In

he setting, a single server hosts the global optimal model at the 

oment, and meanwhile communicates with multiple clients. The 

eural network architecture is shared between server and clients. 

he communication is only about weight or gradient transferring, 

hich is synchronized for all clients. All the data is associated with 

he clients. The data point from one client is invisible to both the 

erver and other clients. There is usually no complicated computa- 

ion on server side other than simple weighted aggregation. During 

L training, the server collects “gradients” �θ from clients simul- 

aneously, aggregate those gradients, and send new model weights 

ack to clients. The most important job for the server is weight 

ggregation . As shown in Eq. 2 , the aggregation is conducted as 

eighted summation. 

ˆ 
θ ← 

ˆ w i ·
C ∑ 

i =1 

�i 
θ (2) 

ere, C is the number of clients. We firstly weigh clients by n, 

he quantity of iterations per synchronization round. Because the 

odel trained with more steps tends to have larger difference with 

he initial model, the updates from clients should be normalized 

o have the same update pace, which would avoid the unneces- 

ary bias towards any one of the clients. Therefore, besides weights 

rom iterations, we have additional weights W for each client as- 

igned by users. Hence, the overall weight of each client contains 

wo components as follows. 

ˆ 
 i ← 

n i ∑ 

i n i 

· w i , w i ∈ W, i = 1 , · · · , C (3) 

ere, n i is the iteration number per round of client i . Once aggre- 

ation is accomplished, the server sends out the updated model 

eights back to each client at the same time. 

Next, the clients collect models weights from the server, fine- 

une the model with their local data, and send out the new gra- 

ient to server. They are independent instances, which are not di- 

ection connection between each other. In this paper, the clients 

aunch training jobs described in Section 3 for COVID region seg- 

entation. Each client has its own chest CT data, and GPUs as 

omputing resource. Moreover, the optimal model checkpoint for 

ach client is selected based on its own validation set. 

The server is launched first and the clients are initialized ac- 

ordingly with the global model from server. After several FL 

ounds of server-client communication, the global model on the 

erver would be improved with greater generalizibility, and the 
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Fig. 4. FL is to find global low-error space of θglobal for client A and B after aggrega- 

tion of “gradients” �A and �B . The low-error space is defined by each client, which 

could correspond to high accuracy, or high model consistency for self-supervision. 
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erformance of local models would be further boosted. This in- 

uition is shown in Fig. 4 . The entire FL algorithm is shown in

lgorithm 1 and is potentially feasible for all deep learning related 

lgorithm 1 Federated learning for COVID region segmentation 

sing weighted federated averaging. 

nput: ~number of clients C, amount of global synchronization 

ounds T , aggregation weights W for all clients, learning rate λi 

or each client i (for simplicity, we show the gradient descent up- 

ate rule; not Adam optimization). 

utput: ~optimal θc for each client c. 

1: procedure ServerUpdate 

2: initialize global model θ0 

3: send θ0 to all C clients 

4: for round t = 1 , 2 , · · · , T do 

5: wait for all C to finish update 

6: 
(
�i 

θ
, n i 

)
← ClientUpdate ( θt−1 ) , i = 1 , · · · , C 

7: ˆ w i ← ( n i / 
∑ 

i n i ) · w i , w i ∈ W, i = 1 , · · · , C 
8: ˆ �θ,t−1 ← 

∑ C 
i =1 ˆ w i · �i 

θ
� aggregate updates 

9: θt ← θt−1 + 

ˆ �θ,t−1 

0: end for 

11: end procedure 

2: function ClientUpdate ( θ ) 

3: n ← amount of total training iterations 

14: θinit ← θ
5: for iteration j ∈ 1 , 2 , · · · , n do 

6: θ ← θ − λi � L ( θ, j ) � optimize loss function 

17: end for 

18: �θ ← θ − θinit 

9: return ( �θ , n ) 
0: end function 

pplications of medical image analysis. 

.2. Federated semi-Supervised learning on COVID region 

egmentation 

We assume that some of clients may not have enough exper- 

ise to create accurate annotation for their datasets. But the infor- 

ation of their patient data is still valuable to the rest of commu- 

ity. In practice, some clients only possess unlabeled chest CT im- 

ges, which could be from COVID-19 patients, pneumonia patients, 

r normal subjects. However, each of those database has its own 

erits for jointly training COVID-19 affected region segmentation. 

or instance, COVID-19 related CT images contain informative con- 

ext from its appearance inside the lung region. Non COVID-19 re- 

ated CT images can provide guidance on false positive removal for 

he COVID-19 affected region segmentation model (ideally nothing 

hould be predicted based on those CT images). In order to uti- 

ize the clients’ side unlabeled data, we propose a novel framework 

f federated semi-supervised learning for COVID-19 affected region 

egmentation. 
5 
Under the existing FL setting, we create a unsupervised client, 

hich only has unlabeled data, without modifying the FL server. 

he unsupervised clients retrieve the global model H ( ·; θ ) with 

eights θ from the server and apply it to their own database. 

hen, we would like to enforce consistency of predictions from the 

lobal model, to further adjust model weights. Similar to ( Berthelot 

t al., 2019b; 2019a; Sohn et al., 2020 ), we introduce a new loss 

unction based on data augmentation. The assumption behind this 

s that the generalizable model should perform the same with orig- 

nal data and slightly perturbed data. We assume that the pertur- 

ation can still be within the range of the actual data distribution. 

Let u denote one CT image from the unlabeled database U . We 

reate the pseudo-label ȳ using prediction of the current model 

ith input u and hard thresholding (against 0.5). 

¯
 = 

{
1 , H ( u ) > 0 . 5 

0 , otherwise 
(4) 

n order to train the global model locally, the new loss function 

inimizes the difference between pseudo-label ȳ and the predic- 

ion after augmentation g ( ·) : 
 consistency = L ( ̄y , H ( g ( u ) ) ) . (5) 

ere, L is the soft Dice loss for segmentation tasks, as in Eq. 1 .

ther loss functions, such as cross entropy or � 2 loss, can also 

e used here. Data augmentation could be random scale shift, 

utout ( DeVries and Taylor, 2017 ), adding Gaussian noise, and 

o on. In general, g ( ·) on image appearance should not generate 

ut-of-distribution samples. Because the pseudo-label is generated 

ully from the image, the ambiguous area (output probability close 

o 0.5) in the prediction may not be helpful for model training. To 

urther improve the quality of pseudo-label, a confidence thresh- 

ld τ ∈ [ 0 . 5 , 1 ] can be added to determined the regions used for 

omputing the loss: 

 consistency = 1 ( H ( u ) > τ ) L 

(
ˆ y , H ( g ( u ) ) 

)
. (6) 

omparison with Centralized Semi-Supervised Learning. After 

raining several epochs, the server collects gradients �θ from both 

upervised clients C s and self-supervised/unsupervised clients C u 
or model aggregation: 

ˆ 
θ ← 

∑ 

i ∈C s 
ˆ w i · �i 

θ + 

∑ 

i ∈C u 
ˆ w i · �i 

θ . (7) 

lthough it seems to be similar with jointly loss training in cen- 

ralized semi-supervised learning (SSL), the proposed FL approach 

as intrinsic differences compared to SSL. First, the objective func- 

ion L is only visible to each client itself. The gradients of clients 

ay diverge to different local minima, which is also known as 

eight divergence problem in FL. Second, for the communica- 

ion efficiency of FL training, the model update cannot be con- 

ucted per local iteration. It makes the federated semi-supervised 

earning even more challenging. The weights ˆ w i between differ- 

nt clients, and the learning rate λi of each clients may play 

n important role for the final model performance. Third, due to 

he difference of patients population, scanning protocol, and scan- 

ers, the data distribution of clients are usually non-identical and 

on-independent (non-iid) in the application. For instance, one 

lient has data from patients at early stage, and another client 

ay possess data with severe conditions only. There is clear ap- 

earance/domain difference between these two clients. It is un- 

lear how to handle such domain difference under federated semi- 

upervised learning setting. All these factors make federated semi- 

upervised learning much more difficult comparing to centralized 

emi-supervised learning. 

The federated semi-supervised algorithm for clients with un- 

abeled data is shown in Algorithm 2 , which is also feasible for 
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Algorithm 2 Self-supervised learning algorithm at clients with un- 

labeled data for COVID region segmentation. 

Input: ~learning rate λ for each client, unlabeled data pool U , global 

model H. 

Output: ~weight difference �θ . 

1: function SelfSupervisedClientUpdate ( θ ) 

2: n ← amount of total training iterations 

3: θinit ← θ
4: for iteration j ∈ 1 , 2 , · · · , n do 

5: ˆ u j ← Augment 
(
u j 

)
, u j ∈ U � input perturbation 

6: L ( θ, j ) ← L consistency 

(
H 

(
u j ; θ

)
, H 

(
ˆ u j ; θ

))
7: θ ← θ − λ� L ( θ, j ) � optimize loss function 

8: end for 

9: �θ ← θ − θinit 

10: return ( �θ , n ) 
11: end function 
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ll machine learning related applications of medical image analy- 

is. Since the segmentation model requires necessary supervision 

o train, at least one client needs to possess labeled data in train- 

ng. However, federated unsupervised learning would be a future 

irection to explore for representation learning. 

.3. Implementation details 

The FL implementation for COVID-19 affected region segmenta- 

ion is constructed with NVIDIA Clara Train SDK using TensorFlow 

.14 ( Clara, 2020 ), which uses the gPRC protocol for communication 

etween the server and clients during model training. Since we 

se patch-based training strategy for 3D images (because of GPU 

emory limited and efficient training), we modify the client train- 

ng with the same iterations per epoch, and the same epochs per 

ound. Thus, the contributions from different clients are equivalent 

f the clients’ weights are the same. 

Training-from-scratch for unsupervised clients are not mean- 

ngful because no guidance from the global model or local un- 

abeled data is available. This issue may be mitigated after sev- 

ral rounds of model aggregation, but it slows down the overall FL 

raining efficiency. Therefore, to enable reasonable training of the 

nsupervised client, for the federated learning with 1 supervised 

nd 1 unsupervised clients, we first train the supervised client for 

00 epochs (on the data of the supervised client). The federated 

earning then starts with this model and gets trained for another 

00 epochs, such that the unsupervised client can start with a 

eaningful feature representation. For cases with two supervised 

lients, the federated learning starts from scratch and gets trained 

or 10 0 0 epochs. 

Each epoch contains 20 iterations, and each round of synchro- 

ization contains 20 epochs. To be specific, we set the same it- 

ration numbers per federated round for all clients to ensure the 

imilar training paces of clients and mitigate potential side-effects 

aused by client asynchronization. Since the clients with more 

raining iterations (or optimization steps) tend to converge faster 

han the one with less iterations. Validation is conducted also 

very 20 epochs for supervised clients. Then the optimal model 

heckpoint is determined using the validation dataset on super- 

ised clients. 

Moreover, the learning rate is 5 e −6 for unsupervised clients. It 

annot be as large as the one in supervised clients because large 

earning rate could cause the model to overfit the self-supervised 

asks quickly, potentially diverging the gradient towards a biased 

irection. The same assumption can be made for client weights. 

he weights of unsupervised clients cannot be larger than ones in 

upervised client, otherwise the convergence of global segmenta- 
6 
ion model becomes slow and unstable. The actual input of the 

odel is a cropped region-of-interest (ROI) with fixed size 160 ×
60 × 32 for training. The patches sampled from the CT volumes 

re fed into the network for training, and they are sampled ran- 

omly over the entire CT volume. And the intensity of CT is clipped 

etween Hounsfield units (HU) 0 and −10 0 0 , and mapped to the 

ange [ 0 , 1 ] . Adam optimizer is used to minimize consistency loss. 

. Experiment and results 

.1. Data and expert annotation 

COVID-19 Population: patients undergoing CT evaluation with 

ARS-CoV-2 infection confirmed by RT-PCR were identified from 

hree international centers: 1) 736 scans of 700 patients from the 

irst Affiliated Hospital of Hubei University of Medicine in Hubei 

rovince, China (referred to as Image_1 ), 2) 496 scans of 244 pa- 

ients from the Self-Defense Forces Central Hospital, Tokyo, Japan 

referred to as Image_2 ), and 3) 472 scans of 147 patients from 

an Paolo Hospital, Milan, Italy (referred to as Image_3 ). It is im- 

ortant to note that the image acquisition from these three insti- 

utions varies considerably: in China, the CT scans were routinely 

btained on the same day as a positive RT-PCR in an acute set- 

ing during the initial outbreak period; in Japan, the patients were 

 mixture of incidental Diamond Princess cruise ship exposures or 

ommunity acquired COVID-19, with a diverse multinational pop- 

lation; and in Italy, CT scans varied from acute care screening to 

npatients, commonly later in the disease process. Therefore, the 

onditions included in this study are fairly diverse, and we ob- 

erved domain shifts among the three cohorts, as shown in Fig. 2 . 

Control Population a control population was identified from 

ne institution and one publicly available dataset: 1) 38 scans of 

8 patients at the National Institutes of Health undergoing CT eval- 

ation of known non-COVID-19 pneumonias from bacteria, fungi, 

nd non-COVID viruses were included as a “other pneumonia”

ohort (referred to as Image_P ), 2) 101 images of 101 patients 

ith unremarkable lung findings from men with prostate cancer at 

he National Institutes of Health were included as a non-diseased 

normal” cohort (referred to as Image_N ), and 3) a total of 474 

cans of 474 patients were derived from the publicly available LIDC 

ataset ( Armato III et al., 2011 ) consisting of lung nodule data (re-

erred to as Image_LIDC ). 

Annotation CT scans underwent a centralized evaluation by 

wo expert radiologists for confirmation and localization of lung 

isease patterns related to COVID-19. Regions of CT infiltrates 

ere manually delineated using ITK-SNAP tool ( Yushkevich et al., 

006 ). The most common “CT infiltrate” was ground glass opac- 

ties, followed by consolidation. To simulate the uneven distribu- 

ion of annotation resource, out of the entire dataset, 671 (out of 

36), 88 (out of 496), and 186 (out of 472) scans were annotated 

or Image_1, Image_2, and Image_3, respectively. Note that here, 

he three datasets have different degree of inter-observer variance 

rom experts: all data of Image_1 and Image_2 are annotated by 

he same expert radiologists in the same institute, while Image_3 

s annotated by different radiologists from 2 different countries. 

.2. Analysis 

Data Split and Experiment Design Among the images with 

xperts’ annotation, we split the dataset randomly into train- 

ng/validation/testing sets. To ensure sufficient testing and valida- 

ion data, the following splits are used: 447/112/112 for Image_1, 

0/29/29 for Image_2, and 124/31/31 for Image_3. To test the sys- 

em’s performance under an unbalanced situation, for most exper- 

ments, we use two of the three datasets as two clients for feder- 
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Table 1 

Accuracy (Dice’s score) comparison with different experimental settings. The upper part of the table is for regular training with 1 and 2 GPUs, 

the bottom part is for federated learning with two clients. “Sup. ” indicates the supervised client, and “Unsup. ” indicates the client which 

contributes unlabeled data only. 

Image_1 Image_2 Image_3 

Valid. Acc. Test Acc. Valid. Acc. Test Acc. Valid. Acc. Test Acc. 

Image_1 (1 GPU) 0.571 ±0 . 005 0.575 ±0 . 003 - 0.578 ±0 . 013 - 0.577 ±0 . 011 

Image_2 (1 GPU) - 0.479 ±0 . 008 0.626 ±0 . 004 0.625 ±0 . 005 - 0.536 ±0 . 010 

Image_3 (1 GPU) - 0.480 ±0 . 010 - 0.570 ±0 . 015 0.649 ±0 . 004 0.607 ±0 . 007 

Image_1, Image_2 (1 GPU) 0.572 ±0 . 003 0.578 ±0 . 006 0.634 ±0 . 005 0.593 ±0 . 011 - 0.579 ±0 . 013 

Image_1, Image_2 (2 GPUs) 0.581 ±0 . 004 0.601 ±0 . 004 0.639 ±0 . 007 0.594 ±0 . 010 - 0.575 ±0 . 009 

Image_1, Image_3 (1 GPU) 0.564 ±0 . 003 0.574 ±0 . 003 - 0.580 ±0 . 017 0.636 ±0 . 005 0.574 ±0 . 015 

Image_1, Image_3 (2 GPUs) 0.575 ±0 . 008 0.586 ±0 . 008 - 0.605 ±0 . 001 0.651 ±0 . 007 0.600 ±0 . 008 

Image_2, Image_3 (1 GPU) - 0.489 ±0 . 008 0.627 ±0 . 006 0.600 ±0 . 007 0.650 ±0 . 008 0.615 ±0 . 010 

Image_2, Image_3 (2 GPUs) - 0.513 ±0 . 011 0.640 ±0 . 003 0.613 ±0 . 007 0.665 ±0 . 004 0.638 ±0 . 005 

Image_1, Image_2, Image_3 (1 GPU) 0.565 ±0 . 010 0.572 ±0 . 010 0.623 ±0 . 006 0.579 ±0 . 014 0.637 ±0 . 008 0.575 ±0 . 016 

Image_1, Image_2, Image_3 (2 GPUs) 0.577 ±0 . 006 0.590 ±0 . 008 0.642 ±0 . 002 0.608 ±0 . 008 0.647 ±0 . 006 0.591 ±0 . 008 

FL Client 0 FL Client 1 

Sup., Image_1 Sup., Image_2 0.566 ±0 . 002 0.573 ±0 . 005 0.637 ±0 . 016 0.603 ±0 . 019 - 0.579 ±0 . 010 

Sup., Image_1 Unsup., Image_2 0.563 ±0 . 004 0.569 ±0 . 006 - 0.590 ±0 . 011 - 0.568 ±0 . 011 

Unsup., Image_1 Sup., Image_2 - 0.478 ±0 . 007 0.628 ±0 . 006 0.622 ±0 . 004 - 0.553 ±0 . 015 

Sup., Image_1 Sup., Image_3 0.549 ±0 . 010 0.552 ±0 . 009 - 0.566 ±0 . 023 0.628 ±0 . 018 0.560 ±0 . 028 

Sup., Image_1 Unsup., Image_3 0.561 ±0 . 003 0.564 ±0 . 001 - 0.569 ±0 . 010 - 0.551 ±0 . 010 

Unsup., Image_1 Sup., Image_3 - 0.458 ±0 . 010 - 0.527 ±0 . 032 0.637 ±0 . 008 0.579 ±0 . 023 

Sup., Image_2 Sup., Image_3 - 0.489 ±0 . 007 0.616 ±0 . 011 0.588 ±0 . 017 0.664 ±0 . 004 0.605 ±0 . 010 

Sup., Image_2 Unsup., Image_3 - 0.471 ±0 . 014 0.627 ±0 . 004 0.625 ±0 . 008 - 0.541 ±0 . 017 

Unsup., Image_2 Sup., Image_3 - 0.461 ±0 . 004 - 0.551 ±0 . 019 0.637 ±0 . 009 0.586 ±0 . 019 
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ted learning, while the other is set up as an “unseen” domain in 

rder to test the models’ generalizability. 

Supervised Baselines The baselines for our study is the model 

earnt under fully supervised conditions, this includes models 

rained with single source datasets, as well as centralized training 

ith mixed Image_1, Image_2, and Image_3 datasets. Here, three 

ombinations of two sites are performed matching the experiments 

f federated learning, where we always want to keep an unseen 

omain so as to evaluate the generalizability of the trained model. 

Further note that for fair comparison with federated learning 

here two sites train on their own GPU, besides training with 1 

PU, we also added a study with 2 GPU training. Also to reduce the 

nfluence from training randomness, each baseline is repeated five 

imes under deterministic training with different random seeds, 

nd the mean performance with standard deviation is reported. 

Parameter Setting The setting of clients was chosen empirically 

ith some trials of different combinations and selecting the ones 

ith the best performance as following: hard Dice loss on fore- 

round with τ = 0 . 90 , supervised client learning rate 1e-4, unsu- 

ervised client learning rate 5e-6. The augmentation for computing 

onsistency loss is random scale shift of intensity. 

As shown in Table 1 , single-site training suffers from generaliz- 

bility on other domains, models trained on Image_2 and Image_3 

as 10% Dice drop for the testing accuracy on Image_1 comparing 

o the model trained on Image_1, and similar patterns can be ob- 

erved from the other two scenarios. 

The performance of a model on a set of data depends on: 1) 

he capability and generalizability of the model, 2) the data distri- 

ution and similarity between the training and testing data, and 

) the annotation variation for evaluation. Therefore, “unseen do- 

ain” does not necessarily mean “domain with significant shift”, 

nd furthermore, “domain with significant shift” does not neces- 

arily mean “domain where the model will see significant perfor- 

ance drop”. Meanwhile, the “performance” also has two dimen- 

ions: 1) absolute performance with the same model on different 

atasets; and 2) relative performance on the same data with dif- 

erent models. Absolute performance is hard to predict, while in 

ost cases, relative performance with model trained on the same 

ata has the highest score. In other words, the following holds for 

ost cases: Two datasets 1 and 2, let’s denote the performance 
7 
f the model trained on i and tested on j as p i j , then we have:

or absolute performance p 11 may or may not > p 12 , similarly, p 22 

ay or may not > p 21 ; on the other hand in most cases for relative

erformance, p 11 > p 21 , and p 22 > p 12 . This can be observed from

able 1 : first row, absolute performance p 11 < p 12 ; while fourth 

olumn, relative performance p 22 > p 12 . 

Since the performance and robustness of a model is largely de- 

ermined by the training data, if the supervised client is “strong”, 

.e. containing sufficient amount of data (in our case Image_1), the 

rend of adding more data (Image_2/3), whether supervised or un- 

upervised, is fairly stable, and we list the observations below. 

Combining datasets in a centralized training can help promot- 

ng both the accuracy and the generalizability of a model. The gap 

f data distributions from two datasets is mitigated via random- 

zed mini-batching. Thus, models trained with data centralization 

erform better than the models on Image_1 or Image_2 indepen- 

ently. Since FL is also capable to collect information from multi- 

le datasets, FL trained models with both supervised clients have 

omparable performance to single-GPU trained model on Image_1 

r Image_2. 

Federated semi-supervised learning has approximately 1% 

ice’s score drop compared to supervised FL. However, the model 

erforms better than the model trained on Image_1, Image_2, or 

mage_3 independently in general (see the testing results on Im- 

ge_2 and Image_3). It demonstrates that the unlabeled data from 

ifferent clients are valuable to train a generalizable model . The 

isual results are shown in Fig. 5 , and our model predicts segmen- 

ation masks with better shape and less false positives. 

On the other hand, if the supervised client is not “strong” or 

ess representative of overall data distribution, i.e. containing lim- 

ted amount of data (in our case Image_2), or containing annota- 

ion variance/bias (in our case “Image_3”), then the trend of adding 

ore data can become unstable. 

First, federated learning with “Image_1” and “Image_2” meets 

ur expectation using both fully- or semi-supervised setting. The 

upervised clients’ models maintains the same level performance, 

nd the model generalizability has been further improved over 

hree datasets. Second, the dataset “Image_3” seems to possess 

ias regarding to overall data distribution. Adding “Image_3” into 

raining may down-grade the performance a bit (line “Unsup., Im- 
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Fig. 5. Visualizations of federated semi-supervised segmentation of COVID regions in 3D CT (from the testing set of unsupervised client Image_2 ). “Non-FL” indicates 

results from the model trained with Image_1 along, and “FL” denotes results from the model trained with federated semi-supervised learning on Image_1 and Image_2. The 

segmentation results using the proposed framework captures the ground truth shapes better and has less false positives. 
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Table 2 

Ablation studies for unsupervised loss, augmentation functions 

of unsupervised client, and aggregation weights. 

Image_1 Image_2 Image_3 

Sup. Unsup. Unseen 

Acc Valid . Acc Test Acc Test Acc Test 

Baseline 0.562 0.571 0.546 0.556 

Loss Function 

L1 0.540 0.552 0.585 0.571 

L1_F 0.553 0.548 0.552 0.547 

L2 0.549 0.552 0.579 0.548 

L2_F 0.540 0.539 0.575 0.548 

CE 0.557 0.560 0.593 0.564 

CE_F 0.559 0.571 0.535 0.545 

Dice_S 0.565 0.567 0.592 0.565 

Dice_SF 0.552 0.561 0.576 0.546 

Dice_H 0.574 0.569 0.596 0.569 

Data Augmentation 

Gauss_0.1 0.550 0.552 0.557 0.566 

Gauss_0.9 0.548 0.551 0.578 0.560 

Cutout_1 0.548 0.548 0.569 0.543 

Cutout_2 0.547 0.556 0.555 0.529 

Fix_0.1 0.554 0.559 0.591 0.556 

Fix_0.25 0.552 0.549 0.572 0.547 

Aggregation Weights 

1.0:1.0 0.562 0.571 0.546 0.556 

1.0:0.75 0.560 0.573 0.574 0.553 

1.0:0.5 0.563 0.562 0.588 0.570 

1.0:0.25 0.562 0.558 0.592 0.570 

1.0:0.1 0.563 0.568 0.572 0.554 

Partial Weight Update 

Final 0.535 0.550 0.598 0.555 

Block_10 0.557 0.564 0.573 0.564 

Block_6 0.564 0.572 0.592 0.578 
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ge_2 Sup., Image_3” in Table 1 ), which is potentially caused by 

iased annotation protocols from different radiologists of different 

ountries. However, unsupervised “Image_3” client (appearance of 

Image_3”) is still able to help supervised client “Image_2” to im- 

rove its model generalizability (line “Sup., Image_2 Unsup., Im- 

ge_3” in Table 1 ). Moreover, due to much larger size of “Image_1”

ompared to “Image_2” and “Image_3”, unsupervised client “Im- 

ge_1” would down-grade its own performance by a large margin 

ompared to its supervised counter-part. 

Because federated learning is one type of distributed learn- 

ng using multiple computing units. The centralized 2-GPU train- 

ng was conducted to make further comparison. From Table 1 , 

e can see the 2-GPU centralized training performs much better 

han other setting. It is mainly caused by multi-GPU training with 

arger batch size per iteration. The supervision from both dataset is 

tronger and pulls the model weights towards a stable condition. 

.3. Ablation studies 

Several components are configurable under the proposed fed- 

rated semi-supervised learning framework, specifically, the im- 

ge generation and loss functions for the unsupervised clients, the 

earning rate of each client, and the aggregation frequency for the 

erver. The default FL framework followed the setting described 

bove. We used same random seeds for all ablation study exper- 

ments. Due to the high amount of ablation studies, we trained a 

ingle model for each configuration instead of repeating 5 times. 

Loss functions of self-/un-supervised learning In addition to 

oreground hard Dice loss, We experimented with another nine po- 

ential loss functions for L consistency , including L1, L2, cross entropy 

CE), and hard and soft Dice (Dice_H and Dice_S), all losses have 

wo configurations: whole image and foreground (_F). Table 2 sum- 

arizes their performance. As shown in the table, the hard Dice 

enerally has an edge over other losses, while using foreground 

nly may not yield better performance. 

Data augmentation We further conduct comparison against 

ifferent augmentation strategies for unsupervised clients. 

Gauss_ x ” means adding voxel-wise Gaussian noise into CT 

olumes with zero mean and variance x . From Table 2 , higher 

oise level increases generalizability of the model globally. 

Cutout_1” DeVries and Taylor (2017) means masking a random 

ube (size 20 × 20 × 3 ) from the re-sampled image with zero, 

nd “Cutout_2” means masking five of such random cubes from 

he re-sampled image with zero. The performance drops signif- 

cantly when increasing the “Cutout” regions in augmentation 

shown in results on Image_3). “Fix_ y ” follows the idea of “Fix- 

atch” ( Sohn et al., 2020 ) to create both strongly and weakly 

ugmented samples for unsupervised learning. And the pseudo- 
8 
abel is generated based on the weakly augmented samples. y 

eans the level of random intensity shift for weakly augmented 

amples, and 1 . 0 − y is for strongly augmented samples. y = 0 . 1

reates larger gap between strongly and weakly augmented sam- 

les, compared to y = 0 . 25 . Clearly from the Table 2 , the larger

ifference of samples corresponds to the more generalizable mod- 

ls. As for a particular task and data, experiments will be needed 

o select the best data augmentation strategies for computing 

onsistency loss. 

Aggregation weights During each round of server aggregation, 

pdates from different clients can be weighted before they are ag- 

regated together to update the model on the server end. Here, 

e adjust the weight of the unsupervised client from 0.1 to 1.0. 

s shown in Table 2 , the behavior of this parameter is not linearly 

orrelated with the performance on specific datasets. This may be 
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Table 3 

Ablation studies for unsupervised client datasets and another 

base network. 

Image_1 Image_2 Image_3 

Sup. Unseen Unseen 

Acc Valid . Acc Test Acc Test Acc Test 

N 0.548 0.546 0.588 0.550 

LIDC 0.550 0.564 0.593 0.562 

P 0.566 0.562 0.591 0.556 

SegResNet 0.533 ± 0.540 ± 0.596 ± 0.489 ±
Image_1 0.002 0.004 0.003 0.006 

SegResNet 0.534 0.543 0.607 0.512 
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Fig. 6. Accuracy (Dice’s score) comparison of different learning rates of un- 

/unsupervised clients. 

Fig. 7. Accuracy (Dice’s score) comparison of different aggregation frequency (per 

5, 10, 20, 40 rounds). 

Fig. 8. Model performance on LIDC dataset, capturing solid nodule (1, 2); ground 

glass nodule (2, 3); and other abnormal patterns (4). 
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xplained by the fact that the updates learnt from unsupervised 

lient, while catching characteristics of Image_2, also contains fair 

mount of noise due to its unsupervised nature. Therefore, reduc- 

ng the weight from unsupervised client leads to not only the re- 

uction of the influence from Image_2, but also the noise from it. 

Partial model update Another interesting experiment is to 

hare partial weights only across clients. In Table 2 , “final” de- 

otes the last convolutional layers are not shared between clients, 

block_10” denotes the last DenseBlock and final convolutoinal lay- 

rs together are not shared, and “block_6” illustrates all layers after 

ncoder (equivalent to decoder path plus last convolutional layer, 

locks 6, 7, 8, 9, 10 + last convolutional layer) are not shared. From

he comparison, the less layers are shared, the better performance 

he global model has. The FL model, with encoder-only sharing, 

ossess excellent performance with better generalizability for both 

een and unseen datasets. And such finding might be caused by 

ntrinsic difference between supervised and unsupervised tasks. 

ederated encoder training could jointly learn a good feature rep- 

esentation across multiple clients’ database, then the segmenta- 

ion task is handled better with independent decoder with labeled 

ata. Meanwhile, the similar strategy could be applied even for FL 

ith all supervised clients, or multi-task FL. Furthermore, the par- 

ial weight sharing provides safer solutions for privacy preserving, 

ince only partial model information is used in client-server com- 

unication. The experimental results in the paper, other than ones 

n this ablation study, are federated averaging with the full models 

aggregating all model weights). 

Other datasets and other network The control population of 

mage_N, Image_LIDC, and Image_P can also serve for the unsuper- 

ised client. From the cohort relationship perspective, Image_N is 

arthest from the candidate COVID-19 data, since it contains almost 

o abnormal regions. Image_LIDC may have certain similarity, since 

ome COVID-19 cases can have nodule-like focal consolidation ar- 

as. Image_P would be the most close to COVID-19 dataset, since 

OVID is common for scans of pneumonia. As illustrated from the 

esults listed in Table 3 , the above relationship can be observed 

rom the validation accuracy, which is the most predicable. The 

esting accuracy for Image_1 also shows a similar pattern, though 

mage_LIDC and Image_P have similar performance. The testing ac- 

uracy on the two unseen domains are more unpredictable. Besides 

he current base network ( Liu et al., 2018 ), other networks serving 

imilar purpose can also be used. We did an experiment with the 

egResNet proposed in ( Myronenko, 2019 ). The single site train- 

ng on Image_1 is also trained five times, and the federated semi- 

upervised learning is setup with the same configurations of loss, 

tc. as previous baseline study. As shown in Table 3 , the overall 

ccuracy is not as high as the current network, but the federated 

esult is slightly better than Image_1 alone. Again as mentioned 

reviously, our framework is flexible to host most networks as the 

ase network. 

Learning rates We studied different learning rates (LR) on the 

nsupervised client, while LR of the supervised client is fixed at 
9 
e-4 for fair comparison. The value of LR varies from 1e-6 to 

e-4. And LR of the unsupervised clients cannot be too large or 

ven larger than the one used in the supervised clients. In the 

L setting, each round of training is client-independent. There- 

ore, the model weights would quickly converge to over-fit the 

elf-supervised tasks when LR is large. It indicates that the over- 

tted model weights might be biased towards unexpected direc- 

ions, which would make the overall training procedure unstable. 

uch side-effect is shown in the Fig. 6 . Here, the supervised client 

s using Image_1, and unsupervised client is using Image_2. The ac- 

uracy on the validation/testing set of unsupervised client is lower, 

hen LR is set to a higher values. Higher LR also affects the per- 

ormance on the supervised client, which demonstrates that 1) 

L training become less effective; 2) the correlation between self- 

upervised tasks and supervised tasks is weak. Thus, lower LR on 

nsupervised client generally benefits all clients in FL. Aggrega- 

ion frequency Another question for FL is how often clients and 

erver should communicate to each other. In other words, how 

ften should client model weights be aggregated. Ideally, if the 

odel aggregation happens every training iteration, then feder- 

ted semi-supervised learning is equivalent with standard semi- 

upervised learning with equal sampling chance from both labeled 

nd unlabeled datasets. In order to verify the effects of aggregation 

requency, we conducted the ablation study with aggregation per 

, 10, 20, 40 epochs shown in Fig. 7 . Here, supervised client is us-

ng Image_1, and unsupervised client is using Image_2. In general, 

hen the aggregation is more frequent, the performance on the 

elf-supervised side improves (see the performance on the test- 
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Fig. 9. Visualization of the COVID-19 affected region segmentation/prediction (red 

regions) together with lungs and airways (a) in 3D space, and (b,c,d) in different 

(axial, sagittal, coronal) planes of a raw CT image. Note that slice thickness is 5 mm 

(as compared with 0.8 mm in-plane), which is the case for most images in this 

work. . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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ng data of the unsupervised client). At the same time, the perfor- 

ance of the supervised clients become slightly worse. More fre- 

uent aggregations correct the training trajectory on unsupervised 

lients more often, and the overall training becomes smoother. In 

eality, it is not practical to synchronize clients frequently due to 

he bandwidth limitations. The trade-off between the aggregation 

requency and the communication cost needs to be tuned for the 

ptimal training efficiency depending on the specific applications. 

. Conclusions and discussion 

In this paper, we proposed a federated semi-supervised learn- 

ng framework for COVID-19 affected region segmentation in 3D 

hest CT (3D visualization with airway and lung in Fig 9 ). The pro-

osed framework is capable to grasp valuable information from the 

lients which only have unlabeled data. Meanwhile, the privacy of 

ll patients has been preserved, and they do not need to share 

heir own database for collaborating on joint model training. More- 

ver, after jointly training with supervised and un-/unsupervised 

lients, the generalizability has been improved for not only each 

lient’s database, but also on the unseen data domain. We found 

ut even the client with pure non-COVID database is able to help 

odel training for COVID-19 affected region segmentation via false 

larm rejection. 

One thing to further clarify is that the aim of work is to seg- 

ent the disease affected regions that is reflected in CT images, 

nd the annotation is solely based on dataset consisting of COVID- 

9 cases. The “COVID-19 affected region” is identified as the abnor- 

al regions in the context of these cases. Therefore, the model is 

ot trained to discriminate against other type of abnormalities, e.g. 

ther pneumonia or cancer. From a “pipeline” point of view, addi- 

ional classification to tell the difference can follow the proposed 

egmentation method, but will need additional data and annota- 

ions. To give an example, we used our trained network to perform 

nference on LIDC dataset Armato III et al. (2011) . Fig. 8 showed 

our different cases of abnormalities captured by our model on 

IDC images: 1. solid nodule, 2. mixed solid and ground glass nod- 

le, 3. ground glass nodule, and 4. other abnormal pattern. As 

odules have similar appearance in CT as abnormalities caused by 

OVID-19, those regions are detected. 
10 
Our proposed framework has been validated on a multi- 

ational database cohort with population, equipment, and demo- 

raphic variation. In addition, comprehensive ablation studies have 

een explored for the proposed framework. 

The proposed federated semi-supervised learning framework is 

eneral for machine learning based applications of medical im- 

ge analysis. Given the limited literature, this work may initiate 

 promising direction for the future study of medical image anal- 

sis. Still, there are open questions along this research direction. 

or example, there are potential domain gaps between supervised 

nd unsupervised clients. It is an unsolved problem of how to bet- 

er model this domain gap and mitigate it during federated learn- 

ng. Another example is how to adaptively aggregate contributions 

rom different clients based on the quality and and not just the 

uantity of a clients’ database. Because there are a lot variables 

n the semi-supervised framework, and complexity is even higher 

ompared to regular FL, we hope our work is a good starting point 

or future exploration. 
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