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Abstract

Background: Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures.
Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more
information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been
implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable.

Methodology: This study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG
signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG
signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical
neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the
performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching.

Principal Findings: We obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system
was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with
91.18% detection of spikes and 99.22% seizure detection.

Conclusion: We report a de novo EEG classification system for seizure and spike detection on multichannel EEG that
includes physiology-based knowledge to enhance the performance of this type of system.
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Introduction

Electroencephalography (EEG) detects the most critical phys-

iological signal in neurological practice. EEGs are obtained by

placing electrodes on various positions of the scalp. EEG measures

cerebral electrical activity and can detect epileptic seizures in

patients with epilepsy, which afflicts approximately 1% of the

population [1]. Patients with epilepsy frequently present features in

their EEG electrical potentials that are of significant diagnostic

importance, such as spikes or sharp waves. Routine EEG, which

shows temporal and spatial information regarding the electrical

activity of the brain, is frequently used to diagnose, monitor, and

localize epileptogenic foci [2]. EEG is the gold standard for the

classification of seizure types and the diagnosis of epileptic

disorders.

EEG signals are frequently displayed in one of four manners:

unipolar, bipolar, Laplacian, and average reference montage. We

used both unipolar and bipolar montage to display epileptiform

discharges in different locations. In a unipolar montage, both

common references and ground references are used, and a single

channel represents the electrical activity of a brain in a particular

recording site. A bipolar EEG montage measures the potential

difference between pairs of electrodes and is calculated by

subtracting one unipolar measurement from another unipolar

measurement, typically neighboring ones. A bipolar EEG montage

showing neighboring potential differences enables the identifica-

tion of locales where groups of neurons are firing inversely from

another group of neurons at juxtaposed locales. This is a phase

reversal, which concerns identifying the epileptogenic foci of

spikes.

In recent years, several studies have been devised to detect

seizures from EEG data by single channel EEG signals [3–10]. On

the other hand, spikes usually occur more frequently before

seizures, there are also studies in the literature focusing on the

investigation of spike detection [7–14]. However, the seizure

detection algorithm and the spike detection algorithm are usually

implemented on different systems. Therefore, it is necessary to

combine seizure detection and spike detection algorithms in one
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system for better efficiency. Furthermore, the brain is a complex

and nonlinear dynamic system; it is not enough to detect seizures

by a single channel EEG, which gives up the dynamic spatial

information [15–16]. Thus, the processing of multichannel EEGs

became an important issue in various areas of spatial-temporal

analysis [15]. However, only a few studies have focused on

multichannel EEG signals because of the challenge of effectively

extracting useful information from them [16]. The analysis process

of multichannel EEG is time consuming, especially for long-term

EEG monitoring that typically lasts for 24 hours to several days.

To process the abundant information contained in multichannel

EEG data, it is necessary to have an efficient system. In addition,

neurophysiologic knowledge, such as the concepts of ‘‘phase

reversal’’ and ‘‘potential fields,’’ in a bipolar montage has not been

applied in most previous studies, particularly in methods that

determine the morphology of slow waves or spike repetition

[17,18].

To the best of our knowledge, there are no reliable computa-

tionally viable algorithms for detecting large varieties of both

seizures and spikes from multichannel EEG data that operate well

in clinical environments. Thus, we aim to develop a physiology-

based algorithm for detecting epileptic seizures and interictal

spikes from multichannel EEG signals (unipolar EEG and bipolar

EEG).

A flowchart of the system architecture is shown in Figure 1. Our

EEG epilepsy classification system consists of four major compo-

nents: data preprocessing, feature extraction, feature selection, and

classification.

Materials and Methods

2.1. Data Acquisition and Preprocessing
Clinical Data were collected from subjects receiving routine

EEG examination or bedside EEG monitoring. The routine EEG

of the 13 outpatients (5 women and 8 men, ages ranged from 23 to

89 years) were obtained in a clinical EEG laboratory each for

around 15 minutes and were designated as Data Set I. Five

subjects were in the patient group (2 women and 3 men; mean age

57.8 years old, SD = 24.4 years), they were patients with the

diagnosis of temporal lobe epilepsy and they all had abnormal

EEG signals. Eight were in the control group (3 women and 5

men; mean age 51.4 years old, SD = 21.27), they were adults

referred from the outpatient clinic with normal EEG, they usually

complained of headache or dizziness but did not have the

diagnosis of epilepsy or seizure disorders. We further included five

in-patients (3 women and 2 men, age ranged from 22–48 years

old), which included three patients with active spikes or frequent

seizures and two with non-epileptic seizure. They received bedside

long-duration EEG monitoring while they stayed in the hospital

for either diagnosis or treatment purpose; these were around 360

hours in total and were designated as Data Set II.

EEGs were performed using 21 Ag-AgCl electrodes arranged on

the scalp according to the 10–20 International System and were

digitized at a sampling rate of 200 Hz over a dynamic range of 12

bits. Both unipolar (Figure 2, left) and bipolar (Figure 2, right)

recording data were analyzed in this study. This study was

approved by the ethics committee of the university hospital. All

identities or personal information of the participants were delinked

and were inaccessible to all researchers.

The recorded EEGs were segmented into 2-s epochs. The

following criteria were used to identify inter-ictal epileptic form

discharges (all designated as spike thereafter in this report for

simplicity) [19]: (1) they must be paroxysmal; (2) they must include

an abrupt change in polarity occurring over several seconds; (3)

the duration of each transient should be less than 200 ms (i.e.,

spikes less than 70 ms and sharp waves between 70 and 200 ms);

and (4) the discharge must have a physiology field. EEG

abnormalities in patients with seizure disorders can be categorized

as either specific or nonspecific patterns.

The electrographic onset of a seizure is characterized by a

sudden change in frequency and the appearance of a new rhythm.

Focal onset of the electrographic seizure may evolve through

several phases: (1) focal desynchronization or attenuation of EEG

activity (less than 10 mV); (2) focal, rhythmic, low-voltage, or fast-

activity (greater than 13 Hz) discharges; and (3) a progressive

increase in amplitude with slowing that spreads to a regional

anatomic distribution. Epileptic seizures can be recorded as

paroxysmal repetitive spikes, spike-and-wave (three or more

discharges in sequence), or rhythmic fast or theta activity (all

designated as seizure thereafter in this report for simplicity).

Because EEG experts may have differing opinions on EEG

classification, two EEG experts (Drs. Pan and Chiu) evaluated the

spikes and seizures independently, and this study only used EEG

segments that had a consensus for further analysis. Therefore, each

2-s epoch among the EEG data was classified into normal EEG,

spikes, and seizures. All EEG data received artifact rejection prior

to processing. This study removed segments with an amplitude of

an EEG signal greater than 100 mV in any channel in the

preprocessing stage. The EEG signals then underwent a 0.1–

70 Hz band pass, a 60 Hz notch, and Daubechies 4 wavelet filters

(implemented in MATLAB).

2.2. Feature Extraction
2.2.1. Sample entropy. Sample entropy (SampEn) is widely

used in estimating the regularity of time series data and has been

applied in the processing of various biomedical signals such as

heart rate variability and pulsatility of endocrine hormone release.

SampEn quantifies the regularity of time-series data, and is called

regularity statistics. It is represented by a simple index for the

Figure 1. Flowchart illustrating the system architecture.
doi:10.1371/journal.pone.0065862.g001
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overall complexity and predictability of each time series.

Therefore, more regular data indicate a lower value of SampEn.

It has been used in processing EEG signals to evaluate quantitative

parameters for studying the complexity of EEG signals. Experi-

mental results have shown that SampEn is a useful technique for

processing non-stationary signals. Among the regularity statistics,

SampEn is robust to noisy physiological time series and is especially

useful for detecting seizures or brief spikes in EEG data [20].

The calculation of SampEn in (1) to (3) with a signal S (finite

length N) was performed by following step 1 through step 6. The

parameter m was the length of the sampling window, which was

the dimension of the vector to be shifted, and r was the value of the

threshold representing the noise filter level chosen in the range of

0.1 to 0.9.

(1) S~ x(1), x(2), . . . , x(N)½ � is the vector of data sequence.

(2) x*(i) is a subsequence of S such that x � ið Þ~ x ið Þ,½
x iz1ð Þ, . . . , x izm{1ð Þ� for 1ƒiƒN{mz1.

(3) Let r = k 6 SD for k = 0.1,0.9 where SD is the standard

deviation of S.

(4) For each 1ƒx � ið Þ,x � jð ÞƒN{mz1, i=j, d [ ] is the

operator of Euclidean distance.

Cm
i (r)~

PN{mz1
j~1 d x � (i), x � (j)½ �

N{mz1

where d x � (i), x � (j)½ �~
1, x � (i){x � (j)ƒr

0, otherwise

(

(5) The quantity Am(r) is calculated as

Figure 2. Exemplars of EEG from the three conditions, normal, spike and seizure displayed in both unipolar and bipolar montages.
The right middle figure shows phase reversal of spikes in a bipolar montage.
doi:10.1371/journal.pone.0065862.g002
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Am(r)~
XN{Mz1

i~1

Cm
i (r)

N{Mz1

(6) Finally, the SampEn is defined as follows:

SampEn(m, r, N)~{ ln
Amz1(r)

Am(r)

� �

2.2.2. Statistical features of unipolar EEG and bipolar

EEG. Each 2-s epoch consisted of signals from all 16 channels.

The four-stage wavelet transformation decomposed the filtered

signal into eight frequency ranges, which included the five primary

EEG frequency bands (i.e., delta, theta, alpha, beta, and gamma)

used for further feature extraction [22]. Both unipolar and bipolar

16-channel EEGs were used to calculate the values of maximum,

minimum, sum, average, and standard deviation (five sub-

features). Then we computed five major features namely, entropy,

total variation, standard deviation, sample entropy, skewness, and

energy, utilizing the aforementioned 10 sub-features (five frequen-

cy bands plus five values).

Bipolar EEG has an additional process of feature extraction

from phase reversal. Bipolar EEG signals were derived from the 16

unipolar channels. Each bipolar EEG channel was used to select

six neighboring channels; subsequently differences of these

channels were summed (as for Channel F8 in Figure 3).

Numerically, phase reversal indicates the turn of the phase in

juxtaposition channels, therefore the sum of the differences with

the 6 neighboring channels should be minimal at a channel

position of phase reversal which implies an epileptogenic focus

(cortical neuron origin of spikes). Thus each major feature contains

20 sub-features from phase-reversal sum of the 16 channels plus

their values of minimum, sum, average, and standard deviation.

The minimum value was used to evaluate the phase reversal and

local field potential change in time domain. These parameters

were further used to extract the same five major features namely

total variation, standard deviation, sample entropy, skewness, and

energy as in unipolar and bipolar EEGs [21].

In brief, there are five major features (total variation, standard

deviation, sample entropy, skewness, and energy) in our feature

extraction. Both unipolar and bipolar montages have 16 EEG

channels. Each major feature has 10 sub-features including five

frequency bands (gamma, beta, alpha, theta, and delta) [36] and

the values of maximum, minimum, sum, average, and standard

deviation from all 16 channel. In total these make up 800 features

(1665610) for both unipolar and bipolar EEG. There are

additional 100 features from the computation of phase reversal

in bipolar EEG. In total 1700 features were obtained from the

process of feature extraction.

Total variation and standard deviation can be good discrimi-

nators of non-specific seizure activity. In addition, high energy

content is an observable feature during seizures, and skewness

measures the asymmetry of a distribution, which is influenced by

the shape of spikes and waves. The statistical characteristics of

various feature types can help distinguish different epileptic states.

If there is any abnormal activity across all EEG sub-bands, then

the statistical features may magnify the anomaly.

On the other hand, a bipolar EEG signal is derived from

potential difference between neighboring electrodes. Neurologists

and epileptologists can define spikes and other epileptiform

discharges much easier by using displays from various bipolar

montages. Therefore, theoretically it is possible to use a bipolar

EEG independently without using wavelet transform for detecting

spikes. We tested this hypothesis by extracting features from a

bipolar EEG.

2.3. Feature Selection
A genetic algorithm (GA) is a search heuristic that generates

optimizations and solutions to search problems [23]. The concept

behind the GA is to mimic the natural selection process, which

involves mutations, inheritance, crossover, and selection [24]. In

nature, the selection process yields the fittest subjects–survivors.

For search problems, such as the problem of finding optimal

parameters for an operation, the selection process tests the fitness

of parameters and determines optimal parameters. The GA

simulates cells in nature, and its main component elements

comprise genes, chromosomes, groups, and a fitness function. For

each generation, the fittest cells have the best current chromo-

somes and are survivors. The surviving cells evolve generation to

generation, attempting to become better adapted to their

environment. The GA begins by creating a population of

randomly generated individuals represented in binary strings

consisting of 0s and 1s. The fitness of each individual is evaluated

for each generation, and the fittest one is selected. Surviving

individuals can mutate, recombine, and mate to generate the next

genetic generation. Next, the algorithm checks whether the

termination condition has been achieved. If the termination

condition has not been met, the selection process continues until

the termination condition is achieved.

Feature selection prior to training a support vector machine

(SVM) classifier is crucial. In this study, a chromosome encoded a

selected subset of features for use in SVM classification. Each

generation contains 100 chromosomes, each representing a

different subset of features. For each chromosome g, a standard

binary SVM classification SVM (p, q, g) is invoked. To encode the

subset of selected features in a chromosome, a binary code

Figure 3. The feature extraction of the 6 neighboring channels.
doi:10.1371/journal.pone.0065862.g003
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represents an individual feature. For a particular chromosome g, if

g[i] is set to 1, the ith feature is included, whereas 0 indicates the

exclusion of this feature [25]. The results of SVM training of

individual chromosome from each GA generation were compared

for their performance and 1% mutation was given to maintain

genetic diversity. When the GA terminates, either reaching

plateau of performance or 200th iterations, the most accurate

SVM classification is chosen, as shown in Eq. (1).

Vp,q~Vp,q,g � , where g �~ arg g max (fu(p, q, g)g) ð1Þ

If the GA evolves R generations, the number of standard SVM

invocations is |M1|*|M2|*…*|MR|, where |Mk| is the number

of chromosomes in Mk.

2.4. Feature Classification
The two-step classification is the SVM prediction and spike

matching. The components are designed separately and modu-

larized. Within each component, further modularization occurs,

meaning that each component can be used in other studies. This

allows for easy upgrades and changes in the future. Another

advantage of the modularized approach is that modules can be

easily replaced, which could enable experimentation on the

influence of a different classification technique.

2.4.1. Support vector machines. The SVM maps input the

featured vectors into a high-dimensional space to realize a linear

classification system [26]. By feeding the algorithm a set of training

data, an SVM can determine an optimal hyper-plane that

minimizes risks. This study first focused on the training problems

of a class pair. A training set of instance-label pairs (x, y) and

weighting vector w can be written as Eq. (2), in which x and y
denote the input and output domains, respectively [27].

min
w,b,j

1

2
wT wzC

Xl

i~1

ji

subject to yi(w
T xizb)§1{ji, ji§0

ð2Þ

Constraint (2) has penalty term C chosen by the user to assign a

penalty to errors, and j is a slack variable. It may not be useful in

achieving high training accuracy (i.e., classifiers accurately predict

training data with class labels that are known). Therefore, a typical

method is separating training data by mapping instances into high-

dimensional domains to construct models. After data are mapped

into higher-dimensional spaces, the number of variables becomes

large, or even infinite.

2.4.2. Post-Classification spike matching. The proposed

SVM classifier performed the best at distinguishing between

normal and seizure activity, although further improvement

regarding the spike detection rate by examining the normal

outputs from the classifier was desired. Therefore, this study

proposed the spike-matching method. To the best of our

knowledge, no other study has used a post-classifier filter to

attempt to capture epileptic spikes.

The spike phase of the spike-and-wave complex corresponds to

the depolarization of the membrane potential and the repolariza-

tion and hyperpolarization constitute the wave phase. Epileptiform

discharges include sharp waves, spikes, spike-and-waves, and

multiple spikes and wave complexes. Sharp waves are transient

and are clearly distinguishable from background activities, and

have pointed peaks and durations of 70–200 ms. Spikes have a

similar definition, except that the duration is 20–70 ms.

The digital profile of an epileptiform discharge, such as a spike

or sharp, includes the definition of the magnitude and the duration

of the spike or sharp wave (Figure 4). The summed score of the

magnitude and the duration of a spike or sharp wave is defined as

Spm (Eq. 4), and can be tested by a trial-and-error process using a

threshold value to perform post-classification spike matching.

Spm ~ C1SMag z C2SLon ð4Þ

Typically, when a spike occurs, the opposite neighboring EEG

readings show opposite signs in a bipolar montage. This is phase

reversal. A short pulse discharge alone does not imply a spike, and

neither does a phase reversal. Therefore, this study designed a

spike-matching program to detect spikes in two stages. The first

stage detects the short pulses of discharges. The second stage

checks for phase reversals. If an EEG segment passes these two

criteria, it is considered a spike. The spike-matching method alone

is a poor tool for finding spike segments because spikes must be

distinguished from background activities and must be matched for

morphological and durational definitions. Additional uncertainties

frequently arise, such as noises or pure coincidences of pointed

peaks in phase reversal, which can cause a condition in which a

normal EEG segment is classified as a spike.

Epileptiform discharges occur consecutively or periodically and

typically have poor prognosis [28]. This type of regular and

periodic discharges is called periodic lateralized epileptiform

discharges (PLEDs). Therefore, consecutive or periodic epilepti-

form discharges pose higher risks for seizure onset. Standalone

spikes pose a lower threat than do spike clusters. A 10-s EEG

following a classifier-labeled spike was screened by the spike-

matching program and the classifier. If either the classifier or the

spike-matching program label any of the following five EEG

epochs (10 s) as a spike, the corresponding epoch(s) was considered

a segment containing spikes.

Therefore, when the SVM classifier recognizes an EEG epoch

as a segment containing spikes, the following 10-s EEG is not only

screened by the SVM classifier, but it is checked by the spike-

matching block. Spike matching is more lenient than the SVM

classifier. Thus, it was only used immediately following a spike

being detected by the SVM. Because the classifier classifies any 10-

s segment following a spike as normal background, the SVM-

classified normal segment is re-examined by the post-classification

spike-matching block to ensure that no spike is undetected, thereby

enhancing the spike detection rate. Although this is achieved at the

Figure 4. The magnitude and longevity of a burst.
doi:10.1371/journal.pone.0065862.g004
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cost of increased false alarms, it is feasible to exchange an

acceptable rate of false-positive predictions for epileptic epilepti-

form discharges or seizure activities for higher sensitivity in clinical

practice for patients with epilepsy.

2.5 Statistical Evaluation
The discriminating power of the investigated technique was

evaluated by constructing a classification (confusion or contingen-

cy) table for the 2-class problems with details of true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN).

The most frequently used evaluation measure in the performance

of classification is accuracy (Acc), which is the proportion of

correctly classified instances: Acc = (TP+TN)/(TP+FP+TN+FN).

Other indices included sensitivity, Sen = TP/(TP+FN) and spec-

ificity, Spe = TN/(TN+FP).

Results

3.1 Experimental Results
EEG of the Data I composed of three classes namely spike,

seizure, and normal EEG in both unipolar and bipolar montages

(Figure 2). The expert-annotated routine EEG records (Data Set I)

that were obtained included 1939 two-second epochs of normal

activity, 436 two-second epochs of spike activity, and 444 two-

second epochs of seizure activity. The relative proportions did not

reflect real-life occurrences. Spikes and seizure do not typically

occur this frequently. However, these two waveforms are of the

upmost detection priority, and therefore, more samples were

needed for a strong prediction model. Half of the 2-s epochs were

used for training, and the other half of the 2-s epochs were used for

prediction. The proposed system can currently produce an output

of 1700 features for each 2-s epoch. In the 360-hour bedside EEG,

there were about 6 hours classified as seizures and about one hour

for spikes.

We used these 1700 features together to obtain an initial

classifier, which was used as a benchmark for future configura-

tions. The recognition rates(accuracy)of spikes (Acc 83.02%) and

seizures (Acc 99.77%) obtained by GA-SVM were higher than

those obtained only by the SVM (Acc of spike 65.59%, Acc of

seizure 95.05%). This suggests that the GA played a crucial role in

the classification.

The recognition rates for seizure activities are always higher

than those of spikes. Seizure activities typically last from a few

seconds to a few minutes, and they display EEG patterns that are

easily distinguished from background activities. The problem of

classifying between normal and seizure waveforms has been

partially resolved by previous studies and remains an area of

ongoing research [29]. Conversely, it is more difficult to

distinguish spikes from the background EEG activities using

algorithms. This is not unexpected because a typical spike lasts

approximately 70 ms without preceding warning signs. Our

feature extraction used 2-s epochs. Therefore, statistical features

can be easily masked because of the intrinsic characteristics of

spikes that contribute to lower spike recognition rates.

Using the GA for feature selection, we obtained a list of the

effects of various features. The list revealed the effectiveness of the

features, and indicated items that were focused on for feature

extraction. Table 1 shows the top five feature types, and the type of

the feature and the sub-band for the feature type. A feature type

represents a range of features that use the same feature extraction

function. The top five feature types represented nearly 80% of the

top 100 features of the 1700 features.

This study used the post-classification spike-matching program

in conjunction with the best performing classifier, which used only

SampEn and total variation-type features. Using post-classification

spike-matching program further increases the recognition rate for

spikes (Acc from 83.02% to 86.69%). The spike recognition rate is

increased. However, it is only increased by 3.67% at the cost of a

0.51% decrease for the recognition rate of normal EEG. Receiver

operating characteristic (ROC) analysis showed that the area

under an ROC curve of the classifier, including the spike

matching, was the largest among all of the classification methods

tested in this study (Figure 5). In addition, classification only by the

SVM was the worst among the four types of classifiers, indicating

that the GA plays a crucial role in spike detection.

This study designed a spike-matching program to analyze

bipolar montage EEG values. The spike-matching program used

derivatives to measure the speed of ascent of a spike. This included

the concept of phase reversal when screening for spikes [1]. When

a spike occurs, the discharge spreads to its neighbors, similar to

water ripples caused by a droplet. Therefore, this study used

derivatives to detect phase reversals. It localizes a dipole source

between two electrodes [16]. Opposite, but similar, magnitude

derivatives between two electrodes implies that a spike occurred

exactly equidistant from the two electrodes. An opposite but

different magnitude for the derivatives between two electrodes

indicates that a spike occurred between the two electrodes, but not

at the midpoint of the two locations. Therefore, using a post-

Table 1. The top-ranked feature types and associated
frequency bands.

Rank Frequency (Hz) Sub band Feature Type

1 0,4 Delta wave SampEn

2 4,8 Theta wave Total Variation

3 8,15 Alpha wave SampEn

4 8,15 Alpha wave Total Variation

5 4,8 Theta wave SampEn

doi:10.1371/journal.pone.0065862.t001

Figure 5. ROC Curve of different classification methods (SVM
only, GA+SVM, GA+SVM+Post Spike Matching).
doi:10.1371/journal.pone.0065862.g005
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classification spike-matching program is a solution to improve

spike localization.

To validate that the proposed EEG classification framework can

be generalized to data from various acquisition machines, the

classifiers were trained using all of Data Set I, and the classifiers

were tested on Data Set II as a holdout data set. The classification

of EEG in the Data Set II was done on continuous data. The

classifier analyzed Data Set I with accuracy rates of 86.69% for

spike detection and 99.77% for seizure detection. When we tested

on the Data Set II, results of the spike detection rate (Acc of spike

91.18%) and seizure detection rate (Acc of 99.22%) were close to

those of the performance on Data Set I. This indicates that the

features analyzed in this study are stable and useful for classifying

epileptiform and non-epileptiform EEG signals from patients.

Discussion

Most seizure detection techniques currently select a few time-

frequency EEG features and evaluate these features using binary

thresholds [29]. To date, no single EEG feature has been identified

to represent background or spikes because of numerous false

positives on long-term EEG recordings [17]. The novel approach

in this study is based on neurophysiologic knowledge applied by

neurologists or epileptologists during their evaluation of clinical

Figure 6. The accuracy histogram (normal, spike, and seizure) of cross validation with different methods (SVM only, GA+SVM,
GA+SVM+Post Spike Matching). The trend of accuracy in normal EEG decreases slightly, but in spike EEG raises noticeably. In addition, the
accuracy of seizure is stable for different feature selection and classifier.
doi:10.1371/journal.pone.0065862.g006

Table 2. Comparison studies in literature with our approach.

Author Method Prediction Sensitivity Specificity

Ji et al. [16] Template method Spike 69.3% 99.92%

Logesparan [17] Phase Congruency Algorithm Spike 80% N/A

Lucia [18] ICA Spike 76% 74%

Our study Physiology-based Detection Spike 91.26 80.04%

Valder. et al. [29] Patient Specific Algorithm Seizure 33.38% 67.04%

Chao. Et al. [34] NSVM Seizure 92% 88%

Yadav et al. [35] Model-Based Detection Seizure 92.2% 100%

Sac et al. [37] Signal Amplitude Variation Seizure 90.4% N/A

Our study Physiology-based Detection Seizure 95.44% 95.8%

doi:10.1371/journal.pone.0065862.t002
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EEG in daily practice [30,31]. The primary concept is to use the

principles of field potential and phase reversal. Many neuronal

elements contribute to the extracellular currents that generate field

potentials recorded on the surface of the brain [30,31,32].

Furthermore, field potentials recorded during epileptic activity

are based on changes in neuronal membrane potential. The

amplitudes of epileptic field potentials exceed those of non-

epileptic potentials because the underlying neuronal activity is

highly synchronized [32,33]. In the scalp EEG, each recording site

(considered a node) stretches neighboring electrodes (e.g., the six

nodes shown in Figure 3). According to a summation of the

differences among these nodes, it is easy to display the phenomena

of phase reversal. Furthermore, the proposed system added post-

classification spike matching to detect spikes. Because this study

attempted to find clusters of spikes that occur within short

timeframes, this study was particularly meticulous in the short

timeframe following a spike confirmed by the SVM classifier.

When the SVM classifier recognizes an EEG epoch as a segment

containing spikes, the following 10-s EEG segment is screened by

the classifier and by the spike-matching block. Therefore, this

method can easily integrate the time-frequency domain (wavelet

coefficients) and neurophysiologic knowledge to locate spikes and

seizures.

The system was tested using EEG data from a real environment

(i.e., long-term bedside EEG recordings) and yielded good

preliminary results. We evaluated the proposed algorithm on the

unselected, continuous, and long-term clinical monitoring of 18

patients (totaling 10,473 seizure segments from EEG recording

from 363 h). The system yielded a high spike detection rate

(86.69%) and seizure detection rate (99.77%) for Data Set I, which

was used for model training of the system. The performance of the

system in Data Set II was validated with an even higher detection

rate for spikes (91.18%) and a nearly equivalent seizure detection

rate (99.22%). We verified performance stability by testing Data

Sets I by using the cross-validation with 10 folders, which is a

technique frequently applied in Data Mining for estimating the

performance of a predictive model. Data Sets I were grouped into

10 folders; and the 90% data were used as training data and the

10% holdout data were used as testing data. The train-test

procedures were repeated for 10 times (10 folders). The accuracy

did not vary acutely within Data Set I (Figure 6), which implies

that the training models did not represent over fitting situations.

Using all of the features in addition to post-classification spike

matching resulted in the best outcome for detecting spikes and

seizures. Therefore, from a clinical viewpoint, the automatic

detection system is reliable and helpful for prescreening long-term

bedside EEG data for identifying seizures and spikes.

Although the proposed method performed well for spike and

seizure detection, it did so at the cost of high hardware loading and

a long computation time. Typically, a 2-s segment of clinical EEG

requires approximately 6 s to complete data analysis, including

preprocessing, feature extraction, and data prediction. To achieve

the goal of real-time processing, a parallel design for feature

extraction was employed in the system that used 15 servers to

collaborate in a Hadoop architecture. The consumed time was

reduced to 0.5 s after applying parallel computing. The proposed

physiology-based algorithm entails a quantitative method for

identifying spikes and seizures that can enhance the performance

of existing seizure prediction methods.

When the performance of the proposed system was compared

with that of previous studies, it is among the highest rates for

sensitivity of seizure detection (95.4%), spike detection (91.3%),

specificity of seizure detection (95.8%), and spike detection

(80.4%) (Table 2). Although all of the investigators would try to

optimize the performance of their methods in their own studies,

care must be taken when comparing the performance between

various methods in different studies because they used different

clinical data. The performance of spike detection was less than that

of seizure detection, especially when the clinical EEG data

obtained from the scalp surface recordings inherited all possible

extracranial artifacts. Previous studies that used methods such as

time-frequency analysis and template mapping were unable to

simultaneously detect seizures and spikes. They were typically

implemented in separate platforms. However, the proposed

method provides simultaneous detection of seizure and spikes

stably in a single platform. This is an additional benefit.

It is difficult to locate the occurrences of spikes and seizures by

using traditional digital algorithms to fulfill a clinical diagnosis of

epilepsy because EEG data contain too many complex data,

especially from bedside environments. Spikes and seizures emerge

infrequently and unpredictably, making it difficult for neurologists

and epileptologists to identify them by using long recordings.

Physicians typically cannot complete this task without using event

codes recorded by patients or by their family members or

caretakers. The automatic differentiation between epileptiform

discharges and normal brain activity is challenging regarding the

morphological patterns of EEG signals. Therefore, an automatic

and accurate system of epilepsy screening can significantly reduce

the cost of health care and enhance the efficiency of medical

diagnoses and the treatment of patients with epilepsy.

In summary, this study overcame the diagnostic challenge of

epilepsy using a cascaded system combining sample entropy for

feature extraction, the GA for feature selection, the SVM for

classification, and most crucial, a de novo solution based on

neurophysiologic knowledge of EEG interpretation. To elabo-

rate on the contribution of this report, there are four major

points of novelty. First, we applied neurophysiologic knowledge

applied by neurologists during their evaluation of clinical EEG

in daily practice [30,31]. The primary concept is to use the

principle of field potential and phase reversal by evaluating

potential differences of the neighboring electrodes. Second, we

cascade different algorithms of feature extraction, selection, and

classification [36]. Although separately these algorithms are not

new ideas, the novelty stems from improved efficiency of spike

and seizure recognition with the combination use of these

methods. The third is the post spike matching. Spikes with great

clinical significance frequently occur in tandem and tend to

seizures. Thus, we use post spike matching algorithm to detect

spikes after SVM classification, and accuracy of the spike

detection was increased from 86.69% to 91.18%. Though the

increment is not much numerically, it has a critical clinical

value that we are capable of identifying those spikes with higher

risk to seizures. The final novelty is the model trained from

Data Set I can be generalized to work effectively on the Data

Set II which were collected from an independent group of

patients.
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