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Growing evidence associates cerebellar abnormalities with several neuropsychiatric
disorders in which compulsive symptomatology and impulsivity are part of the
disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD),
and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor
dysfunction and essentially entails integrative processes under control of prefrontal-
thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum
thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically,
lesions of the posterior cerebellar vermis cause affective dysregulation and deficits
in executive function. These deficits may be due to impairment of one of the
main functions of the cerebellum, implementation of forward internal models of
the environment. Actions that are independent of internal models may not be
guided by predictive relationships or a mental representation of the goal. In
this review article, we explain how this deficit might affect executive functions.
Additionally, regionalized cerebellar lesions have been demonstrated to impair other
brain functions such as the emergence of habits and behavioral inhibition, which
are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical
studies and research in animal models suggest that the cerebellum is not required
for learning goal-directed behaviors, but it is critical for habit formation. Despite this
accumulating data, the role of the cerebellum in compulsive symptomatology and
impulsivity is still a matter of discussion. Overall, findings point to a modulatory
function of the cerebellum in terminating or initiating actions through regulation of
the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining
ongoing actions when environmental conditions change by adjusting prefrontal
activity in response to the new external and internal stimuli, thereby promoting
flexible behavioral control. We elaborate on this explanatory framework and propose
a working hypothesis for the involvement of the cerebellum in compulsive and
impulsive endophenotypes.
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INTRODUCTION

Compulsivity and impulsivity have been proposed as
neurocognitive endophenotypes for a heterogeneous group
of mental disorders (Dalley et al., 2011; Robbins et al., 2012) such
as addiction, eating disorders, attention deficit/hyperactivity
(ADHD), obsessive-compulsive (OCD), as well as other
personality and neurodevelopmental disorders. Endophenotypes
reflect underlying predisposing factors for the vulnerability to
psychopathology (Miller and Rockstroh, 2013). With respect
to compulsivity and impulsivity, both endophenotypes involve
a failure in top-down control and response inhibition but
they do not always coexist in the same disorder (Dalley et al.,
2011; Robbins et al., 2012). Compulsivity is characterized by an
over-engagement in behavioral or cognitive activities despite
their countless negative consequences. Compulsive behavior is
persistent and inappropriate to the context entailing a failure in
terminating actions properly (Robbins et al., 2012). Impulsivity
is the trend to showing a premature and poorly planned behavior
inappropriate to the context (Moeller et al., 2001). It can be
expressed at the behavioral level as impulsive actions (difficulty
in stopping an ongoing response) but also as impulsive choices
(failure in delaying gratification; Robinson et al., 2009; Dalley
et al., 2011). Compulsivity and impulsivity may contribute in
varying degrees to the grounds of the disorder, which tends
to be more severe when both endophenotypes occur together
(Fineberg et al., 2014).

It has been proposed that cortico-striatal-networks mediate
motor and cognitive domains for each construct (Dalley
et al., 2011). Essentially, the proposed network dysregulation
to explain top-down control deficits comprises an imbalance
between dorsal and ventral zones in behavioral control, with
an under-activation of the dorsal frontal regions along with
an over-activation of striatal zones (Fineberg et al., 2010).
None of the accepted neuroanatomic models have included the
cerebellum, even though much data shows its involvement in
different forms of impulsivity and compulsivity. Here, we review
these scattered but consistent findings and synthesize a working
hypothesis for the cerebellum’s contribution to impulsive and
compulsive behavior.

THE CEREBELLUM: TOO MANY NEURONS
JUST TO NOT WALK LIKE A ROBOT

The cerebellum includes 60 billion neurons, representing 80%
of the total number of brain neurons (Azevedo et al., 2009;
Barton, 2012; Lent et al., 2012). The reason why there are so
many neurons in the cerebellum is one of the mysteries in brain
evolution. Barton (2012) hypothesized that the cerebellum and
cortico-cerebellar networks are fundamental components of the
integrative brain systems enabling the prediction, organization,
modeling and comprehension of complex sequences. This
hypothesis is supported by evidence of cerebellar contributions
to apparently dissociated brain functions that are altered
in compulsive/impulsive disorders. These include Pavlovian
conditioning (Pakaprot et al., 2009; Carbo-Gas et al., 2014a,b,
2017; Gao et al., 2016; Giovannucci et al., 2017); repetitive

sequential learning (Wu et al., 2004; Doyon and Benali, 2005;
Balsters and Ramnani, 2011); skill learning (Callu et al., 2007;
De Bartolo et al., 2009); language (Leiner et al., 1993; Mariën
et al., 2014; Verly et al., 2014); planning/prediction (Bastian,
2006; Bhanpuri et al., 2013); and social behavior (Kerney et al.,
2017; Giocondo and Curcio, 2018; Hickey et al., 2018).

As established by tracing techniques, electrostimulation and
optogenetics, the cerebellum appears to be closely connected
to the functional loops that sustain compulsive and impulsive
behavior (Ding et al., 2013; Herrera-Meza et al., 2014; Bostan and
Strick, 2018). Thus, deep brain stimulation of the mediodorsal
thalamic nuclei increases cFos expression in the deep cerebellar
nuclei and the prefrontal cortex in rats (Moers-Hornikx et al.,
2009). Additionally, cortical regulation of striatal activity can
be modulated by the cerebellum (Moers-Hornikx et al., 2009).
Furthermore, a direct dopaminergic VTA-cerebellar projection
has also been demonstrated with detectable DA levels in the
posterior lobules of the vermis (VII–X), the right and left
hemispheres and the fastigial, interpositus and dentate nuclei
(Glaser et al., 2006). More importantly, it has been shown
that the cerebellar cortex may regulate dopamine release by
several independent pathways. First, the cerebellum connects to
the VTA through the reticulotegmental and pedunculopontine
nuclei (Carbo-Gas et al., 2014b). Second, the cerebellum
projects to the VTA through the mediodorsal and ventrolateral
thalamus (Rogers et al., 2011). Finally, the deep cerebellar
nuclei project directly to the VTA (Watabe-Uchida et al., 2012;
Carta et al., 2019).

For some time now, it was proposed that the majority
of mental disorders result from the dysregulation of normal
central nervous system (CNS) development (Weinberger, 1987).
Interestingly, the final cerebellar structure and functionality are
developed postnatally, making cerebellar circuitry susceptible
to alteration by external and internal factors at different
developmental stages (Koziol et al., 2014). As an example, in
terms of comparative anatomy, 50% of the cerebellum’s adult
weight is achieved at birth in primates, at 15 postnatal days in rats
and after 1 year in humans (Howard, 1973; Watson et al., 2006).
Moreover, the cerebellar growth asymptote is reached in rats at
400 postnatal days (Sullivan et al., 2006) and around the age of
4 years in children (Dobbing and Sands, 1973). Alterations of the
cerebellum during very early periods of postnatal life (prenatal,
and neonatal) are able to shape morphology and functions of
the mature brain (Limperopoulos et al., 2014). Several studies
suggest that cerebellar injuries during perinatal/postnatal stages
are sufficient to bring alterations in distal cortical regions (for
a review, see Wang et al., 2014). For example, early cerebellar
damage has been associated with a reduction in the modulation
of dopamine release in the medial prefrontal cortex as well as
the reorganization of cerebello-cortical loops (Rogers et al., 2011,
2013). In rodent models, compensatory responses and changes in
the activity of brain-related regions have been found to be much
greater when cerebellar injuries occurred within the neonatal
period (Lalonde and Strazielle, 2015). In children, prenatal and
neonatal lesions of the cerebellum generate motor dysfunction
(Stoodley and Limperopoulos, 2016) but also cognitive and
emotional deficits such as increased anxiety and aggressive
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behavior (Watson et al., 2018); autistic-like symptomatology in
language and social behavior as well as selective attention deficits
(Steinlin et al., 2003; Schmahmann et al., 2007). Adult lesions
produce a more limited cortical compensation (O’Donoghue
et al., 1986). Likewise, alterations in plasticity genes such
as neuregulin 1, N-Methyl-D-aspartate (NMDA) and GABA
signaling genes, which results in disruptions of the normal
CNS development, accompany prefrontal-cerebellar pathology
in schizophrenia and autism (Andreasen, 1999; Nopoulos et al.,
1999; Allen et al., 2004; Scott et al., 2009; Yeganeh-Doost
et al., 2011; Edmonson et al., 2014; Koziol et al., 2014;
Murphy et al., 2014; Shevelkin et al., 2014; Osipowicz et al.,
2015). Additionally, numerous neuroimaging studies have found
structural abnormalities and changes in connectivity in the
cerebellum of addicted cohorts (Barrós-Loscertales et al., 2011;
Yu et al., 2011; Bora et al., 2012; Ersche et al., 2012; Ding et al.,
2013; Koehler et al., 2013; Segobin et al., 2014; Shen et al., 2018)
and members of high-risk families that did not take drugs (Hill
et al., 2011).

In summary, prefrontal-cerebellar physiopathology is
common in the comorbid mental disorders in which compulsive
and impulsive endophenotypes are present. However, prefrontal-
cerebellar alterations are not homogeneous and can affect
different regions within these loops (for instance, dorsomedial
prefrontal cortex vs. orbitofrontal cortex or the posterior vs.
the anterior cerebellum), which might explain why prefrontal-
cerebellar dysfunction is also implicated in many mental
disorders in which compulsivity and impulsivity are not always
key symptoms. These include schizophrenia (Andreasen, 1999;
He et al., 2018) depressive disorders (Yucel et al., 2013; Scheinost
et al., 2018; Wang et al., 2018) as well as fear and anxiety
disorders (Richter et al., 2005; Picó-Pérez et al., 2017). Therefore,
dysfunctional prefrontal-cerebellar loops do not always result
in compulsivity and impulsivity though they generate a failure
in top-down and executive control that in turn can bring
compulsive and impulsive symptoms.

CEREBELLAR UNDERPINNINGS OF
COMPULSIVITY

The compulsivity construct is far from unitary (Fineberg
et al., 2014; Figee et al., 2016). Several dissociable dimensions
of compulsivity have been proposed, including cognitive
inflexibility, motor disinhibition, disadvantageous decision-
making, attentional bias, impaired executive planning and bias
toward habits. Deficits in inhibition of motor responses do not
always coexist with impaired cognitive flexibility. For instance,
OCD patients show both impaired motor inhibition and
clear deficits in cognitive flexibility, whereas other compulsive
disorders such as trichotillomania appear to be limited to
impaired inhibition of motor behaviors (Chamberlain et al.,
2005, 2006). Thus, the dimensions of the compulsivity construct
seem to represent different clusters of brain functions mediated
by neuroanatomically and neurochemically distinct components
of cortico-subcortical circuitry (Hollander et al., 2016). Overall,
compulsivity implicates a failure in top-down cortical control
that causes behavioral disinhibition. The resulting behavioral

deficits may additionally be due to over-activity in the basal
ganglia, which promotes automatic and stereotyped behavioral
repetition (Fineberg et al., 2010).

In the next section, we describe the evidence for cerebellar
changes in patients with compulsive disorders, exploring the
consequences of alterations in the cerebellum for several of the
described dimensions of compulsivity.

Structural Neuroimaging Findings in the
Cerebellum of Subjects Suffering From
Compulsive Disorders
Untreated polydrug abusers exhibited decreased gray matter
(GM) in the cerebellum and frontoparietal cortices along with
increased GM in basal ganglia (Ersche et al., 2011). Additionally,
GM volume in Crus I of the cerebellum was described to be
correlated with the severity of nicotine dependence (Shen et al.,
2018). Similar results were found in other compulsive pathologies
such as internet gamblers (Dong et al., 2012; Ding et al., 2013);
OCD (Ersche et al., 2011) as well as genetic disorders including
compulsive symptoms such as Prader-Willi syndrome (Ogura
et al., 2011). By contrast, greater cerebellar GM volume has been
reported in healthy, non-drug-abusing members of families at
high risk for alcohol dependence as compared to members of
control low-risk families (Hill et al., 2011).

Regarding functional connectivity, OCD patients exhibit
stronger interconnectivity between the cerebellum and the basal
ganglia than the control subjects but weaker interconnectivity
with the prefrontal cortex (Vaghi et al., 2017). As the authors
indicated, these results suggest less top-down control over the
prefrontal cortex on the lower regions.

Therefore, the most common structural findings in the
cerebellum of patients with compulsive disorders have been
decreased GM volume in several regions of the cerebellum
and increased basal ganglia-cerebellar connectivity (Barrós-
Loscertales et al., 2011; Ersche et al., 2011; Ogura et al., 2011; Yu
et al., 2011; Dong et al., 2012; Ding et al., 2013; Segobin et al.,
2014; Vaghi et al., 2017; Shen et al., 2018).

Compulsivity and Prediction
Perhaps surprisingly, compulsivity may be due in part to
deficits in the brain’s ability to make predictions. Some
forms of decision-making require internal models of the
environment that guide future choices using past outcomes
(Blackwood et al., 2004). These internal representations, also
called forward models, use memory to integrate predictions
about the consequences of any given action with internal and
external sensory inputs of the current state (Ito, 2008; Molinari
et al., 2009). Individuals suffering from compulsive disorders
demonstrate specific deficits in tasks in which behavioral
outcome is regulated by internal models (mental representations
of the world such as inferences). In a predictive-inference task,
OCD patients do not consider the history of outcomes in order
to regulate performance (Vaghi et al., 2017). They seem to have
the capacity to establish the internal model but then the internal
model fails to guide behavior. Vaghi et al. (2017) hypothesized
that, in this case, actions become independent of internal models,
leading to constant attempts to check the environment in order
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FIGURE 1 | A sagittal view of the cerebellum. Abbreviations: DCN, deep cerebellar nuclei; M, medial or fastigial nucleus; IP, interpositus nucleus; L, lateral or
dentate. Roman numbers correspond to lobules of the cerebellar cortex. The apical/dorsal region of lobule VIII is highlighted in gray.

to adjust behavior. According to this suggestion, compulsive
behavior entails a dysregulation of the integrative brain sensory-
motor mechanisms that allow the use of predictive relationships
to plan ahead and control behavior on line.

Accordingly, a role for the cerebellum in compulsive behavior
is suggested by the extensive literature indicating that one of
the main functions of the cerebellum is to implement internal
models (Ito, 1990, 1993, 2008). An internal model is similar
to a mental model but implicit (Ito, 2008). A mental model
is a schematic representation of reality that is used to explain
the present events and predict the future (Johnson-Lairds,
1983). The prefrontal cortex acts as a controller to create and
manipulate the mental representations of the world that are
distributed throughout the sensorimotor cortices. The cerebellar
internal model works as an implicit and thereby unconscious
template of this mental sensorimotor representation of the world.
Then, the cerebellum processes the current functional state
using sensory, interoceptive, and proprioceptive information.
If there is a match between the mental model and bottom-up
information (as can occur in overlearned tasks), the next
event can be predicted from the template (Wolpert et al.,
1998; Ito, 2008; Leggio and Molinari, 2015). In case of a
discrepancy between ‘‘what I want to do’’ (prefrontal cortex) and
‘‘what is being done’’ (sensory-motor responses), the cerebellum
generates an error signal that is essential for updating the
internal model and making behavioral adjustments on line
(Fautrelle et al., 2011).

If cerebellar error signaling fails (e.g., after cerebellar damage
or dysfunction), one would expect internal models to fail to
update and therefore to be unable to influence behavioral
adjustments. Consistent with this hypothesis, cerebellar lesions
impair this predictive capacity in motor tasks such as reaching.
Patients with lesions cannot generate anticipatory adjustments
and fail to make ongoing corrections reaching objects
(Manto et al., 1995; Chen et al., 2006; Bhanpuri et al., 2013).

We propose to extend the hypothesis to compulsive behavior in
that cerebellar impairment could affect the ability to terminate
a wide range of ongoing behaviors when environmental
contingencies change. Indeed, clinical reports of patients with
cerebellar disease or lesions demonstrate the emergence of
compulsive arm shaking, checking, washing, and stereotyped
motor activities (Gonzalez and Philpot, 1998). Clinical studies
have also suggested decision-making deficits after cerebellar
injury (Cardoso et al., 2014).

In drug addiction, drug-related stimuli evoke drug memories
and have the capacity to trigger craving and compulsive
drug seeking (Shaham et al., 2003; Pickens et al., 2011).
Importantly, neuroimaging studies of cue reactivity in drug
addicts have consistently shown cerebellar activations when
drug-related cues are presented (for a review, see Jasinska
et al., 2014; Moulton et al., 2014; Miquel et al., 2016; and
Moreno-Rius and Miquel, 2017). We used animal models to
investigate the accurate location of the cerebellar area involved
in these drug-cue associations (Carbo-Gas et al., 2014a,b, 2017).
Our findings indicated that expression of cocaine-induced
conditioned memory is accompanied by a selective increase in
neural activity at the most external part of the granular cell layer
in the posterior cerebellum (Figure 1). Such increase was only
seen in animals that acquired the memory, but not in pseudo-
conditioned groups or in animals that, despite being trained
in a contingent association, did not express the conditioned
response towards cocaine-related cues (CS+). More importantly,
this cerebellar activity appeared to be one of the correlates of the
behavioral decision driven by the drug-related cue. Accordingly,
when animals were confined in the presence of the CS+ with
no opportunity to select other behavioral alternatives, cerebellar
activity was normalized to control levels (Carbo-Gas et al., 2017).
Recently, we proposed that the cerebellar cortex biases behavioral
selection towards the context that predicts drug availability, and
that this happens by generating predictions after presentation
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of the conditioned cue (Carbo-Gas et al., 2014b; Moreno-Rius
and Miquel, 2017). We propose that the internal state modulates
these predictions, increasing the probability of selecting the
drug-associated context when the drug is absent in the body. In
this way, the cerebellum, by activating drug-cue representations
during abstinence, can contribute to compulsive drug seeking
driven by both negative and positive reinforcement.

Compulsivity, Habit Formation and
Executive Behavioral Control
Classically, habits have been considered as overlearned,
repetitive, sequential behaviors that are performed automatically
and triggered by associated environmental signals (Graybiel,
2008). During acquisition of habits, there is a shift from
goal-directed behavior regulated by an action-outcome process
(R-O) to automatized responses triggered by the stimuli (S-R;
Dickinson and Weiskrantz, 1985). Nevertheless, as Robbins
and Costa (2017) have discussed recently, habits and skills are
not equivalent processes. Habits refer to ‘‘which stimuli elicit
the behavior’’ and do not necessarily involve overtraining.
Like goal-directed behavior, habits are ‘‘autonomous from the
goal’’ and thus outcome devaluation is unable to reduce the
presence of habitual behavior. However, skills involve sequential
learning that requires extended training though they may be
goal-directed, and thereby still dependent on the outcome.
Three dissociated but interconnected loops including different
cortical and striatal regions have been proposed to underlie and
control the establishment of habits: the limbic, associative and
sensorimotor networks (Yin and Knowlton, 2006).

Neuroimaging studies of skill learning reported cerebellar
deactivations during the automatic phase (Wu et al., 2004;
Doyon and Benali, 2005; Balsters and Ramnani, 2011). Both
the prefrontal cortex and cerebellum decrease their activity
as sequential learning progresses. Then, if task demands
increase, prefrontal cortex activity is engaged again but the
cerebellum remains deactivated (Doyon and Benali, 2005).
Electrophysiological recordings performed in the cerebellar
cortex of rodents during motor learning showed similar findings.
In these studies, the initial learning phase was characterized
by high cerebellar cortical activity, which decreases with trials
and repetition (de Zeeuw and Yeo, 2005; Garcia-Martinez et al.,
2010). Thus, correlational research on the cerebellar contribution
to motor learning suggested that the prefrontal cortex and
cerebellum work in parallel during acquisition and progression
of learning, but they are recruited differently when cognitive and
motor demands grow. In accordance, non-invasive stimulation
of the cerebellum supports the role of the cerebellum in the
initial phase of motor learning (Darch et al., 2018). By contrast,
hemicerebellectomy seems to delay the transition to response
automatization rather than impair acquisition of sequential
learning (Mandolesi et al., 2010).

Additional evidence strongly supports the contribution of the
cerebellum to habits. During instrumental actions, goal-directed
behavior (R-O) can compete with the stimulus-response
automatic mechanism (S-R). When habitual behavior is
established, the probability of responding for devalued outcomes
increases (Adams and Dickinson, 1981). The ability to resolve

and monitor the competition between habit and goal-directed
processes depends on the engagement of inhibitory executive
control (Watson et al., 2018). Contrary to the frontal pole, the
cerebellum and other regions in the sensorimotor network, such
as the premotor cortex, show greater activation when subjects
respond to previously devalued outcomes, suggesting that
they participate in the expression of S-R habits (Watson et al.,
2018). Accordingly, in an elegant study, Liljeholm et al. (2015)
demonstrated using functional imaging in humans that neuronal
activity in the tail of the caudate/thalamus, the cerebellum
and the lingual gyrus predicts insensitivity to devaluation.
Participants with greater activity within these regions in the S-R
relative to R-O conditions during the two first blocks of the
instrumental learning phase responded to a greater proportion
of trials with devaluated outcomes during the test phase. Of
particular relevance is the fact that in Liljeholm’s study the
formation of habit did not require overtraining because R-O and
S-R were trained separately as different experimental conditions
for the same number of trials. Thus, activity within the caudate
and cerebellum was not a function of practice or repetition,
but rather it predicted the formation of a strong stimulus-
response association. This observation suggests a significant
role not only of the basal ganglia but also the cerebellum in
S-R habit formation.

Consistent with the human imaging studies, impaired ability
to inhibit responding to the previously-rewarded but no-longer-
correct stimulus (perseverative errors) has been observed both
in a rodent model of autism in which cerebellar dysfunction
is present (Dickson et al., 2010) and in hemicerebellectomized
rats (De Bartolo et al., 2009). Moreover, a bilateral lesion in
the interpositus nucleus of the cerebellum prevents rats from
developing habits with overtraining (Callu et al., 2007). In
these rats, behavior maintains the action-outcome features and
transition to the automatic cue-response stage is not created.

Therefore, the cerebellum is not critical to learning
goal-directed behaviors but appears to be required for habit
and skill learning. Furthermore, lesion studies suggest that the
integrity of the cerebellum is essential for the brain process
underlying habit formation. Future research will ascertain
whether the cerebellum is essential to habit formation or instead
to the expression of habits.

Similar to the interpositus, the infralimbic prefrontal cortex
has been demonstrated to be crucial for the establishment of
habits in that repeated optogenetic inhibition of the infralimbic
cortex disrupts habit formation (Smith and Graybiel, 2013).
Impairment of the infralimbic cortex suppressed the shift away
from goal-directed behavior to habitual reward seeking, even
after substantial overtraining (Killcross and Coutureau, 2003;
Miles et al., 2003; Smith and Graybiel, 2013).

It has been hypothesized that compulsive behavior may result
from aberrant habit formation (Everitt and Robbins, 2005).
In fact, patients suffering from compulsive disorders including
OCD, drug addiction, and Tourette syndrome develop habits
more easily than controls after reduced behavioral training
(Gillan et al., 2011; Hogarth and Chase, 2011; Delorme et al.,
2016; Ersche et al., 2016). According to one theory of drug
addiction, compulsivity characterizes late stages of the disorder
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FIGURE 2 | The cerebellar cortex tonically inhibits the deep nuclei through GABAergic Purkinje axons. In accordance, by reducing synaptic function in Purkinje
neurons, it is possible to increase neuronal activity in the deep nuclei. Changes in activity are represented by dark gray (greater) vs. faint gray (lower).

(Everitt and Robbins, 2005; Koob and Volkow, 2010; Montigny
et al., 2013). In the initial stages of drug intake, drug-related
cues drive goal-directed behaviors towards contexts with drug
availability. With extended drug experience, cue-action-outcome
relationships can become over-consolidated, and drug-related
cue/context can activate automatic behaviors (Everitt and
Robbins, 2005).

The contribution of the cerebellum to the transition
from recreational drug intake (goal-directed behavior) to
compulsive habits is still unknown, although human and
animal neuroimaging research supports a reorganization of the
prefrontal-cerebellar network in addicted patients (Hester and
Garavan, 2004; Bolla et al., 2005; Goldstein et al., 2007) and
other primates with a history of cocaine self-administration
(Porter et al., 2014). Altogether, these findings indicate that
the downregulation in prefrontal cortices during addiction is
accompanied by abnormal greater activity in the cerebellum
when task demands increase. Importantly, the sensorimotor
network, including brain regions underlying motor skills
learning and action, increase their activity when drug-related
cues are presented (Yalachkov et al., 2009). Thus, smokers
showed higher activation than non-smokers in the right lateral
cerebellum, the left premotor cortex, and the left superior
parietal lobule during the presentation of smoking-related cues
(Yalachkov et al., 2009). Additionally, smokers show more
restrictive brain activity patterns than non-smokers during
reward tasks. During a pattern-recognition task, a nonmonetary
reward elicited activation only in the smokers’ cerebellum. In
non-smokers, the brain pattern was wider involving the striatum,
prefrontal cortex and limbic cortices. Moreover, the presentation
of a monetary reward was unable to activate the striatum in
smokers as compared to nonsmokers (Martin-Sölch et al., 2001).

Recent findings from our laboratory indicate that the
cerebellum can control learning-related activity (Gil-Miravet
et al., 2018) and plasticity in the infralimbic cortex (unpublished
results). Neurotoxic lesion of the posterior cerebellar cortex
performed before conditioning increased cFos expression and
mechanisms for synaptic stabilization in the infralimbic cortex. It

is plausible that the cerebellar cortex could influence infralimbic
function through disinhibition of the deep cerebellar nuclei.
The cerebellar cortex exerts an inhibitory tonic control over
the deep nuclei through GABAergic Purkinje axons (Gauck
and Jaeger, 2000; Figure 2). In accordance, by reducing the
synaptic function in Purkinje neurons it is possible to increase
neuronal activity and PNN expression in the deep nuclei
(Vazquez-Sanroman et al., 2015). Overall, our results suggest
that the cerebellar cortex may regulate infralimbic activity in an
inhibitory manner via inhibition of the deep cerebellar nuclei.
In this way, cerebellar dysfunction might contribute to the
establishment of drug-induced incentive habits by controlling
activity and plasticity in the infralimbic cortex.

In summary, the findings described above highlight the
cerebellar role in compulsivity. First, a dysfunctional prefrontal-
cerebellum network might mediate the inability to use internal
models to regulate behavior. Second, the cerebellum is
likely required for the formation and expression of habits.
Third, in drug addicts and heavy drug users, impairment
of executive functions has been repeatedly associated with
a dysfunctional prefrontal-cerebellar pattern in which the
cerebellum is overactive. Several years ago, we hypothesized
that as the prefrontal cortex is downregulated by the repetition
of drug experience, the cerebellum will increase its functional
relevance, encouraging faster and automatic forms of control at
the expense of behavioral flexibility (Miquel et al., 2009). So far,
this hypothesis remains untested but it should be reformulated
in light of the present evidence (see section ‘‘A Working
Hypothesis for the Role of the Cerebellum in Compulsivity
and Impulsivity’’).

CEREBELLAR DYSFUNCTION IN
IMPULSIVITY

Several dimensions contribute to motor and cognitive
impulsivity including rapid decision making, intolerance
to delays in reward delivery, as well as tendency to
prematurely terminate response chains (Evenden, 1998).
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Separate cortico-striatal networks control different aspects of
impulsivity (Eagle et al., 2008). The stop circuit involved in
motor impulsivity comprises the right inferior frontal gyrus,
anterior cingulate cortex, presupplementary and motor cortices,
dorsal striatum (caudate/putamen), and subthalamic nucleus.
Impulsive choices are triggered from the nucleus accumbens
core, basolateral amygdala and orbitofrontal cortex. As with
compulsivity, the cerebellum has been overlooked in the more
influential anatomical models of impulsivity even though
cerebellar dysfunction has repeatedly been linked to impulsive
symptomatology (Mulder et al., 2008; Durston et al., 2011; de
Zeeuw et al., 2013).

Structural Neuroimaging in the Cerebellum
and Impulsivity Disorders
Dysregulation of the cerebellum, particularly of the cerebellar
vermis, has been accepted as a potential etiological component of
ADHD (Mulder et al., 2008; Durston et al., 2011; de Zeeuw et al.,
2013; Pieterman et al., 2018). Earlier structural neuroimaging
studies with children and adults with ADHD described reduced
cerebellar volumes even after correction for total cerebral volume
(Berquin et al., 1998; Mostofsky et al., 1998; Castellanos et al.,
2001). Similar to ADHD patients, smaller cerebellar volume
and reduced GM have been observed in preterm children with
impulsive symptomatology (Matthews et al., 2018); compared
with normal term infants, preterm children are more likely to
show impulsive behavior, inattention, cognitive inflexibility, and
meet a diagnosis of ADHD (Foulder-Hughes and Cooke, 2007;
Farooqi et al., 2013; Morales et al., 2013; Pozzetti et al., 2014;
Franz et al., 2018). Likely, the dynamic of cerebellar development
in the last trimester of gestation makes the cerebellum more
vulnerable to dysfunction in a preterm birth than other brain
regions (Tran et al., 2017).

More recent studies have gone further in identifying the
different dimensions of impulsivity related to specific structural
cerebellar abnormalities. For example, greater GM volume in the
right cerebellum was associated with higher motor impulsivity
levels (Lee et al., 2011). Impulsivity is not always dysfunctional
and indeed it can be observed in non-pathological individuals
as a predisposition to premature and poorly planned responses
(Moeller et al., 2001). Interestingly, GM abnormalities in the
cerebellum only correlate with dysfunctional impulsivity since
high impulsivity in normal subjects involved a different pattern
of GM correlations (Hogarth, 2011).

Additionally, abnormal cerebellar connectivity patterns have
been described in ADHD patients. In these patients, the
cerebellum exhibits reduced connectivity with the prefrontal
cortex (Wolf et al., 2009). Oldehinkel et al. (2016) investigated
striatal connectivity in an extensive sample of subjects with
a diagnosis of ADHD as well as in their healthy relatives.
Hyperactivity, impulsivity and inattention were related to greater
connectivity of the posterior putamen with the cerebellum and
occipital cortex.

Impulsivity and Executive Function
Evidence for functional changes in the cerebellum of ADHD
patients indicated attenuated cerebellar activity during

the performance of executive tasks (Schulz et al., 2004;
Valera et al., 2005). Neurofunctional models of ADHD
have distinguished several subtypes of ADHD patients
as a function of underlying brain pathways and primary
functional deficits associated with them (Sonuga-Barke
et al., 2008; Durston et al., 2011). The strongest evidence
suggests an executive vs. reward-related dysfunction. In the
first subgroup, patients show an impairment in behavioral
inhibition including inattention (executive deficits). In the
second one, the primary deficit was emotional/motivational
and it was expressed as an aversion to delayed reward delivery
(Sonuga-Barke et al., 2008; Durston et al., 2011). Inability
to engage the cerebellum as well as prefrontal and parietal
cortices during response inhibition tasks was found to be the
hallmark for the subgroup with executive deficits (Stevens
et al., 2018). Moreover, those patients with emotional and
motivational-related deficits over-engaged the amygdala and
ventral striatum during rewarded tasks with no change in
prefrontal-cerebellar network.

Impulsivity is also present in bipolar disorder, the
neuropsychopathology of which includes both executive
and emotional-motivational deficits. In contrast to subjects
diagnosed with ADHD, the difficulty in inhibiting a prepotent
motor response in bipolar patients was accompanied by
reduced striatal activity along with increased activation of
the orbitofrontal cortex, amygdala and cerebellum (Fleck et al.,
2011). Therefore, although themost common cerebellar correlate
of behavioral disinhibition is reduced activity in the cerebellum,
different pre-existing pathological conditions may constrain the
type of brain pattern that will be observed during behavioral
inhibition tasks.

In a recent genetic mouse model of ADHD (High-
Active mice), downregulation of the prefrontal cortex was
accompanied by hyperactivity in the granule cell layer of
the cerebellar vermis during the performance of a high-speed
rotarod task (Majdak et al., 2016). A low amphetamine dose
normalized motor impulsivity symptom to control levels.
However, amphetamine treatment reduced only cerebellar
hyperactivity, leaving prefrontal downregulation unaltered.
This finding points to the cerebellum as a therapeutic
target for impulsive disorders similar to what has been
suggested by studies using cognitive training in ADHD children
(Hoekzema et al., 2010).

In drug abuse, impulsivity may act as a vulnerability factor to
compulsive drug-seeking but also can be the result of repeated
drug intake (Belin et al., 2008; Verdejo-García et al., 2008;
Ersche et al., 2010; Hogarth, 2011; Whelan et al., 2012; Irimia
et al., 2015). Cerebellar dysfunction has been proposed as
one of the main factors to explain comorbidity between drug
addiction and other impulsive disorders (Jasinska et al., 2014;
Moulton et al., 2014; Miquel et al., 2016). Nevertheless, only
a few studies have specifically investigated the cerebellar
underpinnings of drug-related impulsivity. In alcoholic
patients at different stages of remission, frontocerebellar
dysfunction appears to be a key factor to predict and explain
impulsive control deficits (Sullivan, 2003; Jung et al., 2014).
Functional connectivity research demonstrated that anterior
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cingulate-cerebellar synchrony is degraded in alcoholics
when responses have to be inhibited to avoid errors (Jung
et al., 2014). Under uncertainty, alcoholics failed to activate
the cerebellum, emitting more erroneous responses while
compensatory activity was observed in the dorsal prefrontal
and premotor cortices (Jung et al., 2014). Unlike alcoholics,
adolescent cannabis users showed an increased correlation in
the activity of the frontal-parietal-cerebellar network associated
with poor inhibitory behavioral control in a Go/No-Go
task (Behan et al., 2014). Greater correlation between the
parietal cortex and cerebellum was also seen during resting
state in cannabis users relative to control subjects. In this
study, frontal-parietal-cerebellar hyper-connectivity did not
compensate for performance as cannabis abuser committed
more errors than the control group. Overall, despite the fact
that both the type of drug and task conditions might be
important factors for understanding the involvement of the
cerebellum in drug-related impulsivity, aberrant cerebellar
connectivity patterns are common to impulsive behavior in
heavy drug users.

Effects of Cerebellar Lesions on
Impulsivity
Clinical reports on cerebellar diseases give support to the
fundamental role of the cerebellum in modulating diverse
motor, affective and cognitive domains. Beyond motor
dysfunction, patients with lesions or disease affecting the
posterior cerebellum showed difficulties in controlling
their behavior and emotions, language deficits, and lack of
concentration (Silveri et al., 1994; Schmahmann and Sherman,
1998; Kim et al., 2013; Tessier et al., 2015). The syndrome,
which has been called ‘‘the cerebellar cognitive-affective
syndrome,’’ is characterized by impairments in executive
functions with disinhibited and inappropriate behavior, social
aberrant behavior, personality changes, and language deficits
(Schmahmann and Sherman, 1998).

In accordance with clinical observations, lesion studies in
animals have established the relevance of the cerebellum for
perseverative behavior and behavioral disinhibition (Bobée et al.,
2000). Posterior vermis lesions result in a delay in behavioral
inhibition during extinction trials (Callu et al., 2007). Animals
that received vermis lesions when young showed perseverative
behavior as adults, lack of attention to novel stimuli, and
behavioral disinhibition (Bobée et al., 2000). Taken together,
these results indicate that the cerebellum is a crucial component
of the circuits controlling the inhibitory mechanisms for
initiating actions.

A WORKING HYPOTHESIS FOR THE ROLE
OF THE CEREBELLUM IN COMPULSIVITY
AND IMPULSIVITY

Although in many cases the evidence is incomplete and
partial, a picture is beginning to emerge from research on
the cerebellar contribution to compulsivity and impulsivity:
pre- and postnatal developmental events can induce cerebellar
dysfunction or alter cerebellar connectivity patterns, encouraging

FIGURE 3 | A summary of structural and functional cerebellar findings in
compulsivity and impulsivity.

basal ganglia-cerebellum connectivity while degrading
prefrontal-cerebellum connections. Thus, it appears that a
consequence of disrupting cerebellar function is an imbalance
between dorsal (downregulation) and ventral (upregulation)
influences on behavior, facilitating an over-reliance of ‘‘Go’’
brain mechanisms at the expense of ‘‘No-Go’’ inhibitory control,
with actions becoming persistent and inappropriate to the
context (Figure 3).

Overall, findings point to a modulatory function of the
cerebellum in terminating or initiating actions through
regulation of the prefrontal cortices. That is, the cerebellum
may be crucial for restraining ongoing actions when
environmental conditions change by adjusting prefrontal activity
in response to the new external and internal constellation of
stimuli, thereby promoting flexible behavioral control. Both
electrical and non-invasive stimulation of cerebellar activity
in animals and humans support a modulatory effect of the
cerebellum on cortical activity (Forster and Blaha, 2003; Chen
et al., 2014; Watson et al., 2014). It has been hypothesized
that the cerebellar modulation consists of what has been
called ‘‘cerebellar brain inhibitory function’’ (Darch et al.,
2018). If this is the case, one should expect stimulation of
cerebellar activity to improve prefrontal functionality and
to reduce compulsive and impulsive behaviors (Figure 2).
Notwithstanding, cerebellar stimulation can reduce or increase
cortical activity as a function of the stimulation protocol
(Casula et al., 2016) as well as the cortical population targeted
(Watson et al., 2014). Moreover, cerebellar modulation
involves subtle changes in synchronization of cortical firing
more than global changes in neuronal activity (Watson
et al., 2014). Also relevant is the fact that the cerebellum
is not a functional unit and therefore it should not be
expected that manipulations across different regions of the
cerebellum should produce homogeneous effects either on
behavior or on brain activity. For instance, stimulation
of the cerebellar cortex should result in opposite effects
to stimulation of deep cerebellar nuclei as they receive
tonic inhibitory GABAergic control through Purkinje cells
(Gauck and Jaeger, 2000).
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A comprehensive understanding of the cerebellar function
in compulsivity and impulsivity will require further research
involving causative manipulation of the cerebellar activity and
its connectivity since the majority of the current information
comes from correlational research and clinical reports. For
instance, it is known that impulsivity and disinhibition result
from impairment of the cerebellar cortex, especially in the
middle line (vermis; Silveri et al., 1994; Schmahmann and
Sherman, 1998; Kim et al., 2013; Tessier et al., 2015).
Thus, it should be possible to interfere with or mimic
these effects by using pharmacogenetics tools as DREADDs
(designer receptor exclusively activated by designer drugs)
or optogenetics in paradigms such as Go/No-Go tasks and
reward devaluation tests. These research tools could also be
applied to drug-related compulsivity and impulsivity in animal
models of addiction such as those proposed by Vanderschuren
and Everitt (2004); Ahmed (2012) or Deroche-Gamonet
and Piazza (2014). Importantly, the specific contribution
of the cerebellum to drug addiction is an almost utterly
uncharted field. The present model (Figure 2) predicts that
by inhibiting activity in the cerebellar cortex impulsive and
compulsive symptomatology would increase. On the contrary,
the stimulation of the cerebellar cortex should improve
behavioral inhibitory control in the above-mentioned paradigms
and models. Opposite predictions may be made for the effects
of direct manipulations in the deep cerebellar nuclei (DCN),
as the DCN receives tonic inhibition from the cerebellar cortex

(Gauck and Jaeger, 2000). If confirmed our expectations, the
cerebellum would appear as the next therapeutic target for
impulsive/compulsive disorders.
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