
sensors

Article

An Improved Calibration Method for the IMU Biases Utilizing
KF-Based AdaGrad Algorithm

Zeyang Wen † , Gongliu Yang † and Qingzhong Cai *

����������
�������

Citation: Wen, Z.; Yang, G.; Cai, Q.

An Improved Calibration Method for

the IMU Biases Utilizing KF-Based

AdaGrad Algorithm. Sensors 2021, 21,

5055. https://doi.org/10.3390/

s21155055

Academic Editor: Felipe Jiménez

Received: 26 June 2021

Accepted: 22 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
cruyffwen@163.com (Z.W.); yanggongliu@buaa.edu.cn (G.Y.)
* Correspondence: qingzhong_cai@163.com; Tel.: +86-8233-8112
† These authors contributed equally to this work.

Abstract: In the field of high accuracy strapdown inertial navigation system (SINS), the inertial
measurement unit (IMU) biases can severely affect the navigation accuracy. Traditionally we use
Kalman filter (KF) to estimate those biases. However, KF is an unbiased estimation method based
on the assumption of Gaussian white noise (GWN) while IMU sensors noise is irregular. Kalman
filtering will no longer be accurate when the sensor’s noise is irregular. In order to obtain the optimal
solution of the IMU biases, this paper proposes a novel method for the calibration of IMU biases
utilizing the KF-based AdaGrad algorithm to solve this problem. Three improvements were made
as the following: (1) The adaptive subgradient method (AdaGrad) is proposed to overcome the
difficulty of setting step size. (2) A KF-based AdaGrad numerical function is derived and (3) a
KF-based AdaGrad calibration algorithm is proposed in this paper. Experimental results show that
the method proposed in this paper can effectively improve the accuracy of IMU biases in both static
tests and car-mounted field tests.

Keywords: inertial measurement unit (IMU) calibration; strapdown inertial navigation system
(SINS); Kalman filter; gradient descent

1. Introduction

Strapdown Inertial Navigation Systems (SINS) have been widely used in many aspects
of navigation [1]. The SINS has some irreplaceable advantages, such as high autonomy,
and it provides continuous and comprehensive navigation information. Therefore, SINS is
widely applied in ships and airplanes [2]. For the purpose of realizing the alignment and
navigation algorithms of the SINS. The IMU errors have to be calibrated prior to utilization.
In an ideal IMU, accelerometers, and gyroscopes coordinate with the same orthogonal
sensitivity axes, while the scale factor converts the digital quantity measured by each sensor
into the real physical quantity (accelerations and angular rates) [3,4]. However, the IMU is
usually affected by non-accurate sensor biases [5], the navigation errors (attitude, velocity
and position errors) of the SINS diverge with time [6]. Therefore, the calibration of biases
in IMU is a very effective way to enhance the navigation accuracy of SINS.

In [7], Han et al. proposed a method for bias calibration using a single-axis turning
table. The disadvantage of this method is that the calibration accuracy depends highly
on the turntable accuracy. In current SINS implementations, in order to overcome the
non-observability of the biases of the IMU biases, an analytic calibration of IMU biases with
two-position is utilized widely [8]. Many works have been done in the field of IMU calibra-
tion. In [9], an eight-position self-calibration method was proposed. Emel’yantsev et al.
calibrated in-rum drifts of SINS with uniaxial modulation rotation of measurement unit.
Since the low end IMU model is nonlinear, some researchers use an adaptive Kalman
filter to estimate IMU biases [10–15]. Wang et al. utilized a new online calibration method
for integrated navigation systems [16]. In [17], a rotation test was utilized to enhance the
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observability of KF in order to calibrate the IMU biases. However, KF is an unbiased estima-
tion method based on the assumption of GWN while IMU sensors noise is irregular [18–20].
In [21], an autocovariance least-squares (ALS) technique was proposed to estimate the
process noise of IMU. In [22], particle swarm method was utilized in gyro drift estimation.
For high-dimensional systems especially for those with weak observability. The adaptive
estimation of IMU biases tend to diverge. In order to solve the problem, further researches
are needed on this issue.

Allan variance has been widely utilized in the analysis of gyroscopes [23]. Allan
variance can provide different types and magnitude information on various noise terms.
Due to analogies to IMU sensors, Allan variance has been adapted to the random-drift
characterization of a variety of inertial devices [24–26]. Allan variance is a method of
representing the root mean square (RMS) random-drift errors as a function of averaging
time. However, the equivalent white noise characteristics do not equal the sum of the
various noise characteristics analyzed by Allan variance. Thus, the method of using Allan
variance to estimate IMU biases is not feasible.

In order to solve the above problems, a KF-based AdaGrad calibration algorithm is pro-
posed. Gradient descent is an iterative optimization algorithm for finding the minimum value
of the objective function. For a complex dynamical system, the gradient descent method is
utilized to obtain the minimum value of the constructed cost function. In [27–30], researchers
proposed a gradient descent approach to solve complex dynamic system problems. The dif-
ficulty of the gradient descent method lies in constructing the cost function of a complex
dynamic system. In this paper, (1) in order to solve the problem of setting step size, this
paper utilized adaptive subgradient methods (AdaGrad); (2) we derive a KF-based Ada-
Grad numerical cost function in which the objective function is the velocity and position
errors; and (3) utilizing the above two theories we propose a novel method called KF-based
AdaGrad algorithm. Finally, static tests and field tests are carried out to verify the feasibility
and applicability of the investigated method.

The remainder of this paper is organized as follows. Section 2 presents a brief overview
of the calibration process of IMU and an analysis of the observability of IMU biases.
In Section 3, we derive a KF-based AdaGrad numerical cost function and propose a KF-
based AdaGrad calibration algorithm. Rotation tests and car-mounted field tests are carried
out in Section 4 to compare the proposed method and the existing calibration method.
The conclusions are given in Section 5.

2. Two-Position Calibration Modeling

The navigation performance of the SINS relies on a high-precision IMU. Error mod-
els have been developed for the IMU in [7,8]. Under the condition of the static base,
the velocity of the navigation solution is the velocity error. According to the SINS error
transformation model, the misalignment angle error can be derived from the velocity error.
Since the inertial navigation system has no obvious movement of the geographical position,
the velocity of the inertial navigation system approaches zero. Therefore, in the calibration
process, the SINS navigation algorithm can be replaced by some simplified equations.

In a SINS, the IMU is directly mounted on the vehicle or the carrier without a stable
platform. The angular velocity and acceleration in the body frame (denoted by b) are
measured by the gyroscopes and accelerometers. Choose the local geographical frame
(East-North-Vertical frame) as the navigation frame (denote by n).

Let ωen = 0 to get the simplified attitude algorithm:

Ċn
b = Cn

b

[
(ωb

ib −ωb
ie)×

]
(1)

Cn
b is the direction cosine matrix to transform vector from b-frame (IMU body or-

thogonal frame which aligned with Right-North-Up axes) to n-frame (navigation frame
which aligned with East-North-Vertical axes). The subscript i denotes the inertial-frame.
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ωb
ib represents the angular velocity measured by the gyroscope in the b-frame. ωb

ie is the
self-rotation angular velocity.

Specific force equation as one of the basic equations of the SINS can be written as :

v̇n = Cn
b f b

s f − (2ωn
ie + ωn

en)× vn + gn (2)

where vn =
[

vn
E vn

N vn
U
]T , g is the gravity acceleration of the earth. Let vn = 0 to

obtain the simplified velocity algorithm:

v̇n = Cn
b f b

s f + gn (3)

Following the above derivation, the attitude error equation and the velocity error
equation can be written as:

φ̇ = φ×ωn
ie − εn

δv̇n = f n
s f ×φ +∇n (4)

where φ is the misalignment angle vector and δvn is the velocity error vector. εn is the
gyroscope equivalent constant bias and the ∇n is the accelerometer equivalent constant
bias. The expressions for εn and ∇n are written as follows:

εn =

 εE
εN
εU

 =

 C11εb
x + C12εb

y + C13εb
z

C21εb
x + C22εb

y + C23εb
z

C31εb
x + C32εb

y + C33εb
z

 (5)

∇n =

 ∇E
∇N
∇U

 =

 C11∇b
x + C12∇b

y + C13∇b
z

C21∇b
x + C22∇b

y + C23∇b
z

C31∇b
x + C32∇b

y + C33∇b
z

 (6)

where Cij denotes the elements of Cn
b . εb and ∇b are the gyroscope and accelerometer

equivalent constant bias.
In the above equation, there is no cross-linking relationship between the Equation

(δv̇U = ∇U) and the other equations. It can be concluded that the vertical velocity error
does not have any effect on the misalignment angle estimation. Therefore, in the analysis
of the misalignment angle estimation, the influence of the vertical velocity and vertical
accelerometer bias can generally be ignored. By expanding the εb and ∇b to the state,
the calibration state space model can be established as follows:{

Ẋ = FX + GWb

Z = HX + V
(7)

where

F =

 −(ωn
ie×) 03×3 −Cn

b 03×3
−(gn×) 03×3 03×3 Cn

b
06×12

 (8)

G =

 −Cn
b 03×3

03×3 Cn
b

06×6

 (9)

H =
[

03×3 I3×3 03×6
]

(10)

According to the designed two-position calibration scheme, the actual system is time-
varying system. PWCS method and SVD method are both employed for the two-position
calibration scheme. The rank of this observability matrix is 7 [26,27]. Five states∇E,∇N , εE,
εN and εU are considered unobservable. In order to improve the observability, two-position
calibration is needed. This is equivalent to changing the Cn

b of the SINS. Furthermore,
changing the SINS error equation from a stationary system to a time-varying system, which
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is beneficial to improve the observability of the IMU biases. The scale factor errors of
the three gyros and accelerometers are not observable during the process of two-position
calibration. Therefore, we do not consider the scale factor errors in Equation (7).

Using the piece-wise constant system (PWCS) observability analysis method [27],
the rank of the observability matrix is 11 except εU .

The value of the elements of the process noise matrix [29–31], which is the directly
determined by the value of the elements in the W matrix. As is shown in Equation (12),
the covariance of the W matrix is Q. Furthermore, the accuracy of the KF is determined by
the reliability of the Q information. W and Q can be written as:

Wb =
[

wb
gx wb

gy wb
gz wb

ax wb
ay wb

az

]T
(11)


E[W k] = 0, E[W kWT

j ] = Qkδkj

E[V k] = 0, E[V kVT
j ] = Rkδkj

E[W kVT
j ] = 0

(12)

However, KF is an unbiased estimation method based on the assumption of GWN
while IMU sensor noise is irregular. In order to obtain the optimal solution of IMU biases,
this paper presents a novel method for the calibration of IMU biases utilizing the KF-based
AdaGrad algorithm in Section 4.

3. KF-Based AdaGrad Algorithm
3.1. Gradient Descent Algorithm

Gradient descent is an iterative algorithm to minimize an objective function. If the
multi-variable function F(x) is defined and differentiable. Given an initial point, and then
follow the negative of the gradient of the function at every iteration. When the point
moves to a critical point where the point does not change anymore (or change a value that
approaches zero), it has reached the desired local minimum. The basic algorithm is written
as follow:

xn+1 = xn − γn∇F(xn) (13)

where x is the variable vector and γ is the step size.
However, setting the step size of gradient descent is a key issue. An inappropriate step

size may cause the function F(x) easily trapped in saddle points. In this paper, the sampling
rate of the IMU is 200 Hz. Therefore the sampling time is 0.005 ms. In order to ensure that
there are no large values at the beginning. The step size we set is 0.005 at the beginning.

In order to solve this problem, we utilized two methods: line search and adaptive
subgradient methods (AdaGrad).

3.2. Line Search

Line search is an approach is to adapt the step size at every iteration. The line
search will calculate the descent direction pk and the step size αk to move in this direction.
The following condition must be satisfied: pk

T∇Fk < 0 so that the function F(x) can be
guaranteed to fall along this direction. Furthermore, the search direction can be written as:
pk = −B−1

k ∇Fk. The step size αk should minimize the following function:

φ(α) = F(xk + αpk) (14)

However, it is difficult to obtain the α that minimizes the above equation, and the
amount of calculation is relatively large. The commonly used method is to obtain a larger
step size as much as possible with an acceptable amount of calculation, in order to reduce
the value of φ(α) as much as possible. The general line search method consists of the
following two steps:

1. Bracketing: Finding a range containing ideal steps.
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2. Dichotomy or Interpolation: Using the dichotomy or interpolation to find the step
size in this interval.

The KF-based AdaGrad algorithm is very computationally intensive. Even though
the above method can reduce a lot of calculations, a faster step-size adaptive approach is
needed. Thus, we utilized AdaGrad to solve this problem.

3.3. Adaptive Subgradient Methods (AdaGrad)

The basic idea of AdaGrad is to use different step sizes at every iteration. The step size
is large at the beginning for rapid gradient descent. As the optimization process progresses,
the step size is reduced for the gradient that has fallen significantly, and the larger step size
is maintained for the gradient that has not decreased so much.

For the basic Gradient descent, the vectorized algorithm can be written as:

xk+1 = xk − η∇F(xk) (15)

AdaGrad multiplies the step size by a parameter that varies with the number of iterations:

xk+1 = xk −
η√

Gk+ε
∇F(xk)

Gk = Gk−1 +∇F(xk)
(16)

where η is a small value to prevent the denominator to be zero.
It is easy to discover that as the algorithm continues to iterate, Gk will grow larger,

and the step size will grow smaller. The AdaGrad algorithm starts with the convergence of
high speed and ends with a small step size.

Since we proposed a KF-based AdaGrad numerical cost function F(x), the AdaGrad
algorithm needs to be discretized. The Algorithm flowchart is shown in Figure 1.

Figure 1. Flowchart of AdaGrad.
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Given xk as an initial value and then enters the loop. When the gradient value gk is
close to zero (this paper selects 10e-8 as the critical value). The function jumps out of the
loop and the output is xk. In this paper, xk =

[
εx εy εz ∇x ∇y ∇z

]T , where Qk
is the process Noise Covariance Matrix. F(xk) is the KF-based numerical function, it is the
function which consists of two database and multiple iterations of one KF, we will derive it
in the next subsection.

The psudocode is listed in the Algorithm 1 and is shown as follows:

Algorithm 1: AdaGrad algorithm.
Input: The state vector before AdaGrad algorithm.
Output: The estimated state vector. Initialization:
1: x0 = [ εx εy εz ∇x ∇y ∇z ]T , k = 0, G0 = 0, gk = 0
2: repeat:
Calculate gk:
3:
√

Gk + εη−1[F
(

xk +
η√

Gk+ε

)
− F(xk)]

Update Gk:
4: Gk = Gk−1 + gk
Update xk
5: xk = xk−1 −

η√
Gk+ε

gk

6: until gk < 1e− 8

3.4. KF-Based AdaGrad Calibration Algorithm

AdaGrad is a good method to obtain the minimum value of a function. Setting the
IMU biases accurately could improve the accuracy of SINS. In order to obtain the optimal
solution of IMU biases, we derives a numerical data function F(xk). As F(xk) reaches its
minimum value, the IMU reaches its biases optimal solution.

In practical utilization, the effective compensation method of IMU biases is conducted
as the following steps:

1. SINS (contains IMU and navigation micro-computer) stiffly fixed on a static platform,
power up and start navigation.

2. Since the real velocity is 0 under the static platform condition, the pure inertial
navigation output velocity is the velocity error. According to the principle of inertial
navigation, the velocity error curve will show the form of Schuler oscillation.

3. In the oscillation process of the velocity error curve, the velocity error and positioning
error shows the effect of calibration.

As is shown in Algorithm 1, the estimation of xk can be written as:

xk = xk−1 −
η√

Gk + ε
gk

In summary, if the minimum RMSE of the position error can be obtained, and then the
bias compensation effect reaches its optimal. Utilizing a two-position calibration algorithm,
IMU biases can be obtained when the process noise matrix is determined. We have derived
the KF-based AdaGrad numerical function F(xk) and show the diagram of the numerical
function in Figure 2. The pseudocode of the KF-based numerical function is listed in
Algorithm 2 and is shown as follows.

As is shown in Figure 2, the entire KF-based numerical function F(xk) can be divided
into two major processes: (1) two-position calibration process and (2) SINS navigation
process. A detailed explanation of these two processes is as follows:

1. A two-position calibration process: based on the calibration database (contains n1 sets
of data), ωb

ib(m)
and f b

ib(m) can be used for SINS algorithm. According to the theory
of Section 3, set IMU biases and using KF to estimate attitude, velocity and position.
During every iteration, intermediate variables εk(m) and ∇k(m) are used as feedback
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to correct the data retrieved from the database (calibration database) during the next
round of iterations. When m = n1, the data in the database (calibration database) has
been calculated. Then this part can obtain outputs εk and ∇k.

2. SINS navigation process: based on the SINS static data base (contains n2 sets of data),
ωb

ib(j) and f b
ib(j) can be used for SINS algorithm. Utilizing Equation (17) to calculate

the square of position error:

RMSEk =
√

δPosk(n2)/n2 (17)

When j = n2, the process of inertial navigation comes to an end.

After the above process, the numerical function output RMSEk can be obtained
by the input xk . Correspondingly we have derived the KF-based numerical func-
tion F(x). Bring F(x) into the algorithm flow chart shown in Figure 1. Let xk =[

εx εy εz ∇x ∇y ∇z
]T , where xk is the IMU biases vector value. F(xk). Af-

terwards, the minimum RMSEk can be obtained by the AdaGrad algorithm, and the
xk is the optimal value.

Algorithm 2: KF-based numerical function.

Input: state vector xk = [ εx εy εz ∇x ∇y ∇z ]T

Output: position root mean square error RMSEk
1. loop 1 (Two position calibration process):
SINS algorithm:
2. Cn

bk = Cn
bk−1(I + Tsωb

nb×)
3. an

k,k−1 = Cn
bk−1 f b

s f k − (2ωn
iek−1 + ωn

enk−1)× vn
k−1 + gn

4. vn
k = vn

k + Tsan
k,k−1

5. Zk = vn
k − 0

Kalman filtering:
6. X̂k/k−1 = Φk/k−1X̂k−1
7. Pk/k−1 = Φk/k−1Pk−1ΦT

k/k−1 + Γk−1Qk−1ΓT
k−1

8. Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk)
−1

9. Pk = (I − Kk Hk)Pk/k−1
10. until calibration data base is used up.
return xk end loop 1
11. input xk into loop 2.
12. loop 2 (SINS navigation process):
SINS navigation process:
13. Cn

bk = Cn
bk−1(I + Tsωb

nb×)
14. an

k,k−1 = Cn
bk−1 f b

s f k − (2ωn
iek−1 + ωn

enk−1)× vn
k−1 + gn

15. vn
k = vn

k + Tsan
k,k−1

16. Lk = Lk−1 +
Ts ṽn

Nk−1
RM+hk−1

λk = λk−1 +
Ts ṽn

Ek−1secLk−1
RN+hk−1

hk = hk−1 + Tsṽn
Uk−1

17. calculate δposk
18. until SINS static data base is used up
return RMSEk
end loop 2
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Figure 2. KF-based numerical function diagram.

4. Analysis of Experimental Tests

For the purpose of verifying the feasibility and evaluating the calibration accuracy
of the KF-based AdaGrad algorithm. Both turntable rotation tests and field tests are
performed with the KF-based AdaGrad algorithm. The rotation tests were carried out on
the three-axis turntable. The sampling rate of the SINS is 4000 Hz, and the ring laser gyros
are with an accuracy of 0.01◦/h (1σ) and accelerometers are with 50 g (1σ).

The gyro signal (lasting 8 h) analysis utilizing Allan variance is shown in Figure 3.

Figure 3. Gyroscope signal analysis.

As is shown in Figure 3, the three elements of Allan variance are quantization noise,
angle random walk and bias instability. While KF is based on the hypothesis of GWN,
the gyros we use usually have irregular noise.

For the purpose of analyzing the influence of the IMU biases on navigation errors.
We list two tables to represent the error propagation including long-term navigation and
short-term navigation. The long-term navigation error propagation is shown in Table 1 and
the short-term navigation error is shown in Table 2.
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Table 1. Long-term navigation error propagation.

- ∇E ∇N εE εN εU

δL ∇E
g css f

∇N
g (1− csc f ) −εE(

se
ωie
− ssc f

ωs
) −εN [

sL
ωie

(1− ce)−
sss f
ωs

] εU
ωie

cL(1− ce)

δλ ∇E
g eL(1− csc f ) −∇N

g eLcss f −εEeL[
sL
ωie

(1− ce)−
sss f
ωs

] εN(cLt + sLtL
ωie

se − eL
ωs

ssc f ) εUsL(t− 1
ωie

se)

Table 2. Short-term navigation error propagation.

- ∇E ∇N εE εN εU

δL 0 ∇N
t2

2R −εE
gt3

6R 0 0

δλ ∇E
t2

2RcL
0 0 εN

gt3

6RcL
0

As are shown in Tables 1 and 2, the IMU biases would cause navigation error both in
long-term navigation and short-term navigation. In order to verify the calibration effect,
we need to carry out long-term navigation and short-term navigation experiments.

Through the comparison between Tables 1 and 2. We can find out that in the short-
term navigation, the gyro bias of the upward gyro does not affect the navigation accuracy
in static condition. The position error of the long-term navigation process is affected by
many error sources. Therefore, it is difficult to decompose the influence of IMU errors
using conventional decoupling method .

Three car-mounted field tests were carried out in Xi’an, Shaanxi province and Chongqing
to verify the effectiveness of the calibration methods. The car-mounted field tests in Xi’an
are short-term experiments and the test in Chongqing is a long-term experiment. We
utilized a DPGS with an accuracy of 3 cm as the reference position information. Compared
with line search and two-position methods, the experimental results can prove the feasibility
of the calibration method [32–35].

4.1. Static Tests

According to Section 3, this paper introduces two improved methods for gradient
descent algorithm. In order to obtain the minimum value of the KF-based numerical
function F(xk) in a stable way, an algorithm performance analysis among these algorithms
is needed.

In this subsection, static tests were utilized to obtain F(xk). As is shown in Figure 4,
SINS is stiffly fixed on a three-axis turntable. After confirming the fixation, calibration is
started. The recorded data were saved as a calibration database and SINS static database.
The flowchart of AdaGrad and the diagram of KF-based numerical function are also
displayed in this paper. Static tests and calibration processes were carried out in a three-
axis turntable.

The raw data including three gyros and three accelerometers from the experiment was
collected by data collection computer. The collected data was utilized as the calibration
database. Afterward, the static tests were carried out for 1 h, the IMU raw data was
collected as SINS static database to build the numerical function F(xk). We utilized the
numerical function to compare line search and AdaGrad. Set xk equals zero vector as
the initial value and RMSEk as the function result. The number of iterations was set as
5000 because too many iterations are too much burden for a normal experiment computer.
Results are shown in Table 3.
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Figure 4. Calibration facilities.

Table 3. Position RMSE results.

Iterations Gradient Descent Line Search AdaGrad

0 214.2765 m 214.2765 m 214.2765 m
10 150.2434 m 145.7865 m 134.9809 m

100 135.7649 m 108.9873 m 90.091 m
200 133.2765 m 87.9087 m 78.9007 m
1000 132.2653 m 76.9876 m 22.1107 m
2000 132.2653 m 72.8974 m 22.1098 m
5000 132.2652 m 70.7477 m 22.1097 m

The IMU biases estimation curves utilizing AdaGrad are shown in Figures 5 and 6.

Figure 5. Gyro bias estimation.
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Figure 6. Accelerometer bias estimation.

The self-rotation angular rate we set in the static test is 20 ◦/s. In Figure 5, we can
see the gyro biases converge slowly. Gyro biases converge after about 4000 iterations. In
contrast, the accelerometer biases converge very fast after about 1000 iterations which are
shown in Figure 6.

The static test (lasts 1 h) experimental results are shown in Figures 7–10.

Figure 7. East velocity error.

Figure 8. North velocity error.
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Figure 9. East position error.

Figure 10. North position error.

We do not compare with the gradient descent method because in Table 3, the gradient
descent method clearly entered into a locally optimal solution. Experimental results show
that the convergence speed of line search is slower than AdaGrad. Due to the limit of
iterations, the accuracy of the line search is lower than the AdaGrad method. The velocity
and position errors show that the two-position calibration method is more accurate than
the line search. AdaGrad has faster convergence rate and higher accuracy in static tests.
In order to fully verify the calibration results in dynamic environment, 8 h static tests were
carried out. The experimental results were shown in Figures 11–14.

Figure 11. East velocity error.
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Figure 12. North velocity error.

Figure 13. East position error.

Figure 14. North position error.

The velocity and position errors show that KF-based AdaGrad calibration method is
more accurate than the line search and the two-position calibration method. The 8 h test
shows the peak value of each north and east position errors. AdaGrad has higher accuracy
in static test.

4.2. Field Tests

The static test only considers the angular motion. In order to fully verify the proposed
method in this paper, we need to consider the case with linear motion. The field tests
were conducted in this subsection. As is shown in Figure 15, the SINS and the DGPS are
equipped on the experimental car. The scale factors and installation angles were accurately
calibrated before the field tests were carried out.
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Figure 15. Experimental car and equipment.

Three field tests were carried out and the corresponding trajectories are shown in
Figure 16. Table 4 shows the field test arrangements. During the maneuvering process of
the vehicle, we utilize the SINS/GPS integrated algorithm to provide precise velocity and
position information as the velocity and position reference. In order to compare the two-
position algorithm, line search and AdaGrad, we utilize the same trajectories to compare
the three algorithms.

Figure 16. Field test trajectories.

Table 4. The arrangements of the field tests.

Field Test Number Static Stage Time Maneuvering Stage Time Total Distance Maximum Speed

Trajectory 1 300 s 651 s 3560.52 m 14.72 m/s
Trajectory 2 300 s 768 s 5870.08 m 16.65 m/s
Trajectory 3 900 s 8 h 267.98 km 30.65 m/s

Field test 1 is a straight-line road test and field test 2 contained several turns and
one sharp turn. The test vehicle had no obstruction on the test roads thus the GPS signal
is consistent and effective thus the SINS/DGPS integrated algorithm can provide stable
position information and velocity information.

The results of field test 1 are shown in Figures 17–20.
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Figure 17. East velocity error in test 1.

Figure 18. North velocity error in test 1.

Figure 19. East position error in test 1.

Figure 20. North position error in test 1.
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We list the RMS and peak value of velocity and position error of test 1 in Tables 5 and 6.

Table 5. RMS of velocity and position errors.

- Line Search Two-Position KF-Based AdaGrad

δvE 0.005982 m/s 0.002265 m/s 0.001276 m/s
δvN 0.01055 m/s 0.008769 m/s 0.005989 m/s
δpE 26.6124 m 11.4123 m 5.1241 m
δpN 32.9655 m 27.5421 m 21.4231 m

Table 6. Maximum errors of velocity and position.

- Line Search Two-Position KF-Based AdaGrad

δvE −0.0389 m/s −0.0178 m/s 0.0132 m/s
δvN −0.0613 m/s −0.0489 m/s −0.0311 m/s
δpE −71.6436 m −31.2141 m 8.7231 m
δpN −108.0921 m −81.9215 m −58.9249 m

In field test 1, Figures 17 and 18 shows that the east and north velocity errors of which
the utilized KF-based AdaGrad are the smallest among the three methods. The two-position
method is more accurate than the line search method. The position error is similar to the
velocity error. Figures 19 and 20 show that the east and north position error which utilized
the two-position method smaller than the error of which utilized line search. The method
utilized KF-based AdaGrad has the smallest position error.

The results of field test 2 are shown in Figures 21–24.

Figure 21. East velocity error in test 2.

Figure 22. North velocity error in test 2.
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Figure 23. East position error in test 2.

Figure 24. North position error in test 2.

In field test 2, Figures 21 and 22 show that the east and north velocity error utilizing KF-
based AdaGrad is the smallest among the three methods. The line search method is more
accurate than the two-position method. The position errors are shown in Figures 23 and 24,
the east and north position error which utilized KF-based AdaGrad are obviously smaller
than the other two methods. The position error of which utilized line search is smaller than
the error of which utilized two-position method. The results of RMS and maximum values
of velocity and position error are shown in Tables 7 and 8.

Table 7. RMS of velocity and position errors.

- Line Search Two-Position KF-Based AdaGrad

δvE 0.03982 m/s 0.04123 m/s 0.01076 m/s
δvN 0.01255 m/s 0.01476 m/s 0.010989 m/s
δpE 35.2412 m 38.5124 m 11.5613 m
δpN 16.6278 m 21.0138 m 13.4163 m

Table 8. Maximum errors of velocity and position.

- Line Search Two-Position KF-Based AdaGrad

δvE −0.0613 m/s −0.0809 m/s 0.0169 m/s
δvN −0.0378 m/s −0.0276 m/s 0.0165 m/s
δpE −127.2532 m −97.5235 m 23.9873 m
δpN −33.8349 m −53.6821 m 31.3452 m

For the purpose of fully verifying the effectiveness of the KF-based AdaGrad cali-
bration method in the long-term navigation process, an 8 h field test was carried out in
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Chongqing to excite all three parts with different periods and amplitude. Due to the unsta-
ble GPS signal in field test 3, we only compare position errors because of the low accuracy
of GPS velocity. The 8 h position error curve can fully verify the estimated accuracy of
IMU biases.

The results of field test 3 are shown in Figures 25 and 26.

Figure 25. East position error in test 3.

Figure 26. North position error in test 3.

In field test 3, the east and north position errors that utilized KF-based AdaGrad are
smaller than the other two methods. Under long maneuvering condition, the line search
and two-position calibration method have similar estimation accuracy.

The peak value of Figures 25 and 26 is easy to figure out, we need to analyze the RMS
of the position error. Table 9 shows the RMS of position errors in field test 3.

Table 9. RMS of position errors.

- Line Search Two-Position KF-Based AdaGrad

δpE 1789.5758 m 1745.7639 m 1714.8437 m
δpN 987.0832 m 956.8051 m 914.5033 m

The results differences between field test 1 and field test 2 are the line search and
two-position method because test 2 is more dynamic than test 1. Navigation errors due to
IMU biases can be excited out more easily so the convergence rate of line search is faster
in test 2. The AdaGrad has the highest accuracy among the three methods. In conclusion,
under the severe maneuvering condition line search has higher accuracy than two-position
method while under low maneuvering conditions the traditional method two-position is
more accurate than line search. Both static tests and car-mounted tests show the proposed
method can achieve a more accurate estimated velocity and position than the other two
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methods, which denotes that the KF-based AdaGrad can estimate the IMU biases more
accurately. The convergence rate and accuracy of line search are greatly affected by the
external dynamic condition. Thus, the line search is not fittable in IMU biases calibration.

5. Conclusions

The characteristics of IMU are usually difficult to determine. The IMU biases severely
affecting navigation accuracy. In order to solve this problem, in this paper, we propose a KF-
based AdaGrad calibration algorithm. We derive a KF-based AdaGrad numerical function
and utilized AdaGrad method to solve the problem of setting step size. The recorded
data were saved as the calibration database and the SINS static database. The flowchart of
AdaGrad and the diagram of KF-based numerical function are also displayed in this paper.
Static tests and calibration process were carried out in a three-axis turntable and three field
tests were carried out in Xi’an. Experimental results show that the proposed calibration
method can effectively improve the accuracy of estimation of IMU biases in both static and
dynamic conditions.
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