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Abstract
Methodological research rarely generates a broad interest, yet our work on the validity of clus-

ter inference methods for functional magnetic resonance imaging (fMRI) created intense discus-

sion on both the minutia of our approach and its implications for the discipline. In the present

work, we take on various critiques of our work and further explore the limitations of our original

work. We address issues about the particular event-related designs we used, considering multi-

ple event types and randomization of events between subjects. We consider the lack of validity

found with one-sample permutation (sign flipping) tests, investigating a number of approaches

to improve the false positive control of this widely used procedure. We found that the combina-

tion of a two-sided test and cleaning the data using ICA FIX resulted in nominal false positive

rates for all data sets, meaning that data cleaning is not only important for resting state fMRI,

but also for task fMRI. Finally, we discuss the implications of our work on the fMRI literature as

a whole, estimating that at least 10% of the fMRI studies have used the most problematic

cluster inference method (p = .01 cluster defining threshold), and how individual studies can be

interpreted in light of our findings. These additional results underscore our original conclusions,

on the importance of data sharing and thorough evaluation of statistical methods on realistic

null data.
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1 | INTRODUCTION

In our previous work (Eklund, Nichols, & Knutsson, 2016a), we used

freely available resting state functional magnetic resonance imaging

(fMRI) data to evaluate the validity of standard fMRI inference

methods. Group analyses involving only healthy controls were used to

empirically estimate the degree of false positives, after correcting for

multiple comparisons, based on the idea that a two-sample t test using

only healthy controls should lead to nominal false positive rates

(e.g., 5%). By considering resting state fMRI as null task fMRI data,

the same approach was used to evaluate the statistical methods for

one-sample t tests. Briefly, we found that parametric statistical

methods (e.g., Gaussian random field theory [GRFT]) perform well for

voxel inference, where each voxel is separately tested for significance,

but the combination of voxel inference and familywise error (FWE)

correction is seldom used due to its low statistical power. For this rea-

son, the false discovery rate is in neuroimaging (Genovese, Lazar, &

Nichols, 2002) often used to increase statistical power. For cluster

inference, where groups of voxels are tested together by looking at

the size of each cluster, we found that parametric methods perform

well for a high cluster defining threshold (CDT; p = .001) but result in

inflated false positive rates for low CDTs (e.g., p = .01). GRFT is for
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cluster inference based on two additional assumptions, compared to

GRFT for voxel inference, and we found that these assumptions are

violated in the analyzed data. First, the spatial autocorrelation

function (SACF) is assumed to be Gaussian, but real fMRI data have a

SACF with a much longer tail. Second, the spatial smoothness is

assumed to be constant over the brain, which is not the case for fMRI

data. The nonparametric permutation test is not based on these

assumptions (Winkler, Ridgway, Webster, Smith, & Nichols, 2014)

and, therefore, produced nominal results for all two-sample t tests,

but in some cases failed to control FWE for one-sample t tests.

1.1 | Related work

Our article has generated intense discussions regarding cluster infer-

ence in fMRI (Cox, 2018; Cox, Chen, Glen, Reynolds, & Taylor, 2017a,

2017b; Eklund, Nichols, & Knutsson, 2017; Flandin & Friston, 2017;

Gopinath, Krishnamurthy, & Sathian, 2018; Kessler, Angstadt, &

Sripada, 2017), on the validity of using resting state fMRI data as null

data (Nichols, Eklund, & Knutsson, 2017; Slotnick, 2016, 2017), how

the spatial resolution can affect parametric cluster inference (Mueller,

Lepsien, Möller, & Lohmann, 2017), how to obtain residuals with a

Gaussian SACF (Gopinath, Krishnamurthy, Lacey, & Sathian, 2018),

how to model the long-tail SACF (Cox et al., 2017b), as well as how dif-

ferent MR sequences can change the SACF and thereby cluster infer-

ence (Wald & Polimeni, 2017). Furthermore, some of our results have

been reproduced and extended (Cox et al., 2017b; Flandin & Friston,

2017; Kessler et al., 2017; Mueller et al., 2017), using the same freely

available fMRI data (Biswal et al., 2010; Poldrack et al., 2013) and our

processing scripts available on github.1 Cluster-based methods have

now also been evaluated for surface-based group analyses of cortical

thickness, surface area, and volume (using FreeSurfer; Greve & Fischl,

2018), with a similar conclusion that the nonparametric permutation

test showed good control of the FWE for all settings, while traditional

Monte Carlo methods fail to control FWE for some settings.

1.2 | Realistic first level designs

The event related paradigms (E1, E2) used in our study were criticized

by some for not being realistic designs, as only a single regressor was

used (Slotnick, 2016) and the rest between the events was too short.

The concern here is that this design may have a large transient at the

start (due to the delay of the hemodynamic response function) and then

only small variation (due to the short interstimulus interval), which may

be overly-sensitive to transients at the start of the acquisition

(Figure 1a, however, shows this is not really the case). Another criticism

was that exactly the same task was used for all subjects (Flandin & Fris-

ton, 2017), meaning that our “false positives” actually reflect consistent

pretend-stimulus-linked behavior over subjects. Yet another concern

was if the first few volumes (often called dummy scans) in each fMRI

data set were included in the analysis or not,2 which can affect the sta-

tistical analyses. This last point we can definitively address, as according

to a NITRC document,3 the first 5 time points of each time series were

discarded for all data included in the 1,000 functional connectomes

project release. In the Methods section we, therefore, describe new

analyses based on two new first level designs.

1.3 | Nonparametric inference

Nonparametric group inference is now available in the AFNI function

3dttest++ (Cox et al., 2017a, 2017b), meaning that the three most

common fMRI softwares now all support nonparametric group infer-

ence (SPM users can use the SnPM toolbox (http://warwick.ac.uk/

snpm), and FSL users can use the randomize function (Winkler et al.,

2014)). Permutation tests cannot only be applied to simple designs

such as one-sample and two-sample t tests, but to virtually any

regression model with independent errors (Winkler et al., 2014). To

increase statistical power, permutation tests enable more advanced

thresholding approaches (Smith & Nichols, 2009) as well as the use of

multivariate approaches with complicated null distributions (Friman,

Borga, Lundberg, & Knutsson, 2003; Stelzer, Chen, & Turner, 2013).

The nonparametric permutation test produced nominal results for

all two sample t tests, but not for the one sample t tests (Eklund et al.,

2016a), and the Oulu data were more problematic compared to

Beijing and Cambridge. As described in Section 2, we investigated

numerous ways to achieve nominal results, and finally concluded that

(physiological) artifacts are a problem for one-sample t tests, especially

for the Oulu data. This is a good example of the challenge of validating

statistical methods. One can argue that real fMRI data are essential

since they contain all types of noise (Birn, Diamond, Smith, &

Bandettini, 2006; Chang & Glover, 2009; Glover, Li, & Ress, 2000;

Greve, Brown, Mueller, Glover, & Liu, 2013; Lund, Madsen, Sidaros,

Luo, & Nichols, 2006) which are difficult to simulate. From this per-

spective, the Oulu data are helpful since they highlight the problem of

(physiological) noise. On the other hand, one can argue that a pure

fMRI simulation (Welvaert & Rosseel, 2014) is better, since the

researcher then can control all parameters of the data and indepen-

dently test different settings. From this perspective, the Oulu data

should be avoided, because the assumption of no consistent activa-

tion over subjects is violated by the (physiological) noise, however

data quality varies dramatically over sites and studies and we expect

there is plenty of data collected that has quality comparable to Oulu.

1.4 | Implications

The original publication (Eklund et al., 2016a) inadvertently implied

that a large, unspecified proportion of the fMRI literature was affected

by our findings, principally the severe inflation of false positive risk for

a CDT of p = .01; this was clarified in a subsequent correction

(Eklund, Nichols, & Knutsson, 2016b). In Section 4, we consider the

interpretation of our findings and their impact on the literature as a

whole. We estimate that at least 10% of 23,000 published fMRI

studies have used the problematic CDT p = .01.
1https://github.com/wanderine/ParametricMultisubjectfMRI
2http://www.ohbmbrainmappingblog.com/blog/keep-calm-and-scan-on, com-

ment by John Ashburner

3http://www.nitrc.org/docman/view.php/296/716/fcon_1000_

Preprocessing.pdf
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2 | METHODS

2.1 | New paradigms

To address the concerns regarding realistic first level designs, we have

made new analyses using two new event-related paradigms, called E3

and E4. For both E3 and E4, two pretended tasks are used instead of

a single task, and each first-level analysis tests for a difference in acti-

vation between the two tasks. Additionally, the rest between the

events is longer. For Beijing data, 13 events were used for each of the

two tasks. Each task is 3–7 s long, and the rest between each event is

11–13 s. For Cambridge data, 11 events of 3–6 s were used for each

task. For Oulu data, 13 events of 3–6 s were used for each task. See

Figure 1 for a comparison between E1, E2, E3, and E4. For E4, the

regressors are randomized over subjects, such that each subject has

the same number of events for each task, but the order and the timing

of the events is different for every subject. For E3, the same regres-

sors are used for all subjects.

First-level analyses as well as group level analyses were per-

formed as in the original study (Eklund et al., 2016a), using the same

data (Beijing, Cambridge, Oulu) from the 1,000 functional connec-

tomes project (Biswal et al., 2010). Analyses were performed with

SPM 8 (Ashburner, 2012), FSL 5.09 (Jenkinson, Beckmann, Behrens,

Woolrich, & Smith, 2012) and AFNI 16.3.14 (Cox, 1996). FWE rates

were estimated for different levels of smoothing (4–10 mm), one-

sample as well as two-sample t tests, and two CDTs (p = .01 and

p = .001). Group analyses using 3dMEMA in AFNI were not per-

formed, as the results for 3dttest++ and 3dMEMA were very similar in

the original study (Eklund et al., 2016a). Another difference is that

cluster thresholding for AFNI was performed using the new ACF

(autocorrelation function) option in 3dClustSim (Cox et al., 2017b),

which uses a long-tail spatial ACF instead of a Gaussian one. To be
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FIGURE 1 A comparison of the paradigms used in the original paper (a) E1, (b) E2), and the new paradigms used in this article (c) E3, (d) E4, for

the Beijing data sets (sampled with a TR of 2 s). A single task was used for both E1 and E2, while two pretended tasks where used for E3 and E4
(and all first-level analyses tested for a difference in activation between these two tasks). Paradigms E1, E2, and E3 are the same for all subjects,
while E4 is randomized over subjects. For all paradigms, the default hemodynamic response function in SPM 8 (double gamma) was used to
generate these plots
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able to compare the AFNI results for the new paradigms (E3, E4) and

the old paradigms (B1, B2, E1, E2), the group analyses for the old para-

digms were reevaluated using the ACF option (note, that this ACF

AFNI option still assumes a stationary spatial autocorrelation struc-

ture). Interested readers are referred to our github account for further

details.

2.2 | Using ICA-FIX for denoising

We investigated numerous ways to achieve nominal FWE rates for

the one-sample (sign flipping) permutation test;

1. Applying the Yeo and Johnson (2000) transform (signed Box-Cox)

to reduce skew (as the sign flipping test is based on an assumption

of symmetric errors)

2. Using robust regression (in every permutation) to suppress the

influence of outliers (Mumford, 2017; Wager, Keller, Lacey, &

Jonides, 2005; Woolrich, 2008)

3. Using two-sided tests instead of one-sided

4. Increasing the number of head motion regressors from 6 to 24

5. Using bootstrap instead of sign flipping, and

6. Including the global mean as a covariate in each first-level analysis

(Murphy, Birn, Handwerker, Jones, & Bandettini, 2009; Murphy &

Fox, 2017; which is normally not done for task fMRI).

While some of these approaches resulted in nominal FWE rates

for a subset of the parameter combinations, no approach worked well

for all settings and data sets. In our original study, we only used one-

sided tests, but this is based on an implicit assumption that a random

regressor is equally likely to be positively or negatively correlated with

resting state fMRI data. Additionally, most fMRI studies that use a

one-sample t test take advantage of a one-sided test to increase sta-

tistical power (Chen et al., 2018).

To understand the spatial distribution of clusters, we created

images of prevalence of false positive clusters, computed by summing

the binary maps of FWE-significant clusters over the random analyses.

In our original study, we found a rather structured spatial distribution

for the two-sample t test (supplementary fig. 18 in Eklund

et al. (2016a)), with large clusters more prevalent in the posterior cin-

gulate. We have now created the same sort of maps for one-sample

t tests, with a small modification: to increase the number of clusters

observed, we created clusters at a CDT of p = .01 for both increases

and decreases on a given statistic map. As discussed in Section 3,

there appears to be physiological artifacts which ideally would be

remediated by respiration or cardiac time series modeling (Birn et al.,

2006; Bollmann, Puckett, Cunnington, & Barth, 2018; Chang & Glover,

2009; Glover et al., 2000; Lund et al., 2006), but unfortunately the

1,000 functional connectomes data sets (Biswal et al., 2010) do not

have these physiological recordings.
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FIGURE 2 Results for one sample t-test and cluster-wise inference

using a CDT of p = .001, showing estimated FWE rates for 4–10 mm
of smoothing and six different activity paradigms (old paradigms B1,
B2, E1, E2, and new paradigms E3, E4), for SPM, FSL, AFNI, and a
permutation test. These results are for a group size of 40. Each
statistic map was first thresholded using a CDT of p = .001,
uncorrected for multiple comparisons, and the surviving clusters were
then compared to a FWE-corrected cluster extent threshold,
pFWE = .05. The estimated FWE rates are simply the number of
analyses with any significant group activations divided by the number
of analyses (1,000). (a) Results for Beijing data (b) results for
Cambridge data (c) results for Oulu data
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To suppress the influence of artifacts, we therefore instead

applied ICA FIX (version 1.065) in FSL (Griffanti et al., 2014, 2017;

Salimi-Khorshidi et al., 2014) to all 499 subjects, to remove ICA com-

ponents that correspond to noise or artifacts. We applied 4 mm of

spatial smoothing for MELODIC (Beckmann & Smith, 2004), and used

the classifier weights for standard fMRI data available in ICA FIX

(trained for 5 mm smoothing). To use ICA FIX for 8 or 10 mm of

smoothing would require retraining the classifier. The cleanup was

performed using the aggressive (full variance) option instead of the

default less-aggressive option, and motion confounds were also

included in the cleanup. To study the effect of retraining the ICA FIX

classifier specifically for each data set (Beijing, Cambridge, Oulu),

instead of using the pretrained weights available in ICA FIX, we manu-

ally labeled the ICA components of 10 subjects for each data set (giv-

ing a total of 350–450 ICA components per data set). Indeed, a large

portion of the ICA components are artifacts that are similar across

subjects. Interested readers are referred to the github account for ICA

FIX processing scripts and the retrained classifier weights for Beijing,

Cambridge, and Oulu.

First-level analyses for B1, B2, E1, E2, E3, and E4 were performed

using FSL for all 499 subjects after ICA FIX, with motion correction

and smoothing turned off. Group level analyses were finally per-

formed using the nonparametric one-sample t-test available in BROC-

COLI (Eklund, Dufort, Villani, & LaConte, 2014).

3 | RESULTS

3.1 | New paradigms

Figures 2 and 3 show estimated FWE rates for the two new para-

digms (E3, E4), for 40 subjects in each group analysis and a CDT of

p = .001. Figures A11 and A12 show the FWE rates for a CDT of

p = .01. The four old paradigms (B1, B2, E1, E2) are included as well

for the sake of comparison. In brief, the new paradigm with two pre-

tend tasks (E3) does not lead to lower FWE rates, compared to the old

paradigms. Likewise, randomizing task events over subjects (E4) has if

anything worse FWE rates compared to not randomizing the task over

subjects. As noted in our original paper, the very low FWE of FSL's

FLAME1 is anticipated behavior when there is zero random effects

variance. When fitting anything other than a one-sample group model

this conservativeness may not hold; in particular, we previously

reported on two-sample null analyses on task data, where each sam-

ple has non-zero but equal effects, and found that FLAME1’s FWE

was equivalent to that of FSL OLS (Eklund et al., 2016a)

By looking at Figure 2, it is possible to compare the parametric

methods (who are simultaneously affected by non-Gaussian SACF,
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FIGURE 3 Results for two sample t test and cluster-wise inference

using a CDT of p = .001, showing estimated FWE rates for 4–10 mm
of smoothing and six different activity paradigms (old paradigms B1,
B2, E1, E2, and new paradigms E3, E4), for SPM, FSL, AFNI, and a
permutation test. These results are for a group size of 20, giving a
total of 40 subjects. Each statistic map was first thresholded using a
CDT of p = .001, uncorrected for multiple comparisons, and the
surviving clusters were then compared to a FWE-corrected cluster
extent threshold, pFWE = .05. The estimated FWE rates are simply the
number of analyses with any significant group activations divided by
the number of analyses (1,000). (a) Results for Beijing data (b) results
for Cambridge data (c) results for Oulu data
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nonstationary smoothness and physiological noise) and the nonpara-

metric permutation test (only affected by physiological noise, as no

assumptions are made regarding the SACF and stationary smooth-

ness). For the Beijing data, the permutation test performs rather well,

while all parametric approaches struggle despite a strict CDT. It is also

clear that the Oulu data is more problematic compared to Beijing and

Cambridge.

3.2 | ICA denoising

Figure 4 shows FWE rates for the nonparametric one-sample t test,

for no ICA FIX, pretrained ICA FIX and retrained ICA FIX, for one-

sided as well as two-sided tests. For the Beijing data, the FWE rates

are almost within the 95% confidence interval even without ICA FIX,

and come even closer to the expected 5% after ICA FIX. For the Cam-

bridge data, it is necessary to combine ICA FIX with a two-sided test

to achieve nominal results (only using a two-sided test is not suffi-

cient). For the Oulu data, neither ICA FIX in isolation nor in combina-

tion with two-sided inference was sufficient to bring false positives to

a nominal rate. However, retraining the ICA FIX classifier specifically

for the Oulu data set finally resulted in nominal false positive rates.

To test if using ICA FIX also results in nominal FWE rates for FSL

OLS, we performed group analyses for no ICA FIX, pretrained ICA FIX

and retrained ICA FIX, for one-sided as well as two-sided tests, see

Figure 5. As ICA FIX cleaning and all first-level analyses were per-

formed using FSL, we only performed the group analyses using FSL.

Clearly, using ICA FIX does not lead to nominal FWE rates for FSL

OLS, and using a two-sided test leads to even higher FWE rates com-

pared to a one-sided test. A possible explanation is that (two) para-

metric tests for p = .025 are even more inflated compared to

parametric tests for p = .05. To test this hypothesis, we performed

18,000 one-sided one-sample group analyses (three data sets and six

activity paradigms, 1,000 analyses each, for first-level analyses with

no ICA FIX, CDT p = .001) with FWE significance thresholds of 2.5%

and 1%. False positives at FWE 2.5% and 1% should occur 1/2 = 0.5

and 1/5 = 0.2 times as often with FWE 5% results. We found nominal

FWE 2.5% false positives occurred at a rate 0.879× the 5% FWE

results, and nominal FWE 1% false positives occurred at a rate 0.694×

the 5% FWE results. That is, the relative inflation of false positives for

parametric methods is much higher for more stringent significance

thresholds. For permutation, inaccuracies arise due to a disparity

between the upper tail of the sign flipping null and the actual null's

upper tail. For the absolute value statistic used for two-sided tests,

the upper tail is essentially an average of f(x) and f(−x) for x > 0 and is

less sensitive to violations of symmetry assumption.
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FIGURE 4 Results for nonparametric (sign flipping) one-sample

t tests for cluster-wise inference using a CDT of p = .001, for no ICA
FIX, pretrained ICA FIX and retrained ICA FIX. (a) Results for Beijing
data (b) results for Cambridge data (c) results for Oulu data. Results
are only shown for 4 mm smoothing, as other smoothing levels would
require retraining the ICA FIX classifier. For both Beijing and
Cambridge, the pretrained classifier weights for ICA FIX are sufficient
to achieve nominal false positive rates, while it is necessary to retrain
the ICA FIX classifier specifically for the Oulu data (a possible
explanation is that the Oulu data have a spatial resolution of 4 x 4 x
4.4 mm3, while ICA FIX for standard fMRI data is pretrained on data
with a spatial resolution of 3.5 x 3.5 x 3.5 mm3)
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Figures 6–8 show cluster prevalence maps for group analyses

without first running ICA FIX, with pretrained ICA FIX and with

retrained ICA FIX, for first level designs E2 and E4. Using ICA FIX

leads to false cluster maps that are more uniform across the brain,

with fewer false clusters in white matter, and using ICA FIX made the

biggest difference for the Oulu data. While Beijing and Cambridge

sites have a concentration of clusters in posterior cingulate, frontal,

and parietal areas, Oulu has more clusters and a more diffuse pattern.

Further inspection of these maps suggested a venous artifact, and

running a PCA on the Oulu activity maps for design E2 finds substan-

tial variation in the sagittal sinus picked up by the task regressor (see

Figure 9). The posterior part of the artifact is suppressed by the pre-

trained ICA FIX classifier, and the retrained ICA FIX classifier is even

better at suppressing the artifact. Also see Figure 10 for activation

maps from five Oulu subjects, analyzed with design E4. In several

cases, significant activity differences between two random task

regressors are detected close to the superior sagittal sinus, indicating

a vein artifact.

4 | DISCUSSION

We have presented results that support our original findings of

inflated false positives with parametric cluster size inference. Specifi-

cally, new random null group task fMRI analyses, based on first level

models with two fix regressors and models with two intersubject-

randomized regressors, produced essentially the same results as the

previous first level designs we considered. This argues against the

charge that idiosyncratic attributes of our first level designs gave rise

to our observed inflated false positives rates for cluster inference.

Instead, we maintain that the best explanations for this behavior are

the long-tail spatial autocorrelation data (also present in MR phantom

data (Kriegeskorte, Bodurka, & Bandettini, 2008)) and spatially-varying

smoothness. Recently, Greve and Fischl (2018) showed that group

analyses of cortical thickness, surface area, and volume (using only the

structural MRI data in the fcon1000 data set (Biswal et al., 2010)) also

lead to inflated false positive rates in some cases, indicating that these

issues affect structural analyses on the cortical surface as well, and

thus is not specific to fMRI paradigms.

It should be noted that AFNI provides another function for cluster

thresholding, ETAC (equitable thresholding and clustering; Cox, 2018),

which performs better than the long-tail ACF function (Cox et al.,

2017b) used here, but ETAC was not available when we started the

new group analyses. AFNI also provides nonparametric group infer-

ence in the 3dttest++ function.
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FIGURE 5 Results for FSL OLS one-sample t tests for cluster-wise

inference using a CDT of p = .001, for no ICA FIX, pretrained ICA FIX
and retrained ICA FIX. (a) Results for Beijing data (b) results for
Cambridge data (c) results for Oulu data. Results are only shown for
4 mm smoothing, as other smoothing levels would require retraining
the ICA FIX classifier. The two-sided tests show a higher degree of
false positives compared to the one-sided tests. This is explained by
the fact that a two-sided test involves two tests at p = .025,
instead of one test at p = .05, and parametric methods are relatively
more inflated at more stringent significance thresholds (as the
statistical assumptions are more critical for the tail of the null
distribution)
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4.1 | Influence of artifacts on one-sample t tests

Another objective of this work was to understand and remediate the

less-than-perfect false positive rate control for one-sample permuta-

tion tests. We tried various alternative modeling strategies, including

data transformations and robust regression, but none yielded consis-

tent control of FWE. It appears that (physiological) artifacts are a

major problem for the Oulu data, although the MRIQC tool (Esteban

et al., 2017; Gorgolewski et al., 2017) did not reveal any major quality

differences between Beijing, Cambridge, and Oulu. The contribution

of physiological noise in fMRI depends on the spatial resolution (see

e.g., Bodurka, Ye, Petridou, Murphy, & Bandettini, 2007); larger voxels

lead to a lower temporal signal to noise ratio. The Oulu data have a
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FIGURE 6 The maps show voxel-wise incidence of false clusters for the Beijing data, for two of the six different first level designs (a,b) no ICA

FIX (c,d) ICA FIX pretrained (e,f ) ICA FIX retrained for Beijing. Left: results for design E2, right: results for design E4. Image intensity is the
number of times, out of 10,000 random analyses, a significant cluster occurred at a given voxel (CDT p = .01) for FSL OLS. Each analysis is a one-
sample t test using 20 subjects. The maps represent axial slice 50 (MNI z coordinate = 26) for the MNI152 2 mm brain template used in FSL
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spatial resolution of 4 x 4 x 4.4 mm3, compared to 3.13 x 3.13 x

3.6 mm3 for Beijing and 3 x 3 x 3 mm3 for Cambridge. Oulu voxels are

thereby two times larger compared to Beijing voxels, and 2.6 times

larger compared to Cambridge voxels, and this will make the Oulu

data more prone to physiological noise. As mentioned in Section 1,

one can argue that a pure simulation (Welvaert & Rosseel, 2014)

would avoid the problem of physiological noise, or that the Oulu data

should be set aside, but we here opted to show results after denoising

with ICA FIX, as many fMRI data sets have been collected without

recordings of breathing and pulse.
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FIGURE 7 The maps show voxel-wise incidence of false clusters for the Cambridge data, for two of the six different first level designs (a,b) no

ICA FIX (c,d) ICA FIX pretrained (e,f ) ICA FIX retrained for Cambridge. Left: results for design E2, right: results for design E4. Image intensity is
the number of times, out of 10,000 random analyses, a significant cluster occurred at a given voxel (CDT p = .01) for FSL OLS. Each analysis is a
one-sample t test using 20 subjects. The maps represent axial slice 50 (MNI z coordinate = 26) for the MNI152 2 mm brain template used in FSL
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Some of our random regressors are strongly correlated with the

fMRI data in specific brain regions (especially the superior sagittal

sinus, the transverse sinus, and the sigmoid sinus), which lead to

inflated false positive rates. Other artifacts, such as CSF artifacts and

susceptibility weighted artifacts, are also present in the data

(compared to examples given by Griffanti et al., 2017). For a two-

sample t test, artifacts in the same spatial location for all subjects can-

cel out, as one tests for a difference between two groups, but this is

not the case for a one-sample t test. Combining ICA FIX with a two-

sided test led to nominal FWE rates for Beijing and Cambridge, but
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FIGURE 8 The maps show voxel-wise incidence of false clusters for the Oulu data, for two of the six different first level designs (a,b) no ICA FIX

(c,d) ICA FIX pretrained (e,f ) ICA FIX retrained for Oulu. Left: results for design E2, right: results for design E4. Image intensity is the number of
times, out of 10,000 random analyses, a significant cluster occurred at a given voxel (CDT p = .01) for FSL OLS. Each analysis is a one-sample
t test using 20 subjects. The retrained ICA FIX classifier is clearly better at suppressing artifacts compared to the pretrained classifier, especially
for design E4. The maps represent axial slice 50 (MNI z coordinate = 26) for the MNI152 2 mm brain template used in FSL
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not for Oulu. As can be seen in Figures 6–8, using ICA FIX clearly

leads to false cluster maps which are more uniform across the brain,

with a lower number of false clusters in white matter. Retraining the

ICA FIX classifier finally lead to nominal results for the Oulu data. A

possible explanation is that the pretrained classifier for standard fMRI

data in ICA FIX is trained on fMRI data with a spatial resolution of 3.5

x 3.5 x 3.5 mm3 (i.e., 1.6 times smaller voxels than Oulu). Figure 8

shows that the retrained classifier leads to more uniform false cluster

maps, compared to the pretrained classifier, for design E4 for Oulu. As

can be seen in Figure 9, the retrained classifier is better at suppressing

the artifact in the sagittal sinus, compared to the pretrained classifier.

We here trained the classifier for each data set (Beijing, Cambridge,

Oulu) using labeled ICA components from 10 subjects, as recom-

mended by the ICA FIX user guide, and labeling components from

more subjects can lead to even better results.

Using ICA FIX for resting state fMRI data is rather easy (but it cur-

rently requires a specific version of the R software), as pretrained

weights are available for different kinds of fMRI data. However, using

ICA FIX for task fMRI data will require more work, as it is necessary to

first manually classify ICA components (Griffanti et al., 2017) to

provide training data for the classifier (Salimi-Khorshidi et al., 2014).

An open database of manually classified fMRI ICA components, similar

to NeuroVault (Gorgolewski et al., 2015), could potentially be used for

fMRI researchers to automatically denoise their task fMRI data. A nat-

ural extension of MRIQC (Esteban et al., 2017; Gorgolewski et al.,

2017) would then be to also measure the presence of artifacts in each

fMRI data set, by doing ICA and then comparing each component to

the manually classified components in the open database. We also

recommend researchers to collect physiological data, such that signal

related to breathing and pulse can be modeled (Birn et al., 2006; Boll-

mann et al., 2018; Chang & Glover, 2009; Glover et al., 2000; Lund

et al., 2006). This is especially important for 7T fMRI data, for which

the physiological noise is often stronger compared to the thermal

noise (Hutton et al., 2011; Triantafyllou et al., 2005). Alternatives to

collecting physiological data, or using ICA FIX, include ICA AROMA

(Pruim et al., 2015), DPARSF (Yan & Zang, 2010), and FMRIPrep

(Esteban et al., 2018). DPARSF and FMRIPrep can automatically

generate nuisance regressors (e.g., from CSF and white matter) to be

included in the statistical analysis.

4.2 | Effect of multiband data on cluster inference

We note that multiband MR sequences (Moeller et al., 2010) are

becoming increasingly common to improve temporal and/or spatial res-

olution, for example as provided by the Human Connectome Project

(Essen et al., 2013) and the enhanced NKI-Rockland sample (Nooner

et al., 2012). Multiband data have a potentially complex spatial autocor-

relation (see, e.g, Risk, Kociuba, and Rowe (2018)), and an important

topic for future work is establishing how this impacts parametric cluster

inference. The nonparametric permutation test (Winkler et al., 2014)

does not make any assumption regarding the shape of the SACF, and is

therefore expected to perform well for any MR sequence.

4.3 | Interpretation of affected studies

In Appendix A, we provide a rough bibliographic analysis to provide

an estimate of how many articles used this particular CDT p = .01 set-

ting. For a review conducted in January 2018, we estimated that out

of 23,000 fMRI publications about 2,500, over 10%, of all studies

have used this most problematic setting with parametric inference.

While this calculation suggests how the literature as a whole can be

interpreted, a more practical question is how one individual affected

study can be interpreted. When examining a study that uses CDT

p = .01, or one that uses no correction at all, it is useful to consider

three possible states of nature:

State 1: Effect is truly present, and with revised methods, signifi-

cance is retained.

State 2: Effect is truly present, but with revised methods, signifi-

cance is lost.

FIGURE 9 The maps show an axial and a sagittal view of the first

Eigen component after running PCA on the 103 activity maps for
Oulu E2, (a) without ICA FIX (b) with ICA FIX, using the pretrained
classifier, (c) with ICA FIX, after retraining the ICA FIX classifier
specifically for Oulu data. Using ICA FIX clearly suppresses the
posterior part of the vein artifact in the superior sagittal sinus, but a
portion of the artifact is still present. The retrained ICA FIX classifier
is clearly better at suppressing the artifact. The axial maps represent
axial slice 50 (MNI z coordinate = 26) for the MNI152 2 mm brain
template used in FSL. The sagittal maps represent sagittal slice
48 (MNI x coordinate = −4)
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State 3: Effect is truly null, absent; the study's detection is a false

positive.

In each of these, the statement about “truth” reflects presence or

absence of the effect in the population from which the subjects were

drawn. When considering heterogeneity of different populations used

for research, we could also add a fourth state:

State 4: Effect is truly null in population sampled, and this study's

detection is a false positive; but later studies find and replicate the

effect in other populations.

These could be summarized as “State 1: Robust true positive,”

“State 2: Fragile true positive,” “State 3: False positive,” and “State 4:

Idiosyncratic false positive.”

Unfortunately, we can never know the true state of an effect, and,

because of a lack of data archiving and sharing, we will mostly never

know whether significance is retained or lost with reanalysis. All we can

do is make qualitative judgments on individual works. To this end, we

can suggest that findings with no form of corrected significance receive

the greatest skepticism; likewise, CDT p = .01 cluster size inference

cluster p-values that just barely fall below 5% FWE significance should

be judged with great skepticism. In fact, given small perturbations aris-

ing from a range of methodological choices, all research findings on the

edge of a significance threshold deserves such skepticism. On the other

hand, findings based on large clusters with p-values far below .05 could

possibly survive a reanalysis with improved methods.

5 | CONCLUSIONS

To summarize, our new results confirm that inflated FWE rates for para-

metric cluster inference are also present when testing for a difference

between two tasks, and when randomizing the task over subjects. Further-

more, the inflated FWE rates for the nonparametric one-sample t tests are

due to random correlations with artifacts in the fMRI data, which for Bei-

jing and Cambridge we found could be suppressed using the pretrained

ICA FIX classifier for standard fMRI data. The Oulu data were collected

with a lower spatial resolution, and are therefore more prone to physiolog-

ical noise. By retraining the ICA FIX classifier specifically for the Oulu data,

nominal results were finally obtained for Oulu as well. Data cleaning is

clearly important for task fMRI, and not only for resting state fMRI.
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APPENDIX A: RESULTS FOR CDT p = .01

(a)

(b)

(c)

FIGURE A11 Results for one sample t test and cluster-wise inference

using a CDT of p = .01, showing estimated FWE rates for 4–10 mm of
smoothing and six different activity paradigms (old paradigms B1, B2,
E1, E2, and new paradigms E3, E4), for SPM, FSL, AFNI, and a
permutation test. These results are for a group size of 40. Each statistic
map was first thresholded using a CDT of p = .01, uncorrected for
multiple comparisons, and the surviving clusters were then compared
to a FWE-corrected cluster extent threshold, pFWE = .05. The
estimated FWE rates are simply the number of analyses with any
significant group activations divided by the number of analyses (1,000).
(a) Results for Beijing data (b) results for Cambridge data (c) results for
Oulu data
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APPENDIX B: BIBLIOMETRICS OF CLUSTER
INFERENCE

Appendix B1. Number of affected studies

Here, we conduct a biblibographic analysis to obtain an estimate of

how much of the literature depends on our most troubling result, the

severe inflation of FWE for a CDT of p = .01.

We use the results of a systematic review of the fMRI literature

conducted by Carp (2012) and Woo et al. (2014), which provides

essential statistics on prevalence of cluster inference techniques. Carp

(2012) defined a search for fMRI publications that today finds about N

(fMRI) = 23, 000 publications.4 Drawing on a sample of 300 publica-

tions5 published 2007–2012, Carp found P(HasData) = 241/300 =

80% contained original data, and among these P(Corrected| Has-

Data) = 59% used some form of correction for multiple comparisons.6

Woo et al. (2014), considering a sample of 815 papers7 published

2010–2011; of these, they found P(ClusterInference| HasData) =

607/814 = 75%; noting that 6% (fig. 1, Woo et al.) of the 814 include

studies with no correction, we also compute P(ClusterInference| Has-

Data, Corrected) = 607/(814 − 0.06 × 814) = 79%. Finally, with data

from fig. 2(b) of Woo et al. (2014) (shown in Table A1, kindly supplied

by the authors) from the 480 studies that used cluster inference with

correction (and had sufficient detail) we can compute

P CDT P≥ 0:01ð ÞjClusterInference,HasData,Correctedð Þ
¼ 35+80ð Þ=480¼24%:

Thus we can finally estimate the number of published fMRI stud-

ies using corrected cluster inference as

N HasData,Corrected,ClusterInferenceð Þ¼23,000×0:59×0:79

¼10,720,

and, among those, 10, 720 × 0.24 = 2, 573 used a CDT of p = .01 or

higher, or about 10% of publications reporting original fMRI results.

There are many caveats to this calculation, starting with different

sampling criterion used in the two studies, and the ever-changing pat-

terns of practice in neuroimaging. However, a recent survey of task

fMRI papers published in early 2017 found that 270/388 = 69.6%

used cluster inference, and 72/270 = 26.7% used a CDT of p = .01 or

higher, suggesting that the numbers above remain representative

(Yeung, 2018).

(a)

(b)

(c)

FIGURE A12 Results for two sample t-test and cluster-wise

inference using a CDT of p = .01, showing estimated FWE rates for
4–10 mm of smoothing and six different activity paradigms (old
paradigms B1, B2, E1, E2, and new paradigms E3, E4), for SPM, FSL,
AFNI, and a permutation test. These results are for a group size of
20, giving a total of 40 subjects. Each statistic map was first
thresholded using a CDT of p = .01, uncorrected for multiple
comparisons, and the surviving clusters were then compared to a
FWE-corrected cluster extent threshold, pFWE = .05. The estimated
FWE rates are simply the number of analyses with any significant
group activations divided by the number of analyses (1,000).
(a) Results for Beijing data (b) results for Cambridge data (c) results for
Oulu data

4A total of 22,629 hits for Pubmed search text “(((((((fmri[title/abstract] OR func-

tional MRI[title/abstract]) OR functional Magnetic Resonance Imaging[title/

abstract]) AND brain[title/abstract]))) AND humans[MeSH Terms])) NOT sys-

tematic [sb],” conducted 30th January, 2018.
5Carp (2012) further constrained his search to publications with full text avail-

able in the open-access database PubMed Central (PMC).
6“Although a majority of studies (59%) reported the use of some variety of cor-

rection for multiple comparisons, a substantial minority did not.”
7Woo et al. used “fmri” and “threshold” as keywords on original fMRI research

papers published between in Cerebral Cortex, Nature, Nature Neuroscience, Neu-

roImage, Neuron, PNAS, and Science, yielding over 1,500 papers; then following

exclusion criterion were applied “(a) non-human studies, (b) lesion studies,

(c) studies in which a threshold or correction method could not be clarified,

(d) voxel-based morphometry studies, (e) studies primarily about methodology,

and (f) machine-learning based studies.”

EKLUND ET AL. 2031



TABLE A1 Upon request, the authors of Woo, Krishnan, and Wager (2014) provided a detailed cross-tabulation of the frequencies of different

CDTs (the data presented in fig. 2(b) of their paper). Among the 607 studies that used cluster thresholding, they found 480 studies for which
sufficient detail could be obtained to record the software and the particular CDT used

CDT AFNI BrainVoyager FSL SPM Others Total

>0.01 9 5 9 8 4 35

0.01 9 4 44 20 3 80

0.005 24 6 1 48 3 82

0.001 13 20 11 206 5 255

<0.001 2 5 3 16 2 28

Total 57 40 68 298 17 480
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