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Abstract: Recent research in computer vision has shown that original images used for training of
deep learning models can be reconstructed using so-called inversion attacks. However, the feasibility
of this attack type has not been investigated for complex 3D medical images. Thus, the aim of this
study was to examine the vulnerability of deep learning techniques used in medical imaging to
model inversion attacks and investigate multiple quantitative metrics to evaluate the quality of the
reconstructed images. For the development and evaluation of model inversion attacks, the public
LPBA40 database consisting of 40 brain MRI scans with corresponding segmentations of the gyri
and deep grey matter brain structures were used to train two popular deep convolutional neural
networks, namely a U-Net and SegNet, and corresponding inversion decoders. Matthews correlation
coefficient, the structural similarity index measure (SSIM), and the magnitude of the deformation
field resulting from non-linear registration of the original and reconstructed images were used
to evaluate the reconstruction accuracy. A comparison of the similarity metrics revealed that the
SSIM is best suited to evaluate the reconstruction accuray, followed closely by the magnitude of the
deformation field. The quantitative evaluation of the reconstructed images revealed SSIM scores of
0.73± 0.12 and 0.61± 0.12 for the U-Net and the SegNet, respectively. The qualitative evaluation
showed that training images can be reconstructed with some degradation due to blurring but can be
correctly matched to the original images in the majority of the cases. In conclusion, the results of this
study indicate that it is possible to reconstruct patient data used for training of convolutional neural
networks and that the SSIM is a good metric to assess the reconstruction accuracy.

Keywords: medical imaging; deep neural networks; inversion attacks; patient privacy

1. Introduction

The number of deep learning techniques employed to solve segmentation and classifi-
cation tasks in medical imaging is increasing by the day [1,2]. Deep learning techniques
have revolutionized medical image analysis as they can learn from large amounts of
data and often offer advantages in accuracy compared to conventional machine learning
methods. Consequently, many commercial systems using deep learning models are being
deployed in practice for tasks, such as segmentation and classification [3], while many other
non-commercial models are made publicly available. Overall, deep learning is expected to
play a leading role in the future of precision medicine [4].

One of the most important aspects when using medical images to train deep neural
networks is patient data confidentiality. Within this context, patient data does not only
include the imaging data itself (X-ray, CT, MRI, PET, etc.), but may also include other
relevant attributes used for training of deep neural networks, such as age, sex, medical
condition (high blood pressure, diabetes, etc.), and life style factors (smoking, alcohol, etc.).
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Within this context, even from ‘a blurry version of the original scan’, patient-identifying
information may be inferred based on, for example, specific pathologies (e.g., a rare tumor)
or using advanced facial recognition methods [5]. This is especially a severe risk as previous
research has also shown that it might be possible to identify the imaging center from images
alone, which allows to locally restrict persons of interest. More precisely, it is well known in
the medical imaging community that specific scanners and/or imaging protocols allow to
identify a data acquisition site based on image-only information [6]. The combination of this
with clinical data used for training that might be also recoverable could reveal a significant
amount of sensitive data about a single patient. Thus, maintaining the confidentiality of this
patient data (images, attributes, etc.) at every stage of information processing is paramount.

Until recently, patient data confidentiality was thought to be protected in trained
deep learning models, which were assumed to be black boxes and learn from a plethora
of information. Recent research in computer vision [7,8] has shown that it is possible to
reconstruct, for example, facial photos used for training of a deep neural network to the
extent that allows a person to be identified. However, it remains unknown if such methods
could also be used to reconstruct complex 3D medical imaging data.

The primary aim of this work is to examine the vulnerability of two deep learning
segmentation networks commonly used in medical imaging to model inversion attacks.
The two network architectures chosen for this purpose are the SegNet [9] and the U-Net [10].
These two architectures were selected as they are extremely popular, as evidenced by the
thousands of citations each technique has received. Additionally, these two models can
be both classified as encoder-decoder techniques that use a latent space representation
from which the original volumes can be reconstructed. The latent space provides the most
compressed representation of the images in the network.

The main contributions of this work are two-fold:

• First, we investigated the feasibility of model inversion attacks on two well established
segmentation models, namely a U-net and a SegNet, trained on 3D medical images.

• Second, we implemented and compared multiple similarity metrics, which can be
used to evaluate the quality of the reconstructed medical images. This is especially
important for future research endeavors in this domain as metrics in the computer
vision domain might not be applicable or might not be ideal when applied to 3D
grayscale images from the medical domain.

This work is based on our recent conference paper [11] and extends it in four ways:

1. Addition of the SegNet architecture.
2. Use of a larger database of 3D brain MR images with manually defined labels for

multiple brain structures (LPBA40 [12]).
3. Segmentation of brain structures as the task being analyzed instead of ischaemic

stroke lesion segmentation.
4. Addition of multiple evaluation metrics to measure the reconstruction quality and

possibility to identify single subjects based on the reconstructed images.

2. Literature Review

In general, there are multiple types of deep learning model attacks that attempt to
reconstruct the original data used for the training of deep neural networks. The first type is
the membership inference type attack. This type of attack [13,14] aims to determine if a
particular image is part of the training set. Another type of attack is the attribute inference
attack [15]. In this type of attack, some of the attributes are available through public
databases, or by other means, and the attacker tries to obtain the sensitive attributes of the
person [16,17]. A third type of attack is the model stealing attack [18,19] with the primary
aim of inferring the parameters and hyper-parameters of the deep learning model. The last
attack type is the model inversion attack [7,8,20]. In this case, an attacker tries to reconstruct
the original data used for training of the deep learning model. Given the vast number
of trained deep learning models that are publicly available, the model inversion attack is
potentially the most relevant regarding patient privacy issues in medical applications.
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Generally, model inversion attacks take advantage of two important properties of
deep learning techniques. First, many deep learning techniques learn an abstract represen-
tation of the images, which are then processed across multiple stages into the output (e.g.,
classification or segmentation). Second, compared to the large number of parameters that
are optimized during model training, the models are typically trained on rather small and
often imbalanced training sets.

This second problem is more severe in medical imaging compared to the computer
vision problems mentioned above since the training is typically performed using small
medical imaging datasets on the order of a few tens or hundreds of images, which increases
the risk of overfitting. Both of these properties are utilized during an inversion attack of the
deep learning models. Based on the amount of information available to the attacker, attacks
are categorized into white box attacks and black box attacks. In white box attacks, the deep
learning network parameters are known to the attacker, which is not the case in black box
attacks. Given the type and information available of many publicly available deep learning
models in medical imaging, the more simple white box attacks pose a significant threat to
patient privacy.

While there has been some research on the reconstruction of images used for training
of deep learning models in computer vision, the number of studies that focus on model
inversion attacks for medical images is rather limited.

3. Materials and Methods
3.1. Segmentation Models

The U-Net model is a popular convolutional neural network. The architecture consists
of a contracting path to capture the context in the images and a symmetric expanding
path to enable precise localization. The schematic illustration of a U-Net is shown in
Figure 1. In the U-Net, the contracting path works based on convolution kernels of size
x× x× x, each followed by a non-linear activation function (ReLU here), and a max-pooling
operation over a y× y× y block to downsample the image. The number of filters z doubles
at every contraction, and there are a total of n layers. In the expanding path, there is
a corresponding up-convolution at every step. A concatenation of the correspondingly
cropped feature maps from the contracting path is achieved using the skip connections
between the corresponding levels. Finally, there are again convolutions with x × x × x
kernels, each followed by a ReLU activation.

The SegNet architecture also follows an encoder-decoder network architecture prin-
ciple (shown in Figure 2), with the encoder path consisting of the earlier layers of the
VGG16 network [21]. In comparison to the U-Net architecture, the fully convolutional
approach is dropped in favor of higher resolution maps at the deepest encoder output. Each
encoder performs a convolution over a x× x× x window with a filter bank, followed by a
non-linear activation function (ReLU here), and a max pooling operation over a y× y× y
window. Similar to the U-Net, the SegNet architecture starts with z filters that double at
each contraction step with a total of n steps. Each encoder has a corresponding decoder
in the decoder path, which performs the inverse operation. The final decoder output
is typically fed to a multiclass soft-max classifier to produce class probabilities for each
pixel independently.
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Figure 1. The schematic diagram of a U-Net architecture. The model is divided into a contraction path
and an expansion path, with the latent space representation generated at the end of the contraction
path. The contraction is comprised of a convolution with a set of filters, followed by a downsampling
operation that reduces the size of the image. This process is continued until the latent space is
reached. In the expanding path, there is an upsampling followed by a deconvolution. This process is
continued until the desired output image is reached. The corresponding layers of the expansion and
contraction paths are connected using so-called skip connections.

Figure 2. The schematic diagram of the SegNet architecture. This model is also divided into the
expansion and contraction paths but does not include any skip connections.

3.2. Inversion Attack

The inversion attack scenario used in this work was first described for computer vision
applications [7,8] and is based on the following assumptions that hold true for most deep
learning models that are publicly available and follow an encoder-decoder architecture:

1. The attacker can access the latent space representation of arbitrary input images.
2. The attacker knows the encoder’s architecture that is used to generate the latent space

information of the images.
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3. The attacker can train a separate decoder to reconstruct images based on the latent
space representations.

Briefly described, model inversion attack techniques train a separate inversion decoder
that is able to reconstruct images based on their latent space representation (Figure 3).
As the attacker has no access to the original training images, training of the inversion
decoder is based on an independent database of images Xattack. Once the inversion decoder
is trained, the attacker tries to reconstruct images from the original private training database.
The detailed setup used in this study is described in the following.

Figure 3. Schematic flowchart of an inversion attack. The original network includes the encoder,
which leads to the latent space, and the corresponding decoder path that produces the task-specific
output. Using the latent space information and an independent database of training images, a separate
(inversion) decoder is trained to reconstruct the original images. This decoder is trained to minimize
the difference between the original image and the reconstructed image.

For this study, we assume a trained encoder-decoder segmentation network to be
given. For a 3D input image volume X(x, y, z), the trained encoder Enc(X) maps the image
to its latent space representation Z = Enc(X). The decoder part of the network then maps
this latent space information Z to the output space Y, in this case, a segmentation image,
using the task-specific decoder Y = Dec(Z). This can be written as X → Enc(X)→ Z →
Dec(Z)→ Y.

Model inversion now aims to create a separate inversion decoder that is optimized
by minimizing the difference between an original image and its reconstruction from the
latent space representation as shown in Figure 3. More formally, given the attacker’s
database Xattack, the goal is to reconstruct each image {X ∈ Xattack} based on the latent
space information Z obtained by the encoder path Z = Enc(X). This process can be seen
as a way of reconstructing the original image from its most compressed version. Training
the inversion decoder X̂ = D̂(Z) focuses on learning network parameters that minimize
the squared norm between the original image X and its reconstructed version X̂:

L = EncX∈Xattack ,Z || X̂− X ||2 . (1)

This newly trained inversion decoder essentially inverts the encoder of the segmentation
network and is utilized by the attacker to reconstruct images from the original training
database Xprivate to which the attacker has no access. Successful reconstruction would
compromise the data privacy of patients included in Xprivate as it may be possible to identify
them from the reconstructions.
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To simplify our analysis and to be able to focus on the reconstruction aspect of a
model inversion attack, we assume the latent space representations of all images from
the original training database Xprivate to be given for the attack. In a real-world scenario,
the attacker would have to obtain them in an additional step. This could be achieved via a
systematic analysis of the segmentation networks’ latent space and how the task-specific
decoder converts latent representations into segmentations. Particularly, in scenarios
where Xprivate is small, it can be assumed that the segmentation network is more confident
about segmentations for latent space elements that are close to the real training data. This
information can then be used to at least approximately infer latent space representations of
the real training images to perform the attack.

3.3. Implementation Details

The inversion attack scenario described above was developed and evaluated using the
LPBA40 database, which is comprised of 40 brain MRI datasets [12]. All images consist of
181× 217× 181 voxels of isotropic size (1 mm × 1 mm × 1 mm in the x, y, and z directions).
All datasets were transformed to a common space using rigid registration by the data
providers. For simplicity reasons, this study uses three tissue classes for the segmentation
problem, with the three classes being gyri, deep grey matter, and the remaining brain
tissue (see Figure 4). Therefore, the expert segmentation labels of various gyri and deep
grey matter structures available as part of the LPBA40 database were used to generate the
ground truth segmentations required for model training of the SegNet and U-Net model.
More precisely, the various gyri labels were combined to a single gyri class, the various
deep grey matter structures to one deep grey matter class, and all remaining brain tissue to
the third tissue class. Thus, the SegNet and U-Net models were trained with the goal of
segmenting those three tissue classes.

Figure 4. Selected slice from a MRI dataset from the LPBA40 database (left) with expert labels
superimposed on the original slice (middle) and the fused labels used in this work (right).

For preprocessing, all 3D images of size 181× 217× 181 were padded to 224× 224× 224
voxels to ensure that the number of voxels are not fractions after the processing given the four
encoder and decoder layers. Thus, the number of voxels in each dimension are required to be
divisible by 16. After this, all images were processed using a N3 bias field correction [22] and
normalized using the method suggested in Reference [23].

The encoder path comprises of 3× 3× 3 convolution windows followed by rectified
linear unit (ReLU) activation functions. The output of the ReLU is then passed on to a
2× 2× 2 max pooling window. This general structure is repeated in each layer. A total
of 4 encoding and decoding layers are used in the networks. The number of filters begins
at 16 and doubles at each layer. The decoder path comprises of an upsampling to double
the size of the image and a deconvolution to the next layer. In case of the U-Net only, skip
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connections are added between corresponding layers. Finally, the output of the decoder is
a segmentation image of the same dimensions as the original image.

3.4. Experiments and Evaluation Metrics

Four-fold cross validation was used to train the original networks and corresponding
inversion decoders. More precisely, in each iteration, 10 images were used as the private
database for training the segmentation CNN models (U-Net and SegNet). The remaining
30 images were used to train the inversion decoder aiming to reconstruct the 10 images
originally used for training, which were compared qualitatively and quantitatively to the
private original images used for training.

In our experiments, we used the full brain MRI scans, as well as skull-stripped versions.
Proportionally, the volume of the brain segmented in the non-skull-stripped images is
smaller than the volume of the image segmented in skull-stripped images. Thus, this
experiment enables an analysis if the change in proportion of the image segmented has an
effect on the reconstruction quality.

Four separate evaluation metrics were implemented in this work to measure the
reconstruction success in our inversion attack scenario: The first metric is the frequently
used Matthews correlation coefficient (MCC) [8] between the original and the reconstructed
image. The second one is the structural similarity coefficient (SSIM) [24], which is defined
as a function of luminance, contrast, and structure of the two images being compared,
and ranges between 0 and 1, where 0 denotes no similarity, and 1 denotes that the two
images are identical. In addition to the two intensity-based similarity measures, we
also evaluated the use of non-linear deformation fields computed using ANTs [25] to
measure reconstruction success with respect to the different shapes in the images. Here,
we compute the mean norm of all displacement vectors resulting from the registration
of the reconstructed image to the images in the training dataset. In this case, we expect
that the smallest mean norm of all displacement vectors will be found when comparing
an reconstructed image to the correct original image. Finally, we also segmented the
reconstructed images using the same U-Net and SegNet and computed the Dice similarity
scores to investigate if the same images can be re-used for segmentation, and to what
extent they resemble the segmentation of the original images. This can be seen as a way of
combining intensity- and shape-based information when assessing reconstruction quality.

4. Results
4.1. Qualitative Results

Exemplary qualitative results for U-Net and SegNet-based reconstructions for the
skull-stripped and original images are shown in Figures 5 and 6, respectively. Those results
indicate that both SSIM and MCC in general reflect the visual quality of the reconstructed
image in comparison to the original image. Both measures assign higher values to visually
better reconstructions that are less blurry. However, the SSIM metric appears better suited
and more sensitive to image blurring, making it the better metric for this purpose.
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Figure 5. The original skull-stripped image (left) and the corresponding reconstruction from the
latent space of the U-Net (center) and SegNet (right) for three different subjects. For the subject
shown in the top row, the reconstructions are sharp and there is only a scaling difference between the
original and the reconstructed images. In case of the SegNet reconstruction, some minor blurring
can be seen. For the subject shown in the middle row, the reconstructions show some significant
degradation due to blurring, but they are still clear and recognizable. For the subject shown in
the bottom row, the reconstructions show severe blurring. The corresponding SSIM and MCC
scores reflect those qualitative impressions, whereas the SSIM seems generally better suited and
more sensitive.
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Figure 6. A selected slice from an original MRI dataset without skull stripping (left) and its recon-
struction from the latent space of the U-Net (center) and SegNet (right). As can be observed in the
image, the original and the reconstructed images are overall similar. However, the reconstruction
from the SegNet model is more blurry, which is reflected by lower a SSIM score, while the MCC is
very similar for both reconstructions, not reflecting the differences in reconstruction quality.

4.2. Quantitative Results
4.2.1. Mean Cross Correlation and Structural Similarity

MCC- and SSIM-based quantitative results of all experiments are summarized in
Table 1. For the U-Net, the mean MCC and SSIM are 0.60± 0.14 and 0.73± 0.12, respectively,
for skull-stripped images. For the SegNet, the MCC and the SSIM are 0.53± 0.13 and
0.61± 0.12, respectively. For non-skull-stripped images, the mean MCC and SSIM for the
U-Net are 0.43± 0.15 and 0.50± 0.11, respectively. The corresponding mean MCC and the
SSIM for the SegNet are 0.39± 13 and 0.43± 0.13, respectively. Thus, the results suggest
that images can be better reconstructed from a trained U-net compared to a trained SegNet
and with better results for skull-stripped images compared to the original images without
skull stripping.

Table 1. The results of the different experiments that have been performed for the MCC and SSIM scores comparing the
original images with the corresponding reconstructed images.

Metric U-Net-Skull Stripped SegNet-Skull Stripped U-Net with Skull SegNet with Skull

MCC 0.60± 0.14 0.53± 0.13 0.43± 0.15 0.39± 0.13

SSIM 0.73± 0.12 0.61± 0.12 0.50± 0.11 0.43± 0.13

So far, we have shown that SSIM and MCC values are both useful indicators of the
visual quality of the reconstruction. However, in order to really determine reconstruction
success based on these measures, it is necessary to establish baseline values and investigate
if SSIM and MCC values comparing a reconstructed image and its original are higher than
when comparing the reconstructed image to images of other subjects. Therefore, we per-
formed an additional experiment in which we computed the SSIM and MCC values of each
reconstructed (skull-stripped) image with all other images in the test dataset (see Table 2).
As can be seen in Table 2, the SSIM comparing a reconstructed image with its true corre-
sponding original image is on average 0.23 better for the U-Net in comparison to the mean
SSIM comparing a reconstructed image to the original images from all other subjects. This
general finding is also true for the SegNet reconstructions with an improvement of 0.12.

Next, we ranked the different SSIM and MCC results to investigate if the similarity
measurements comparing a reconstructed (skull-stripped) image with its true original
image are always higher than the values achieved for other images. The corresponding
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results for this experiment are summarized in Table 3 and indicate that the SSIM metric
is able to reliably identify the correct original image in the dataset in most cases. More
precisely, the SSIM of the reconstructed image was highest in 30 of the 40 cases for the
corresponding original image, second highest in 5 cases, third highest in 2 cases, fourth
highest in 2 cases, and fifth highest in 1 case for the U-net, leading to an average rank of 1.5.
In case of the SegNet reconstructions, the SSIM compared to the true original image was
the highest in 26 of the 40 cases, second highest in 8 cases, third highest in 3 cases, fourth
highest in 2 cases, and sixth highest in 1 case, with an average rank of 1.6. The results of
this experiment show that it is a realistic risk that it is possible to reconstruct patient data
used for training of the CNN that allows identifying patients with an increased risk in
U-Net architectures.

Table 2. Comparison between the mean SSIM and MCC scores of the reconstructed images with the true original images
and corresponding mean scores of the reconstructed images with the images from all other patients in the database.
Skull-stripped images were used for these experiments.

Metric SSIM with Originals SSIM with Others MCC with Originals MCC with Others

U-Net 0.73± 0.12 0.50± 0.23 0.60± 0.14 0.52± 0.22

SegNet 0.61± 0.12 0.49± 0.23 0.52± 0.13 0.45± 0.20

Table 3. Number of correct matches of reconstructed images to the corresponding true original
images for n = 40 datasets.

Experiment U-Net (Skull Stripped) SegNet (Skull Stripped)

MCC match 16 14

SSIM match 30 26

Deformation field match 24 22

4.2.2. Deformation Field

Apart from the two main intensity-based similarity metrics described above, we also
computed the norm of all displacement vectors of the deformation field after registration
of the original image and the corresponding reconstruction to assess the success of the
inversion attack. Therefore, we affinely registered each reconstructed image to the true
original image and all other original images of the database using ANTs [25] and mutual
information as the similarity measure. In the second phase, each affine registration was fur-
ther refined using a non-linear registration optimized using the cross-correlation similarity
measure implemented in ANTs. In this case, it is assumed that the norm of all displacement
vectors of the deformation field should be smallest for the true original image of a recon-
struction when compared to the corresponding values for all other images. Exemplary
deformations are shown in Figure 7. Using this approach, the mean rank (for skull-stripped
images) of the true original image is 1.8 for the U-net, as well as SegNet. More precisely,
24 reconstructed datasets could be accurately matched to the true original image for the
U-Net, while 22 datasets could be matched correctly for the SegNet reconstructions.

4.2.3. Reconstruction Dice Similarity Coefficient

For the final experiment, the reconstructed images (skull stripped) were segmented
using the originally trained U-net and SegNet to determine how the segmentations compare
against those generated based on the true original images. In both cases, the Dice similarity
metric was computed by comparison of the CNN segmentation to the manual ground
truth segmentation. This experimental setup led to a mean Dice value of 0.53± 0.14 for the
U-Net when the original images are used and 0.37± 0.17 for the reconstructed data sets.
For the SegNet, an average Dice score of 0.48± 0.13 was achieved for the original images
and 0.32± 0.12 for the reconstructed images. The computed Dice scores indicate that there
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is a significant degradation of the segmentation when the reconstructed images are utilized,
suggesting that the Dice score is not a good metric to evaluate reconstruction accuracy.

Figure 7. An example of a good reconstruction (left), which has much smaller, and more localized
deformations compared to an example of a bad reconstruction (right), which requires large defor-
mations everywhere. Smaller deformations are displayed by the darker intensities, while the larger
deformations are displayed by lighter intensities.

5. Discussion

The aims of this paper were twofold: (1) We wanted to examine if popular segmenta-
tion CNN architectures in medical imaging (U-Net and SegNet) can be attacked via model
inversion attacks. (2) We aimed at examining the ability of different similarity measures to
quantitatively assess the success of the attack by comparing the reconstructed image with
its original.

Based on the visual results exemplified in Figures 5 and 6, it can be concluded that
all reconstructions show some degree of blurriness. The overall reconstruction quality
including the blurriness is best reflected in the SSIM scores, which range between 0.39
and 0.88. Overall, the results of this study show that reconstruction of the original images
used for training of CNN models is possible, but is accompanied by some amount of
blurring. This finding is also in line with the results from model inversion attack studies in
computer vision [8]. The results of this study also suggest that the reconstructions from the
U-Net are better than those for the SegNet. A potential reason for this finding could be the
skip-connections of the U-Net.

The results of this study also suggest that the proportion of the volume that is actually
segmented by the deep learning technique is relevant with respect to the reconstruction
quality. More precisely, in case of the skull-stripped images, where the proportion of
relevant image voxels that have been segmented is larger, the reconstruction is considerably
better, which holds true for the U-Net and for the SegNet. This shows that CNN models
trained to segment larger regions of medical images are easier to attack than CNN models
trained to segment small regions, such as brain lesions.

The most commonly used metric in the computer vision [7,8] and in medical imag-
ing [15] domain for image similarity assessment of reconstructions is the MCC, which
examines the correlation between the grey levels of the original and the reconstructed
images. However, it was found in this study that many images are reconstructed with
non-linear intensity differences, which is not well captured by a simple correlation metric.
Furthermore, blurring is also not as well reflected in the MCC as in the SSIM, which not only
uses intensity, but also contrast and structure, thus better capturing the visual similarities.
Consequently, the MCC is not a good metric to quantitatively assess the visual similarity of
the reconstructed image for this specific problem. In Reference [26], the authors discuss the
various weaknesses of correlation coefficients, which hold true for the results in this study.
Furthermore, trying to match the reconstructed image with the corresponding true original
using the MCC score results in the correct match of only 16 and 14 of the 40 images for the
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U-Net and the SegNet, respectively. The SSIM-based matching performed considerably
better and resulted in correct matches in 30 and 26 cases, respectively. The finding that the
SSIM is the best overall indicator of the reconstruction quality is also consistent with the
visual examination. The better the reconstruction looks visually, the higher the SSIM seems
to be. The deformation field measure is generally also a suitable metric for this purpose,
giving good matches, but there are cases where large local deformations heavily influence
the overall score. Additionally, this similarity metric is rather computationally expensive
to compute due to the non-linear registration required. The final metric investigated,
the Dice similarity coefficient of the reconstructed images, cannot be used to directly match
a reconstructed image with the corresponding true original image. However, it can be a
useful score to obtain an impression of the overall goodness of the reconstruction.

One important limitation of this study is that the training and the test sets were part
of the same overall database. Thus, it remains to be seen whether the same levels of
consistency of reconstruction can be obtained with databases obtained under different
acquisition conditions. To model this potential problem in our experimental setup, we also
trained a separate encoder when training the network used for inversion attack in this
work and then replaced the latent space. Another important limitation is that the CNN
models were only used based on brain MRI datasets of healthy subjects. However, we
believe that our study is an important first step in analyzing privacy problems related to
deep learning models in medical image analysis in general and that it shows that training
data leakage is a serious problem. Furthermore, we are confident that the results of this
study also hold true for other imaging modalities or body parts. This should be verified
in future studies where it would also be interesting to add clinical metadata (e.g., patient
age, sex, comorbidities) to the analysis. Being able to not only reconstruct imaging data,
but also clinical metadata, would pose an even more severe privacy breach.

6. Conclusions

The results of this paper show that it is possible to reconstruct a brain MRI from a
trained U-Net and SegNet, albeit with some degradation due to blurring, provided that
the U-Net and the SegNet have been trained to segment large parts of the original volume.
Despite the blurring, the reconstructed images can be correctly matched to the original
images in the majority of the cases. Finally, examining the various scores for measuring
the quality of the reconstruction suggests that the SSIM score reflects the reconstruction
success best and should be used in future studies in this domain.
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