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Abstract

Androgen deprivation therapy (ADT) is a widely used treatment for patients with hormone-

sensitive prostate cancer (PCa). However, duration of treatment response varies, and most

patients eventually experience disease progression despite treatment. Leuprorelin is a

luteinizing hormone-releasing hormone (LHRH) agonist, a commonly used form of ADT.

Prostate-specific antigen (PSA) is a biomarker for monitoring disease progression and pre-

dicting treatment response and survival in PCa. However, time-dependent profile of tumor

regression and growth in patients with hormone-sensitive PCa on ADT has never been fully

characterized. In this analysis, nationwide medical claims database provided by Humana

from 2007 to 2011 was used to construct a population-based disease progression model for

patients with hormone-sensitive PCa on leuprorelin. Data were analyzed by nonlinear mixed

effects modeling utilizing Monte Carlo Parametric Expectation Maximization (MCPEM)

method in NONMEM. Covariate selection was performed using a modified Wald’s approxi-

mation method with backward elimination (WAM-BE) proposed by our group. 1113 PSA

observations from 264 subjects with malignant PCa were used for model development. PSA

kinetics were well described by the final covariate model. Model parameters were well esti-

mated, but large between-patient variability was observed. Hemoglobin significantly

affected proportion of drug-resistant cells in the original tumor, while baseline PSA and anti-

androgen use significantly affected treatment effect on drug-sensitive PCa cells (Ds). Popu-

lation estimate of Ds was 3.78 x 10−2 day-1. Population estimates of growth rates for drug-

sensitive (Gs) and drug-resistant PCa cells (GR) were 1.96 x 10−3 and 6.54 x 10−4 day-1, cor-

responding to a PSA doubling time of 354 and 1060 days, respectively. Proportion of the

original PCa cells inherently resistant to treatment was estimated to be 1.94%. Application

of population-based disease progression model to clinical data allowed characterization of

tumor resistant patterns and growth/regression rates that enhances our understanding of

how PCa responds to ADT.
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Introduction

Prostate cancer (PCa) is one of the most common cancers among men in the United States,

accounting for 44% of all cancer cases along with lung and bronchus, and colorectal cancers

[1]. In 2016, there were approximately 180,890 new cases of PCa and 26,120 deaths due to PCa

in the United States [1]. Clinically localized PCa is most commonly managed by observation,

radical prostatectomy, and radiotherapy (with or without androgen deprivation therapy, or

ADT) [2]. However, many patients diagnosed with localized disease ultimately undergo bio-

chemical progression as demonstrated by increasing levels in prostate-specific antigen (PSA),

who may then be treated by ADT. ADT acts by depleting gonadal testosterone [3], and it can

be achieved by medical castration through the use of luteinizing hormone-releasing hormone

(LHRH) agonists or antagonists, or surgical castration (bilateral orchiectomy), both of which

are considered equally effective. On the other hand, for patients who present with metastatic

PCa, ADT is considered the gold standard of initial therapy that has been shown to reduce

tumor-related events [4, 5]. ADT is a widely used systemic treatment for patients with hor-

mone-sensitive PCa, including those who previously receive local therapy as the primary treat-

ment modality and those who present with de novometastatic disease. However, the majority

of patients eventually progress to a castration-resistant state, and it was estimated that the

response to ADT typically lasts 14 to 20 months in metastatic PCa [5, 6], and the duration of

response to ADT is variable among patients [7]. A few studies have examined clinical factors

that predict the time to castration resistance for patients on ADT [8–12], but the detailed time-

dependent profile of tumor regression and/or growth in patients with hormone-sensitive PCa

on medical ADT has never been fully characterized.

Quantitative population-based disease progression modeling uses mathematical functions

and statistical models to describe quantitatively the time course of disease progression in indi-

viduals and the entire patient population with or without drug treatment [13, 14]. This model-

ing approach can trace disease progression over time, and quantify the effects of drug

treatment and disease- and patient-specific factors on disease progression to optimize clinical

trial design and guide personalized treatment strategies [13]. For example, quantitative disease

progression modeling has been applied to clinical data to allow estimation of tumor growth

and regression rates in metastatic castration-resistant PCa [14]. Most of the published quanti-

tative population-based disease progression models are developed using data from random-

ized controlled studies [13–15]. While randomized controlled trials are the golden standard

for evaluating new drug treatment and the primary source of clinical research information,

they are costly, labor-intensive and time-consuming [16]. In addition, strict inclusion and

exclusion criteria are typically used to select subjects in randomized clinical trials within a pre-

defined study period, and thus the study results may have limited utility in answering clinical

questions in a real-life population [16, 17]. These limitations of randomized controlled trials

have led to an increased reliance on using medical claims data in designing healthcare policies

related to real-life clinical practice [16, 17]. Medical claims data are a rich and inexpensive

source of scientific information to study how a disease responds to medical interventions of

interest, and can provide an opportunity to potentially follow a large number of patients for

extended periods of time without suffering from high attrition rates [16–18]. To our knowl-

edge, medical claims data have never been used to develop quantitative population-based dis-

ease progression models, in which effects of drug treatment and patient-specific factors on

disease progression are evaluated and quantified.

The primary goal of this study was to use a medical claims database to construct a quantita-

tive population-based disease progression model for patients with hormone-sensitive PCa on

ADT with LHRH agonists. Leuprorelin, the most commonly prescribed LHRH agonist in the
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Medicare population [19], was selected as the treatment agent of interest in this analysis. Pros-

tate specific antigen (PSA) is an androgen-regulated serine protease produced almost exclu-

sively by cells in the prostate gland [20, 21]. PSA is commonly assessed for PCa screening, and

it remains an important marker for monitoring clinical response to ADT treatment [21–24].

Therefore, PSA was used as a molecular marker of tumor burden to measure disease progres-

sion of PCa in this study.

Materials and methods

Data source

This study was conducted in commercially insured patients using health claims data provided

by Humana covering the period from January 1, 2007 to December 31, 2011. This nationwide

database captures anonymized longitudinal, individual-level data on patient demographics,

healthcare utilization, inpatient and outpatient diagnostic and procedural codes, laboratory

test results, and pharmacy dispensing records for more than 8.1 million commercially insured

people in the United States. This study was approved by the Institutional Review Board at the

University of Kentucky, and the requirement to document informed consent was waived. All

data used in this study were anonymized and deidentified. Data retrieved from SQL queries

were pre-processed in R software (version 3.4.3, The R Foundation for Statistical Computing,

Austria) for dataset merging, wrangling and formatting (packages used: ‘readr’, ‘dplyr’,

‘stringr’, ‘ggplot2’, ‘data.table’).

Study subjects

Subjects were selected based on the following criteria: 1) diagnosis with malignant PCa (ICD-

9-CM code 185 or ICD-10-CM code C61), 2) continuous or intermittent use of leuprorelin as

the only agent among LHRH agonists, and 3) availability of a PSA level before initiation of leu-

prorelin (i.e, a baseline PSA level) and at least one level during treatment.

The following patients were excluded due to inability of our disease progression model to

describe certain unusual PSA profiles: 1) PSA levels decreased over time prior to initiation of

leuprorelin treatment, the baseline PSA level was undetectable, or there were multiple mea-

surements reported on the same day; 2) subjects had undetectable PSA levels throughout leu-

prorelin treatment. Patients were also excluded if 3) they had incomplete demographic data

(age, region and race). Lastly, patients were excluded if 4) they had extremely low hemoglobin

levels (< 6 g/dL), as acute illness was likely involved (S1 Fig).

For all selected subjects, PSA levels starting from baseline to the last available measurement

or before the initiation of continuous antiandrogen therapy, surgery, radiotherapy or chemo-

therapy (whichever occurred first) were included for model development. For each subject,

race, age, region and the use of antiandrogens (bicalutamide, enzalutamide, flutamide, niluta-

mide) within 30 days of leuprorelin initiation (presumably for preventing flare reactions asso-

ciated with leuprorelin treatment [6]) were extracted for model development. In addition,

laboratory measurements including those that have been reported to affect clinical outcomes

in castration-resistant PCa were extracted for each patient. These laboratory measurements

included aspartate transaminase (AST), alanine transaminase (ALT), serum creatinine (SCR),

alkaline phosphatase (ALP), albumin (ALB) and hemoglobin (HGB) [8, 9, 25–33].

Structural model

All modeling steps were conducted in NONMEM (ver. 7.3, ICON Development Solutions,

USA). Two mathematical models with different resistance development patterns were
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developed to describe the observed PSA kinetics. In the first model (Model I), drug resistance

was developed from PCa tumor cells that were initially sensitive to LHRH treatment and

caused by adaptive responses, such as target gene mutations, altered expression of therapeutic

targets, and stimulation of compensatory signaling pathways [34]. The following equation

modified from Wilkerson et al [14] was used to describe Model I:

PSAt ¼ BAS � e
G�tsðe� D�tk þ eG�tk � 1Þ ð1Þ

where PSAt is the tumor burden represented by the PSA level at time t (in days); BAS is the

baseline PSA; D is the drug effect on PSA, which decays over time due to the development of

drug resistance; and G is the rate of growth of PSA due to proliferating tumor. Ts represents

the time of PSA growth before the initiation of LHRH treatment; ts = t if t� time of the first

LHRH dose (t1) and ts = t1 if t>t1. Tk represents the time after the initiation of LHRH treat-

ment; tk = 0 if tk�t1 and tk = t-t1 if t>t1.
It is widely recognized that tumor is highly heterogeneous, thus drug resistance can occur

from treatment-induced selection of a subpopulation of drug-resistant cancer cells that existed

in the original tumor [34, 35]. Therefore, Model II in Eqs 2 and 3 was used to describe this

type of drug resistance:

PSARt ¼ BAS � ðRÞ � e
GR�t ð2Þ

PSASt ¼ BAS � ð1 � RÞ � e
GS�ts � e� DS�tk ð3Þ

where PSART and PSAST represent PSA levels at time t produced by drug-resistant and drug-

sensitive cancer cell population, respectively. R is the proportion of drug-resistant cancer cells

in the initial tumor population. R is expressed as e-RP in the modeling process in order to

obtain values of R between 0 and 1. GR and GS are growth rates of PSA due to replicating drug-

resistant and drug-sensitive cancer cells, respectively. DS is the drug effect on PSA levels due to

killing of the drug-sensitive cancer cells. Ts represents the time of PSA growth before the initia-

tion of LHRH treatment; ts = t if t� t1 and ts = t1 if t>t1. Tk represents the time after the initia-

tion of LHRH treatment; tk = 0 if tk�t1 and tk = t-t1 if t>t1.
Inter-individual variability in the studied population was modeled for all parameters as fol-

lows:

yi ¼ yTypicale
Zi ð4Þ

where θi is a model parameter, θTypical is the typical value of the corresponding parameter in

the population, and ηi is a normally distributed random effect with a mean of 0 and a variance

of ωi2. The residual error model in the analysis was additive error as follows:

DVij ¼ dDVij þ �ij ð5Þ

where DVij and dDVij stand for jth log observed and predicted concentration for the ith subject.

εij follows normal distribution with a mean of 0 and a variance of s2
add. Proportional error

model and mixed error model were also assessed in the analysis.

Data were analyzed by nonlinear mixed effects modeling utilizing the Monte Carlo

Parametric Expectation Maximization (MCPEM) method in NONMEM software (version 7.3,

ICON Development). The details of the MCPEM algorithm have been presented elsewhere

[36–38]. Briefly, two-stage hierarchical nonlinear mixed effects modeling was used to find the

optimal population mean μ and variance O that best describe the observed data. Final popula-

tion parameters μ and O were obtained by first evaluating the conditional mean �yiand
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conditional variance �Bi for each subject using fixed values of μ and O (the expectation step E)

according to Eqs 6 and 7, followed by evaluating updates to μ and O using Eqs 8 and 9 (the

maximization step M) [37–39].

Expectation (E) step:

�yi
¼

PN
k¼1
ykWðliðykÞ; hðykÞÞ

PN
k¼1
WðliðykÞ; hðykÞÞ

ð6Þ

�Bi¼
PN

i¼1
ðyk �

�yi
Þðyk �

�yi
Þ
0

WðliðykÞ; hðykÞÞ
PN

i¼1
WðliðykÞ; hðykÞÞ

ð7Þ

Maximization (M) step:

m ¼
1

m
Pm

i¼1
�yi

ð8Þ

m ¼
1

m
Pm

i¼1
ð�yi
� mÞð�yi

� mÞ
0

þ
1

m
Pm

i¼1
�Bi ð9Þ

where li(θk) is the likelihood function for subject i regarding to parameter θk given data; h(θk)
is the density function of θk given μ and O. The weightW depends on likelihood function,

li(θk), density function (suppressing dependence on μ and O), and the method of Monte-Carlo

method used, for N randomly generated parameter vectors of θk.m represents the total num-

ber of subjects in the analysis. E and M steps were repeated until μ and O no longer change

[36, 37]. At this point, final population parameters μ and O that best described the data were

obtained. In MCPEM, the Monte-Carlo integration method was used to evaluate �yiand �Bidur-

ing the expectation step [36, 37].

The parameters of the developed models were obtained by fitting the models to PSA levels

from all subjects simultaneously. Comparison of alternative nested structural models was

based on the typical goodness-of-fit diagnostic plots and likelihood ratio test [40, 41]. When

comparing alternative nested hierarchical models, the differences in objective function value

(OFV), defined as -2log(likelihood), are approximately chi-square distributed with n degrees of

freedom (n is the difference in the number of parameters between the full and the reduced

model) [41]. Differences in OFV of greater than 10.83 for one degree of freedom, correspond-

ing to a significance level of 0.001, were used to discriminate two nested hierarchical models.

This stringent criterion was used because of multiple comparisons inherent in the model selec-

tion procedure and random noise associated with the Monte-Carlo sampling technique

employed in the MCPEM algorithm [39, 40, 42]. The number of simulated Monte-Carlo

parameter sets (ISAMPLE) used for the E step evaluation determined the random noise associ-

ated with model parameters and likelihood estimation in the MCPEM method. Larger ISAM-

PLE was associated with lower random noise of likelihood for more reliable model selection

but at the expense of increased computation times. Therefore, to achieve the desirable balance

between random noise of model parameters/likelihood and computation time, a sequential

approach with different ISAMPLE in different stages of the MCPEM was used in the analysis.

First, ISAMPLE of 1000 for first 150 EM iterations and then ISAMPLE of 2000 for another 50

EM iterations were used in the burn-in phase of MCPEM to achieve the stationary phase rap-

idly. Then, ISAMPLE of 50,000 for 50 EM iterations was used to obtain stable and desirable

final model parameter estimates using MCPEM model convergence criteria described previ-

ously [42]. In brief, last five EM iterations of population mean parameters and inter-subject
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variances with ISAMPLE of 50,000 at stationary state were examined using linear regression

analysis. A Bonferroni method using the following equation was used to adjust the p value of

linear regression analysis for multiple hypothesis testing:

aB ¼
a

B
ð10Þ

where αB, α, and B were the Bonferroni-adjusted p value, preset p value (set at 0.05), and the

number of tested parameters, respectively. If changes in all tested parameters across iterations

were not statistically different from zero, then model convergence is assumed. To compare

non-nested models such as Models I and II in this study, the following Akaike information cri-

terion (AIC) was used to select the best model with lowest AIC value:

AIC ¼ OFV þ 2 � NPAR ð11Þ

where NPAR is the total number of model parameters.

PSA concentrations below 0.1 ng/ml (lower limit of assay quantification) were treated as

fixed point censored observations, and the maximum likelihood was used to fit the model to

the censored observations [42, 43]. In this case, the likelihood for all data is maximized with

respect to model parameters, and the likelihood for a censored concentration was taken to be

the likelihood that the censored observation is truly below the limit of quantification. This

approach allowed PSA levels <0.1 ng/mL to be included into model development to better

characterize the PSA kinetics and treatment effect of leuprorelin.

Covariate analysis

In order to investigate and quantify relationships between important model parameters and

patient-specific factors (covariates), final covariate model was developed using a modified

Wald’s approximation method with backward elimination (WAM-BE) proposed by our group

[44, 45]. In brief, all potential covariate-parameter relationships were incorporated into the

best structural model to form the full model with covariates. Parameter estimates and the

covariance matrix (COV) from the full model fit were used to calculate the Wald’s approxima-

tion statistics. Assuming the vector of fixed-effect covariate parameters was k×1 vector θ, and

the corresponding COV for these parameters was k×kmatrix C. θ could be partitioned to p×1
vector θ1 and q×1 vector θ2, where θ1 were fixed-effect covariate parameters that need to be

estimated and θ2 were covariate parameters restricted to zeros under the hypothesized submo-

del. Then θ and the corresponding C could be defined as follows:

θ ¼
θ1

θ2

 !

and C ¼
C11 C12

C21 C22

 !

ð12Þ

The Wald’s approximation to the likelihood ratio test (LRT) statistic (Λ´) for the hypothe-

sized submodel that θ2 = 0 was described by the equation:

L
0
¼ θ0

2
C� 1

22
θ2 ð13Þ

It has been shown that maximum likelihood estimates of θ followed asymptotically multi-

variate normal distribution with covariance matrix C [46]. Under H0: θ2 = 0, the asymptotical

distribution of Λ´ followed w2
q distribution, and hypothesis testing could be applied to decide

whether or not to reject H0. The calculation of Λ´ in Eq 13 did not require running the submo-

dels, and therefore, multiple hypotheses could be efficiently tested by using results from the

full model fit. In WAM-BE method, the backward elimination (BE) process was used to screen
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and eliminate insignificant covariates from the full model based on the difference in values of

Λ´between two models. Differences in Λ´ of greater than 10.83 for 1 degree of freedom, corre-

sponding to a significance level of 0.001, were used to discriminate two nested hierarchical

models. The best models selected by BE approach based on Λ´ values were then used as the

starting models for selecting the final covariate model using actual NONMEM runs with the

BE process.

Continuous covariates were added into the structural model as follows [40]:

yi ¼ yTypical
COVj

medianðCOVjÞ

 !ycovij

ð14Þ

where COVj is the value of jth continuous covariate, and θcovij is the effect the jth covariate has

on the ith parameter.

Categorical covariates were added as follows:

yi ¼ yTypical � e
ðCOVj�ycovijÞ ð15Þ

where COVj is an indicator variable (e.g., if the categorical variable is gender, COVj = 1 when

the subject is male, and COVj = 0 when the subject is female).

The final model was evaluated by routine diagnostic plots. Additionally, prediction-cor-

rected visual predicted check (VPC) was done in PsN (ver. 4.9.0, Uppsala University, Sweden)

using 1000 simulations and automatic binning, to assess the performance of the final model

[47]. The final population model was used to examine the effects of statistically significant

covariates on clinical outcomes associated with leuprorelin treatment. PSA progression is

defined by the Prostate Cancer Clinical Trials Working Group (PCWG2 and PCWG3) as “the

date that a 25% or greater increase and an absolute increase of 2 ng/mL or more from the

nadir is documented, which is confirmed by a second value obtained 3 or more weeks later”

[48, 49]. The percentages of leuprorelin-treated subjects with PSA progression within one,

two, and three years simulated from 1000 subjects using 5th percentile, median and 95th per-

centile values of continuous covariates and different categories of categorical variables were

obtained and compared. Simulation was conducted with the final population model using R.

The parallel computing platform of NONMEM was implemented in a single workstation

equipped with dual Intel Xeon E5-2698 v4 20-cores CPU with 2.20 GHz, a Windows 10 Enter-

prise operating system and Intel Parallel Studio XE 2016 Fortran compiler.

Results

A total of 1113 PSA observations from 264 subjects were used for model development. Baseline

demographic data and laboratory values of all subjects are summarized in Table 1. The study

population had a median age of 80 and median baseline PSA of 8.5 ng/mL. There was no miss-

ing baseline demographic data and laboratory values among subjects included in the analysis.

Model I that assumed drug resistance was developed from PSA-producing PCa cells that

were initially sensitive to LHRH treatment, had an AIC value of 865.432. Model II that

assumed drug resistance was originated from treatment-induced selection of a subpopulation

of drug-resistant PSA-producing cancer cells, had a lower AIC of 295.671. Therefore, Model II

was selected as the structural model. Use of proportional or mixed error models resulted in

unstable models, so an additive error model was used. HGB was a significant covariate that

affects the proportion of drug-resistant cells (R or e-RP) in the original tumor. Baseline PSA

(BAS) and antiandrogen use (AND) were significant covariates on the drug killing effect of

drug-sensitive PSA-producing cancer cell population (DS). Addition of these three covariates
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into the model resulted in significant decrease in OFV (50.008; p<0.001 for degrees of free-

dom = 3). The final model with covariates was presented as follows:

RP ¼ yRP
HGB
13:6

� �yHGB RP

ð16Þ

DS ¼ yDS �
BAS
8:5

� �yBAS DS

� eINDAND�yAND DS ð17Þ

where θHGB_RP and θBAS_DS are model parameters used to describe the effect of HGB on RP
and BAS on DS, respectively. θAND_DS is used to describe the effect of AND on DS. INDAND = 1

if the patient used antiandrogen within 30 days of leuprorelin initiation and = 0 otherwise. The

parameter estimates of the final model with covariates are presented in Table 2. All model

parameters were estimated with good precision (percent coefficient of variation, %CV<50).

The population estimate of DS was 3.78 x 10−2 day-1. Population estimate of growth rate for

drug-sensitive PSA-producing tumor cell population (GS) was 1.96 x 10−3 day-1, corresponding

to a PSA doubling time of 354 days. Population estimate of RP was 3.94, indicating that 1.94%

Table 1. Summary of baseline demographic data and laboratory values of subjects included in model

development.

Baseline characteristics Median (range) or counts

Age (years) 80 (60–100)

Race

Caucasian 189

Black 59

Hispanic/other 16

Region

South 196

West 20

Midwest 42

Northeast 6

Antiandrogen use

Yes 33

No 231
aAST (IU/L) 20 (9–91)
bALT (IU/L) 18 (4–110)
cSCR (mg/dL) 1.10 (0.700–9.30)
dALP (IU/L) 76.5 (23.0–3640)
eALB (g/dL) 4.13 (2.90–4.80)
fHGB (g/dL) 13.6 (6.80–17.4)

Baseline gPSA (ng/mL) 8.50 (0.200–782)

Data are presented as median (range) or counts.
aaspartate transaminase
balanine transaminase
cserum creatinine
dalkaline phosphatase
ealbumin
fhemoglobin
gprostate-specific antigen.

https://doi.org/10.1371/journal.pone.0230571.t001

PLOS ONE Disease progression modeling of hormone-sensitive prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0230571 March 24, 2020 8 / 22

https://doi.org/10.1371/journal.pone.0230571.t001
https://doi.org/10.1371/journal.pone.0230571


(calculated from R = e-RP) of the original PSA-producing cancer cell population was inherently

resistant to leuprorelin treatment. Population estimate of growth rate for drug-resistant PSA-

producing cancer cell population (GR) was 6.54 x 10−4 day-1, corresponding to a PSA doubling

time of 1060 days.

Large between-patient variability was observed in these parameters, possibly due to diverse

PSA kinetics in the studied population. The estimated value of θHGB_RP was 2.30, suggesting

that subjects with lower HGB levels had lower RP and therefore were less likely to respond to

leuprorelin treatment. Typical values of RP were 2.37, 3.94, and 5.73 for subjects with 5th per-

centile (10.9 g/dL), median (13.6 g/dL), and 95th percentile (16.0 g/dL) levels of HGB, respec-

tively. The corresponding proportions of resistant PSA-producing cancer cell population in

the original tumor were 9.36%, 1.94%, and 0.326%, respectively. The estimated value of

θBAS_DS was 0.174, indicating that higher baseline PSA levels were associated with better

LHRH-treatment effect on PSA level due to killing of drug-sensitive cancer cell population.

Typical values of DS were 2.32 x 10−2, 3.78 x 10−2, and 5.99 x 10−2 day-1 for subjects with 5th

percentile (0.515 ng/mL), median (8.50 ng/mL), and 95th percentile (120 ng/mL) levels of BAS,

respectively. The estimated value of θAND_DS was 6.77 x 10−1, implying that subjects with anti-

androgen use within 30 days of leuprorelin initiation was associated with 96.8% higher LHRH

treatment effect on killing of drug-sensitive PSA-producing cancer cell population compared

to those without antiandrogen use.

As shown in Fig 1, diverse PSA kinetics profiles from different patients were well described

by the final model. The diagnostic plots in Fig 2 and the prediction-corrected VPC plot shown

Table 2. Parameter estimates of the final PSA kinetics model.

Parameter Estimate a%CV

Structural Model
bDS (day-1) 3.78 x 10−2 6.19
cGs (day-1) 1.96 x 10−3 22.5
dRP 3.94 7.44
eGR (day-1) 6.54 x 10−4 28.4

Interindividual Variability

o2
DS 0.453 14.8

o2
GS 2.59 19.7

o2
RP 0.944 16.4

o2
DR 3.76 21.1

Covariate Model
fHGB on RP (θHGB_RP) 2.30 24.7
gBAS on DS (θBAS_DS) 0.174 24.5
hAND on DS (θAND_DS) 0.677 30.0

Residual Variability

Additive error (σadd) 2.01x10-1 3.49

a%CV = percent coefficient of variation
bdrug effect on drug-sensitive tumor cells
cgrowth rate of drug-sensitive cells
dexp(-RP) represents the fraction of drug-resistant tumor cells in the original tumor
egrowth rate of drug-resistant cells
feffect of hemoglobin level on RP
geffect of baseline prostate-specific antigen level on Ds
heffect of antiandrogen use on Ds

https://doi.org/10.1371/journal.pone.0230571.t002
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in S2 Fig show that the observed PSA values were generally in agreement with predicted PSA

levels, and that the final model provided a good fit for the data. The final model was then used

in simulation to assess effects of HGB, BAS and AND on PSA progression within one, two and

three years, and the results are shown in Fig 3. The percentages of leuprorelin-treated subjects

with PSA progression within one year for subjects with 5th percentile, median and 95th percen-

tile of HGB were 19.8, 13.9 and 10.5, respectively (Fig 3A). 38.8, 28.2, and 22.1% of the leupror-

elin-treated subjects with 5th percentile, median and 95th percentile of HGB were expected to

experience PSA progression within three years after initiation of leuprorelin treatment. The

percentages of leuprorelin-treated subjects with PSA progression within one year in subjects

with 5th percentile, median and 95th percentile of BAS were 6.9, 13.9, and 25.6, respectively

(Fig 3B). The percentages of leuprorelin-treated subjects with PSA progression within three

years in subjects with 5th percentile, median and 95th percentile of BAS were 15.8, 28.2, and

47.8, respectively (Fig 3B). 28.5% of leuprorelin-treated subjects with antiandrogen use and

28.2% of those without antiandrogen use were expected to experience PSA progression within

three years of treatment period.

Discussion

To the best of our knowledge, this was the first study to use medical claims data to construct a

population-based disease progression model to describe PSA kinetics in patients with hor-

mone-sensitive PCa treated with leuprorelin. Furthermore, the model could quantify effects of

patient-specific factors (covariates) on model parameters and PSA kinetics in these patients.

Although leuprorelin was selected as the only form of ADT in this analysis, we would expect

that our results could be extrapolated to other LHRH agonists, given the similarity in their effi-

cacy reported in clinical trials [50, 51].

Population data analysis using nonlinear mixed effects modeling approach has been shown

to provide precise and robust estimates of drug-related model parameters and their population

variability using clinical data [41, 52]. Among different nonlinear mixed effects modeling

methods, MCPEM was used to successfully develop the final population disease progression

model in this study, due to the ability of this method to precisely approximate the true log-like-

lihood, and its stability and amenability to efficient parallel computing when dealing with

complex models with large datasets [38, 39, 53].

One of the important goals in population-based disease progression modeling is to quantify

effects of covariates on model parameters and clinical outcomes. Established quantitative rela-

tionships are useful for helping clinicians make conscious decisions on selecting optimal drug

treatment, with the ultimate goal of implementing individualized or personalized medicine

[54]. However, development of population-based disease progression models with covariate-

parameter relationships is both time-consuming and labor-intensive, as many submodels with

different covariate-parameter relationships need to be created, tested, and compared. There is

a total of 24x11 = 1.76 x 1013 possible submodels with different covariate-parameter relation-

ships in this study. Due to the structural model complexity and large number of observations,

a single covariate model run with ISAMPLE of 50,000 executed in parallel mode with 25 Intel

Xeon 2.2 GHz E5-2968 v4 computing cores took about 10 min to complete. Therefore, it was

impossible to explore all the possible submodels in this setting. Hence, the WAM-BE method

originated by our group was used to develop covariate models [45]. WAM-BE only requires a

single full model fit and does not require fitting the submodels to estimate the difference in

OFV between two tested models for covariate selection. In addition, WAM-BE is designed to

overcome the inherent limitation of the original WAM method in population data analysis

[44] and it achieved comparable results with significantly shorter computational time in
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models with large numbers of model parameters and tested covariates. Although the original

WAM method uses the Wald approximation to LRT statistic (Λ´) from the full model instead

of actual NONMEM model runs to screen covariate models, it is extremely inefficient in the

presence of large numbers of tested model parameters and covariates due to the need to calcu-

late Λ´ values for all possible covariate models. In this study, 1.76 x 1013 possible covariate

models needed to be screened and tested with the original WAM method. Assuming the time

to compute Λ´ value for a covariate model was about 10−6 seconds, a total of 1.76 x 107 seconds

or 203 days would be needed to calculate Λ´ values of all possible covariate models. To over-

come this limitation, we used the sequential backward elimination (BE) process to efficiently

eliminate any insignificant covariate models to generate the best starting models, which were

subject to subsequent actual NONMEM runs with the BE process to select the final covariate

model. Therefore, the WAM-BE method significantly reduced the number of covariate models

needed to be tested using WAM-derived Λ´ values and actual NONMEM runs, and it only

took about 39 min for our workstation to develop the final covariate model.

ADT is the standard of care for patients with hormone-sensitive PCa, but most patients

develop castration resistance within 1–3 years [53]. The underlying mechanism is thought to

be multifactorial and involve several molecular and genetic alterations, and the “adaptation”

and the “clonal selection” models have been proposed to explain this phenomenon [55]. With

the “adaptation” model, early PCa cells are assumed to have similar androgen requirement for

survival and growth, and castration resistance stems from genetic or epigenetic alterations in

the cells. With the “clonal selection” model, it is assumed that early PCa cells have heteroge-

neous androgen requirement, and after ADT castration-resistant cells gradually outgrow cas-

tration-sensitive cells due to the survival advantage of the former [56].

In our model, PSA was used as a marker of tumor burden in the modeling of disease pro-

gression, as PSA levels are routinely used for disease monitoring and surveillance purposes in

PCa [20–23], and they are readily retrievable from health claims database. PSA level has been

shown to be closely related to the tumor volume [57], and it was found to reflect the androgen

milieu in patients with localized PCa on ADT [51]. A rising PSA is usually the first sign of

tumor regrowth, followed by worsening of disease identified by imaging and development of

clinical symptoms [49]. In this study, Model I was the mathematical representation of “adapta-

tion” model that assumed drug resistance was developed from PSA-producing cancer cells ini-

tially sensitive to LHRH treatment. On the other hand, Model II was the “clonal selection”

model that assumed drug resistance was developed from a subpopulation of drug-resistant

PSA-producing cancer cells in the original tumor. Our predefined model selection criteria

determined that Model II was superior than Model I at describing the PSA profiles of our

study subjects, and this finding was consistent with the observations from some recent studies

[55].

Based on recent recommendations from the PCWG, PSA responses to drug treatment that

affect tumor cell kill can be categorized into three distinct patterns: 1) significant and sustained

PSA decline after drug treatment for “responders”, 2) initial decline followed by a slow PSA

increase for “partial responders”, and 3) a transient decrease followed by a rapid PSA increase

observed in “non-responders” [49]. As shown in Fig 1, the final model in this study was able to

adequately describe these three distinct PSA responses to leuprorelin treatment. Furthermore,

the model was able to provide additional biological insight into the observed PSA patterns. For

example, Subject C in Fig 1C showed least response to treatment and most significant increase

in PSA within the follow-up period among the representative subjects. The modeling results

suggested that this subject had a high percentage of drug-resistant cancer cell population of

28.1% and high growth rate of the resistant tumor cell population of 7.97 x 10−3 day-1, both of

which were more than 10 times higher than the population mean values. On the other hand,
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Fig 1. Profiles of PSA kinetics in representative patients with hormone-sensitive prostate cancer. Black line represents model-predicted PSA

levels. Open circles and solid circles represent observed PSA levels above the lower limit of quantification (LLOQ) and observed PSA levels below

the LLOQ, respectively. Red and green vertical dashed lines represent the first and the last recorded date of leuprorelin treatment, respectively.

Blue horizontal dotted line represents the LLOQ value of the PSA assay. Black arrows represent the fill dates of leuprolide.

https://doi.org/10.1371/journal.pone.0230571.g001
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the profile of Subject B in Fig 1B was characterized by a decrease followed by a slow increase of

PSA. As shown in Fig 4B, the rapid but transient decline in the total PSA level after leuprorelin

treatment was due to the killing of drug-sensitive PSA-producing cancer cell population. How-

ever, the high growth rate of drug-resistant PSA-producing cancer cell population of 1.53 x

10−2 day-1 (compared to the population estimate of 6.54 x 10−4 day-1) contributed to the subse-

quent steady rise in PSA level observed in this subject. On the other hand, PSA profile of Sub-

ject A in Fig 1A was characterized by significant and sustained PSA decline after leuprorelin

treatment and therefore could be described as a "responder”. The low percentage of drug-

Fig 2. Diagnostic plots for the final disease progression model. From left to right and top to bottom: Observed log PSA concentrations (DV)

versus individual log predicted values (IPRED), individual weighted residuals (IWRES) versus the IPRED, IWRES versus time, and expected

conditional weighted residuals (ECWRES) versus the expected log predicted values (EPRED). The red line represents the loess regression line.

https://doi.org/10.1371/journal.pone.0230571.g002
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resistant PSA-producing cancer cell population of 6.36 x 10−2% combined with the slow

growth rate of the drug-resistant PSA-producing cancer cell population of 3.53 x 10−4 day-1

contributed to the sustained PSA decline in this subject (Fig 4A).

Only a few studies have attempted to develop predictor models for development of castra-

tion resistance in patients with hormone-sensitive PCa. Most of these predictive models were

developed using multivariate analysis that provides very little biological insight on the relation-

ship between identified predictors and disease progression [8–12]. Several PSA kinetic param-

eters such as time to PSA nadir and PSA nadir level have been shown to be significant

predictors of disease progression for PCa patients receiving ADT [9–11]. However, the com-

plex quantitative relationship between clinical predictors and PSA kinetics and disease pro-

gression in ADT-treated PCa patients remains largely unknown. In this study, we developed

the first mechanistic population-based disease progression model that allowed us to investigate

such complex relationship. Baseline PSA and HGB were identified as important covariates on

PSA kinetics, consistent with previous findings that these two covariates played an important

role in the development of castration resistance [8, 9, 12]. However, these two covariates

affected different model parameters and hence had very different results on PSA kinetics and

biochemical progression. Both baseline PSA and antiandrogen use were statistically significant

covariates on drug-killing effect on leuprorelin-sensitive PSA-producing cancer cells, and

HGB significantly affected the fraction of cancer cells resistant to leuprorelin treatment. Drug-

killing rates on leuprorelin-sensitive PSA-producing cancer cells were higher in subjects with

higher baseline PSA levels and those with antiandrogen use within the 30 days of leuprorelin

treatment initiation, compared to those with lower baseline PSA levels and those without anti-

androgen use. Subjects with lower hemoglobin levels had higher fraction of leuprorelin-resis-

tant cancer cells in the original tumor.

Subsequently, simulation was performed to evaluate the relationship between these covari-

ates and PSA kinetics and disease progression. The results showed that subjects with higher

baseline PSA levels were more likely to experience PSA progression (Fig 3B), which may seem

counterintuitive given that higher baseline PSA was associated with higher drug-killing effect

on leuprorelin-sensitive PSA-producing cancer cells in our model. Further analysis of the sim-

ulated results showed that the baseline PSA level had a complicated effect on the overall PSA

kinetics. The simulated median time to nadir levels was 294, 198, and 135 days after initiation

of leuprorelin in subjects with 5th percentile (0.515 ng/mL), median (8.50 ng/mL) and 95th per-

centile (120 ng/mL) of baseline PSA levels, respectively. The simulated median nadir levels

were 0.0220, 0.290, and 3.47 ng/mL for leuprorelin-treated subjects with 5th percentile, median

and 95th percentile of baseline PSA levels, respectively. Therefore, subjects with higher baseline

PSA levels had higher velocity of PSA decline and shorter time to achieve the nadir level after

treatment initiation, which was consistent with higher drug-killing effect on leuprorelin-sensi-

tive cancer cells in these subjects. Furthermore, subjects with higher baseline PSA levels also

had higher nadir PSA levels, possibly due to presence of higher numbers of leuprorelin-resis-

tant cancer cells, and therefore they were more likely to experience PSA progression. Overall,

our results confirmed findings from previous studies that associated higher baseline PSA levels

with shorter time to castration resistance, and they were also in agreement with observations

from Ji et al that higher PSA nadir, higher velocity of PSA decline and shorter time to PSA

nadir were predictive of increased risk of progression to castration resistance [11]. On the

Fig 3. Simulation results for percentages of subjects with PSA progression within one, two, and three years. 3A

and 3B show simulated PSA progression in subjects with 5th percentile, median and 95th percentile of hemoglobin

level and baseline PSA level, respectively.

https://doi.org/10.1371/journal.pone.0230571.g003
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other hand, subjects with lower levels of HGB were shown to have a higher chance of PSA pro-

gression (Fig 3A), consistent with results from previous studies [8, 12]. Mechanistically, the

simulated median time to nadir levels were 155, 198, and 240 days after initiation of leuprore-

lin in subjects with 5th percentile (10.9 g/dL), median (13.6 g/dL) and 95th percentile (16.0 g/

dL) of HGB levels, respectively. The simulated median nadir levels were 1.19, 0.290, and

0.0574 ng/mL for subjects with 5th percentile, median and 95th percentile of HGB levels,

respectively. Again, we could see that subjects with lower HGB levels had higher PSA nadir,

higher velocity of PSA decline and shorter time to PSA nadir, which were the identified PSA

kinetic risk factors predictive of shorter time to biochemical progression. Lastly, while use of

antiandrogen within 30 days of initiation of leuprorelin treatment was identified as a statisti-

cally significant covariate affecting drug-killing effect on leuprorelin-sensitive PSA producing

tumor cells, it had minimum effect on PSA progression in our simulation. One plausible expla-

nation was that as antiandrogen use could only be temporary in the study population, the

observed inhibitory effect was most likely on PSA flare alone, which has not been found to be

associated with tumor progression and negative outcomes [58].

There are several limitations to our study. First, while medical claims database can be used

for longitudinal population studies to address questions in real-life clinical practice, the highly

heterogeneous nature of the database posed technical challenges to data analysis. For example,

patients on both continuous and intermittent regimens of leuprorelin were included in the

analysis, as it was difficult to quantitatively identify and separate these two types of treatment

regimens based on claims data alone. Additionally, because of the heterogeneity of dosing regi-

mens in the studied population, patient compliance could not be accurately assessed. Intermit-

tent ADT has been extensively tested in PCa patients since the 1980s, mainly due to evidence

of its anticancer efficacy and its ability to reduce ADT-related adverse effects [59]. With inter-

mittent ADT, the patient receives ADT for several months consecutively until PSA levels drop

below a predetermined threshold, after which the patient enters an off-treatment period [60].

Patients receiving the two treatment modalities may have different patterns of disease progres-

sion. Nevertheless, two randomized trials showed that intermittent ADT was noninferior to

continuous ADT in terms of survival endpoints in PCa patients [61, 62], while the largest trial

so far comparing continuous and intermittent ADT could not conclude or exclude noninfer-

iority of intermittent ADT [63]. In our preliminary analysis, dose intensity (leuprolide dose

received normalized to an expected dose of 7.5 mg per month) was calculated. As expected,

dose intensity varied greatly among patients on continuous and intermittent ADT, and it did

not have statistically significant effect on model parameters. Additionally, exclusion of a large

proportion of patients (86.4%) diagnosed with malignant PCa and treated by leuprorelin in

our effort to build an explainable model, as well as the presence of large between-patient vari-

ability observed in some model parameter estimates, may pose a limitation to interpretation of

our findings. Nevertheless, retrospective nature of this study suggested that our findings will

need to be validated in prospective clinical studies. Second, some clinical measures that assess

disease severity and/or metastasis spread, including metastasis stage, the Gleason score, East-

ern Cooperative Oncology Group (ECOG) performance status and the Soloway score, were

shown to be predictive of biomedical progression [9, 11, 12]. However, they were not available

in the medical claims database, and therefore they could not be evaluated for their importance

in our model. Similarly, though LHRH agonists have been assumed to cause testosterone sup-

pression [64], testosterone levels were not available in our patient database for us to investigate

the possibility of incomplete testosterone suppression and its potential relationship with PSA

kinetics. Third, as survival data were not available in our database, analyses linking PSA kinet-

ics and biomedical progression to survival endpoints were not conducted in this analysis. Last

but not least, though PSA level has been previously shown to be significantly associated with
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Fig 4. Simulated total PSA and PSA produced by drug-sensitive and drug-resistant tumor cells in representative

subjects. 4A and 4B demonstrate simulated PSA levels in a “responder” Subject A and a “partial responder” Subject B,

respectively. Black line represents model predicted total PSA level. Pink and grey solid lines represent model predicted

PSA from drug-sensitive and drug-resistant tumor cells, respectively. Red and green vertical dashed lines represent the

first and the last recorded date of leuprorelin treatment, respectively. Blue horizontal dotted line represents the lower

limit of quantification (LLOQ) of the PSA assay.

https://doi.org/10.1371/journal.pone.0230571.g004
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tumor volume [57], it is not as accurate as quantitative imaging biomarkers in representing the

tumor burden, and the PSA response does not always associate with treatment response or sur-

vival [65].

Conclusions

In summary, in this study a novel population-based modeling approach was used to provide

the first mechanistic insight on how PSA kinetics contributed to the subsequent development

of castration resistance in patients with hormone-sensitive PCa treated with leuprorelin. Com-

pared to previous studies, our study successfully modeled the underlying resistance mecha-

nism of PCa cells and provided new biological insight into PSA kinetics in this patient

population of interest. The application of population-based disease progression model to exist-

ing clinical data allowed estimation of tumor resistant patterns and growth/regression rates

that could greatly enhance our understanding of how hormone-sensitive PCa responds to

LHRH agonists. It may serve as a platform for incorporating more comprehensive health data

in the future, including laboratory measurements, genomic and proteomic data to further per-

sonalized medicine in patients with hormone-sensitive PCa.

Supporting information

S1 Fig. Patient selection flow diagram.

(TIF)

S2 Fig. Prediction-corrected visual predictive check of the final model. Blue circles repre-

sent prediction-corrected observations (log-transformed PSA concentrations). The solid red

line represents the median prediction-corrected observations, and the semitransparent red

area represents the simulated 95% confidence interval for the median. The dashed red lines

represent the 5% and 95% percentiles of prediction-corrected observations, and the semitrans-

parent blue areas represent their respective simulated 95% confidence intervals.

(TIF)

S1 File. Data dictionary for the Humana dataset.

(XLSX)

Author Contributions

Conceptualization: Fei Tang, Chee M. Ng.

Data curation: Yixuan Zou.

Formal analysis: Yixuan Zou, Chee M. Ng.

Methodology: Yixuan Zou, Chee M. Ng.

Resources: Jeffery C. Talbert.

Supervision: Chee M. Ng.

Visualization: Yixuan Zou, Chee M. Ng.

Writing – original draft: Yixuan Zou, Fei Tang, Chee M. Ng.

Writing – review & editing: Fei Tang, Chee M. Ng.

PLOS ONE Disease progression modeling of hormone-sensitive prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0230571 March 24, 2020 18 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230571.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230571.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230571.s003
https://doi.org/10.1371/journal.pone.0230571


References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for clinicians. 2016; 66

(1):7–30.

2. Wallis CJD, Glaser A, Hu JC, Huland H, Lawrentschuk N, Moon D, et al. Survival and Complications

Following Surgery and Radiation for Localized Prostate Cancer: An International Collaborative Review.

Eur Urol. 2017:055.

3. Gillessen S, Attard G, Beer TM, Beltran H, Bossi A, Bristow R, et al. Management of Patients with

Advanced Prostate Cancer: The Report of the Advanced Prostate Cancer Consensus Conference

APCCC 2017. Eur Urol. 2017:002.

4. Loblaw DA, Virgo KS, Nam R, Somerfield MR, Ben-Josef E, Mendelson DS, et al. Initial hormonal man-

agement of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of

an American Society of Clinical Oncology practice guideline. J Clin Oncol. 2007; 25(12):1596–605.

Epub 2007 Apr 2. https://doi.org/10.1200/JCO.2006.10.1949 PMID: 17404365

5. Sharifi N, Gulley JL, Dahut WL. An update on androgen deprivation therapy for prostate cancer. Endocr

Relat Cancer. 2010; 17(4):R305–15. https://doi.org/10.1677/ERC-10-0187 Print 2010 Dec. PMID:

20861285

6. Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. Jama. 2005; 294

(2):238–44. https://doi.org/10.1001/jama.294.2.238 PMID: 16014598

7. Sharifi N. Mechanisms of androgen receptor activation in castration-resistant prostate cancer. Endocri-

nology. 2013; 154(11):4010–7. https://doi.org/10.1210/en.2013-1466 PMID: 24002034

8. Chen CH, Hsieh JT, Huang KH, Pu YS, Chang HC. Predictive clinical indicators of biochemical progres-

sion in advanced prostate cancer patients receiving Leuplin depot as androgen deprivation therapy.

PLoS One. 2014; 9(8):e105091. https://doi.org/10.1371/journal.pone.0105091 eCollection 2014. PMID:

25121948

9. Regis L, Planas J, Carles J, Maldonado X, Comas I, Ferrer R, et al. Free Testosterone During Androgen

Deprivation Therapy Predicts Castration-Resistant Progression Better Than Total Testosterone. Pros-

tate. 2017; 77(1):114–20. https://doi.org/10.1002/pros.23256 Epub 2016 Nov 1. PMID: 27800640

10. Kongseang C, Attawettayanon W, Kanchanawanichkul W, Pripatnanont C. Predictive factor of andro-

gen deprivation therapy for patients with advanced stage prostate cancer. Prostate international. 2017;

5(1):35–8. Epub 2017/03/30. https://doi.org/10.1016/j.prnil.2017.01.004 PMID: 28352622; PubMed

Central PMCID: PMC5357969.

11. Ji G, Song G, Huang C, He S, Zhou L. Rapidly decreasing level of prostate-specific antigen during initial

androgen deprivation therapy is a risk factor for early progression to castration-resistant prostate can-

cer: A retrospective study. Medicine (Baltimore). 2017; 96(36):e7823. https://doi.org/10.1097/MD.

0000000000007823 PMID: 28885333.

12. Varenhorst E, Klaff R, Berglund A, Hedlund PO, Sandblom G, Scandinavian Prostate Cancer Group

Trial N. Predictors of early androgen deprivation treatment failure in prostate cancer with bone metasta-

ses. Cancer medicine. 2016; 5(3):407–14. https://doi.org/10.1002/cam4.594 PMID: 26765317; PubMed

Central PMCID: PMC4799954.

13. Cook SF, Bies RR. Disease Progression Modeling: Key Concepts and Recent Developments. Current

pharmacology reports. 2016; 2(5):221–30. Epub 2017/09/25. https://doi.org/10.1007/s40495-016-

0066-x PMID: 28936389; PubMed Central PMCID: PMC5602534.

14. Wilkerson J, Abdallah K, Hugh-Jones C, Curt G, Rothenberg M, Simantov R, et al. Estimation of tumour

regression and growth rates during treatment in patients with advanced prostate cancer: a retrospective

analysis. The Lancet Oncology. 2017; 18(1):143–54. https://doi.org/10.1016/S1470-2045(16)30633-7

PMID: 27979599

15. Venuto CS, Potter NB, Dorsey ER, Kieburtz K. A review of disease progression models of Parkinson’s

disease and applications in clinical trials. Mov Disord. 2016; 31(7):947–56. https://doi.org/10.1002/mds.

26644 PMID: 27226141; PubMed Central PMCID: PMC4931998.

16. Motheral BR, Fairman KA. The use of claims databases for outcomes research: rationale, challenges,

and strategies. Clin Ther. 1997; 19(2):346–66. https://doi.org/10.1016/s0149-2918(97)80122-1 PMID:

9152572.

17. Bloem BR, Ypinga JHL, Willis A, Canning CG, Barker RA, Munneke M, et al. Using Medical Claims

Analyses to Understand Interventions for Parkinson Patients. J Parkinsons Dis. 2018; 8(1):45–58.

Epub 2017/12/20. https://doi.org/10.3233/JPD-171277 PMID: 29254108; PubMed Central PMCID:

PMC5836412.

18. Tyree PT, Lind BK, Lafferty WE. Challenges of using medical insurance claims data for utilization analy-

sis. Am J Med Qual. 2006; 21(4):269–75. Epub 2006/07/20. https://doi.org/10.1177/

1062860606288774 PMID: 16849784; PubMed Central PMCID: PMC1533763.

PLOS ONE Disease progression modeling of hormone-sensitive prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0230571 March 24, 2020 19 / 22

https://doi.org/10.1200/JCO.2006.10.1949
http://www.ncbi.nlm.nih.gov/pubmed/17404365
https://doi.org/10.1677/ERC-10-0187
http://www.ncbi.nlm.nih.gov/pubmed/20861285
https://doi.org/10.1001/jama.294.2.238
http://www.ncbi.nlm.nih.gov/pubmed/16014598
https://doi.org/10.1210/en.2013-1466
http://www.ncbi.nlm.nih.gov/pubmed/24002034
https://doi.org/10.1371/journal.pone.0105091
http://www.ncbi.nlm.nih.gov/pubmed/25121948
https://doi.org/10.1002/pros.23256
http://www.ncbi.nlm.nih.gov/pubmed/27800640
https://doi.org/10.1016/j.prnil.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28352622
https://doi.org/10.1097/MD.0000000000007823
https://doi.org/10.1097/MD.0000000000007823
http://www.ncbi.nlm.nih.gov/pubmed/28885333
https://doi.org/10.1002/cam4.594
http://www.ncbi.nlm.nih.gov/pubmed/26765317
https://doi.org/10.1007/s40495-016-0066-x
https://doi.org/10.1007/s40495-016-0066-x
http://www.ncbi.nlm.nih.gov/pubmed/28936389
https://doi.org/10.1016/S1470-2045(16)30633-7
http://www.ncbi.nlm.nih.gov/pubmed/27979599
https://doi.org/10.1002/mds.26644
https://doi.org/10.1002/mds.26644
http://www.ncbi.nlm.nih.gov/pubmed/27226141
https://doi.org/10.1016/s0149-2918(97)80122-1
http://www.ncbi.nlm.nih.gov/pubmed/9152572
https://doi.org/10.3233/JPD-171277
http://www.ncbi.nlm.nih.gov/pubmed/29254108
https://doi.org/10.1177/1062860606288774
https://doi.org/10.1177/1062860606288774
http://www.ncbi.nlm.nih.gov/pubmed/16849784
https://doi.org/10.1371/journal.pone.0230571


19. Chang SL, Liao JC, Shinghal R. Decreasing use of luteinizing hormone-releasing hormone agonists in

the United States is Independent of Reimbursement Changes: A Medicare and Veterans Health Admin-

istration claims analysis. J Urol. 2009; 182(1):255–60; discussion 61. https://doi.org/10.1016/j.juro.

2009.02.141 Epub May 17. PMID: 19450844

20. Young CY, Andrews PE, Montgomery BT, Tindall DJ. Tissue-specific and hormonal regulation of

human prostate-specific glandular kallikrein. Biochemistry. 1992; 31(3):818–24. https://doi.org/10.

1021/bi00118a026 PMID: 1370633.

21. Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and

monitoring. Nat Rev Cancer. 2008; 8(4):268–78. https://doi.org/10.1038/nrc2351 PMID: 18337732.

22. Boccon-Gibod L. Monitoring of prostate cancer patients: guidelines and current practice. european urol-

ogy supplements. 2007; 6(15):829–33.

23. Dimakakos A, Armakolas A, Koutsilieris M. Novel tools for prostate cancer prognosis, diagnosis, and

follow-up. BioMed research international. 2014;2014.

24. Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brunner N, Chan DW, et al. National Academy of Clinical

Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate,

colorectal, breast, and ovarian cancers. Clin Chem. 2008; 54(12):e11–79. https://doi.org/10.1373/

clinchem.2008.105601 PMID: 19042984

25. Armstrong AJ, Garrett-Mayer ES, Yang YC, de Wit R, Tannock IF, Eisenberger M. A contemporary

prognostic nomogram for men with hormone-refractory metastatic prostate cancer: a TAX327 study

analysis. Clin Cancer Res. 2007; 13(21):6396–403. https://doi.org/10.1158/1078-0432.CCR-07-1036

PMID: 17975152

26. Daskivich TJ, Regan MM, Oh WK. Distinct prognostic role of prostate-specific antigen doubling time

and velocity at emergence of androgen independence in patients treated with chemotherapy. Urology.

2007; 70(3):527–31. https://doi.org/10.1016/j.urology.2007.04.035 PMID: 17905110

27. Halabi S, Lin CY, Kelly WK, Fizazi KS, Moul JW, Kaplan EB, et al. Updated prognostic model for predict-

ing overall survival in first-line chemotherapy for patients with metastatic castration-resistant prostate

cancer. J Clin Oncol. 2014; 32(7):671–7. https://doi.org/10.1200/JCO.2013.52.3696 Epub 2014 Jan 21.

PMID: 24449231

28. Smith MR, Cook R, Lee KA, Nelson JB. Disease and host characteristics as predictors of time to first

bone metastasis and death in men with progressive castration-resistant nonmetastatic prostate cancer.

Cancer. 2011; 117(10):2077–85. https://doi.org/10.1002/cncr.25762 Epub 2010 Nov 16. PMID:

21523719

29. Emrich LJ, Priore RL, Murphy GP, Brady MF. Prognostic factors in patients with advanced stage pros-

tate cancer. Cancer Res. 1985; 45(10):5173–9. PMID: 4027993

30. Kelly WK, Scher HI, Mazumdar M, Vlamis V, Schwartz M, Fossa SD. Prostate-specific antigen as a

measure of disease outcome in metastatic hormone-refractory prostate cancer. J Clin Oncol. 1993; 11

(4):607–15. https://doi.org/10.1200/JCO.1993.11.4.607 PMID: 7683043

31. Scher HI, Kelly WM, Zhang ZF, Ouyang P, Sun M, Schwartz M, et al. Post-therapy serum prostate-spe-

cific antigen level and survival in patients with androgen-independent prostate cancer. J Natl Cancer

Inst. 1999; 91(3):244–51. https://doi.org/10.1093/jnci/91.3.244 PMID: 10037102

32. Petrylak DP, Scher HI, Li Z, Myers CE, Geller NL. Prognostic factors for survival of patients with bidi-

mensionally measurable metastatic hormone-refractory prostatic cancer treated with single-agent che-

motherapy. Cancer. 1992; 70(12):2870–8. https://doi.org/10.1002/1097-0142(19921215)70:12<2870::

aid-cncr2820701225>3.0.co;2-f PMID: 1451069

33. Smaletz O, Scher HI, Small EJ, Verbel DA, McMillan A, Regan K, et al. Nomogram for overall survival of

patients with progressive metastatic prostate cancer after castration. J Clin Oncol. 2002; 20(19):3972–

82. https://doi.org/10.1200/JCO.2002.11.021 PMID: 12351594

34. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving para-

digm. Nat Rev Cancer. 2013; 13(10):714–26. https://doi.org/10.1038/nrc3599 PMID: 24060863.

35. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013; 501

(7467):328–37. https://doi.org/10.1038/nature12624 PMID: 24048065; PubMed Central PMCID:

PMC4521623.

36. Bauer RJ, Guzy S, editors. Monte Carlo Parametric Expectation Maximization (MC-PEM) Method for

Analyzing Population Pharmacokinetic/Pharmacodynamic Data2004; Boston, MA: Springer US.

37. Bauer RJ, Guzy S, Ng C. A survey of population analysis methods and software for complex pharmaco-

kinetic and pharmacodynamic models with examples. AAPS J. 2007; 9(1):E60–83. https://doi.org/10.

1208/aapsj0901007 PMID: 17408237; PubMed Central PMCID: PMC2751305.

PLOS ONE Disease progression modeling of hormone-sensitive prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0230571 March 24, 2020 20 / 22

https://doi.org/10.1016/j.juro.2009.02.141
https://doi.org/10.1016/j.juro.2009.02.141
http://www.ncbi.nlm.nih.gov/pubmed/19450844
https://doi.org/10.1021/bi00118a026
https://doi.org/10.1021/bi00118a026
http://www.ncbi.nlm.nih.gov/pubmed/1370633
https://doi.org/10.1038/nrc2351
http://www.ncbi.nlm.nih.gov/pubmed/18337732
https://doi.org/10.1373/clinchem.2008.105601
https://doi.org/10.1373/clinchem.2008.105601
http://www.ncbi.nlm.nih.gov/pubmed/19042984
https://doi.org/10.1158/1078-0432.CCR-07-1036
http://www.ncbi.nlm.nih.gov/pubmed/17975152
https://doi.org/10.1016/j.urology.2007.04.035
http://www.ncbi.nlm.nih.gov/pubmed/17905110
https://doi.org/10.1200/JCO.2013.52.3696
http://www.ncbi.nlm.nih.gov/pubmed/24449231
https://doi.org/10.1002/cncr.25762
http://www.ncbi.nlm.nih.gov/pubmed/21523719
http://www.ncbi.nlm.nih.gov/pubmed/4027993
https://doi.org/10.1200/JCO.1993.11.4.607
http://www.ncbi.nlm.nih.gov/pubmed/7683043
https://doi.org/10.1093/jnci/91.3.244
http://www.ncbi.nlm.nih.gov/pubmed/10037102
https://doi.org/10.1002/1097-0142(19921215)70:12<2870::aid-cncr2820701225>3.0.co;2-f
https://doi.org/10.1002/1097-0142(19921215)70:12<2870::aid-cncr2820701225>3.0.co;2-f
http://www.ncbi.nlm.nih.gov/pubmed/1451069
https://doi.org/10.1200/JCO.2002.11.021
http://www.ncbi.nlm.nih.gov/pubmed/12351594
https://doi.org/10.1038/nrc3599
http://www.ncbi.nlm.nih.gov/pubmed/24060863
https://doi.org/10.1038/nature12624
http://www.ncbi.nlm.nih.gov/pubmed/24048065
https://doi.org/10.1208/aapsj0901007
https://doi.org/10.1208/aapsj0901007
http://www.ncbi.nlm.nih.gov/pubmed/17408237
https://doi.org/10.1371/journal.pone.0230571


38. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ. Pharmacokinetic-pharmacodynamic-efficacy

analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res. 2005; 22(7):1088–

100. https://doi.org/10.1007/s11095-005-5642-4 PMID: 16028009.

39. Ng CM, Patnaik A, Beeram M, Lin CC, Takimoto CH. Mechanism-based pharmacokinetic/pharmacody-

namic model for troxacitabine-induced neutropenia in cancer patients. Cancer Chemother Pharmacol.

2011; 67(5):985–94. Epub 2010/07/09. https://doi.org/10.1007/s00280-010-1393-y PMID: 20614121.

40. Ng CM, Bruno R, Combs D, Davies B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal

antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol. 2005; 45

(7):792–801. Epub 2005/06/14. https://doi.org/10.1177/0091270005277075 PMID: 15951469.

41. Giltinan D, Davidian M. Nonlinear models for repeated measurement data. Monographs on Statistics

and Applied Probability (Chapman and Hall, 1995), ISBN. 1995;772450420.

42. Ng CM, Bai S, Takimoto CH, Tang MT, Tolcher AW. Mechanism-based receptor-binding model to

describe the pharmacokinetic and pharmacodynamic of an anti-alpha5beta1 integrin monoclonal anti-

body (volociximab) in cancer patients. Cancer Chemother Pharmacol. 2010; 65(2):207–17. Epub 2009/

05/27. https://doi.org/10.1007/s00280-009-1023-8 PMID: 19468731.

43. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharma-

codyn. 2001; 28(5):481–504. Epub 2002/01/05. https://doi.org/10.1023/a:1012299115260 PMID:

11768292.

44. Kowalski KG, Hutmacher MM. Efficient screening of covariates in population models using Wald’s

approximation to the likelihood ratio test. Journal of pharmacokinetics and pharmacodynamics. 2001;

28(3):253–75. https://doi.org/10.1023/a:1011579109640 PMID: 11468940

45. Zou Y, Tang F, Ng CM. A Novel Modified Wald’s Approximated Method for Efficient Covariate Selection

in Population Pharmacokinetics Analysis. JOURNAL OF PHARMACOKINETICS AND PHARMACO-

DYNAMICS. 2017; 44:S75.

46. Wald A. Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observa-

tions is Large. Trans Am Math Soc. 1943; 54(3):426–82. https://doi.org/10.2307/1990256

47. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for

diagnosing nonlinear mixed-effects models. The AAPS journal. 2011; 13(2):143–51. Epub 2011/02/09.

https://doi.org/10.1208/s12248-011-9255-z PMID: 21302010; PubMed Central PMCID: PMC3085712.

48. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of

clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recom-

mendations of the Prostate Cancer Clinical Trials Working Group. Journal of clinical oncology: official

journal of the American Society of Clinical Oncology. 2008; 26(7):1148.

49. Scher HI, Morris MJ, Stadler WM, Higano C, Basch E, Fizazi K, et al. Trial Design and Objectives for

Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical

Trials Working Group 3. J Clin Oncol. 2016; 34(12):1402–18. https://doi.org/10.1200/JCO.2015.64.

2702 PMID: 26903579; PubMed Central PMCID: PMC4872347.

50. Williams VL, Awasthi S, Fink AK, Pow-Sang JM, Park JY, Gerke T, et al. African-American men and

prostate cancer-specific mortality: a competing risk analysis of a large institutional cohort, 1989–2015.

Cancer medicine. 2018. Epub 2018/03/31. https://doi.org/10.1002/cam4.1451 PMID: 29601662.

51. Takizawa I, Nishiyama T, Hara N, Isahaya E, Hoshii T, Takahashi K. Serum prostate-specific antigen

levels reflect the androgen milieu in patients with localized prostate cancer receiving androgen depriva-

tion therapy: Tumor malignant potential and androgen milieu. The Prostate. 2010; 70(13):1395–401.

Epub 2010/08/06. https://doi.org/10.1002/pros.21174 PMID: 20687212.

52. Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic

parameters from routine clinical data. J Pharmacokinet Biopharm. 1977; 5(5):445–79. Epub 1977/10/

01. https://doi.org/10.1007/bf01061728 PMID: 925881.

53. Fizazi K, Jenkins C, Tannock IF. Should docetaxel be standard of care for patients with metastatic hor-

mone-sensitive prostate cancer? Pro and contra. Annals of Oncology. 2015; 26(8):1660–7. https://doi.

org/10.1093/annonc/mdv245 PMID: 26002607; PubMed Central PMCID: PMC4511224.

54. Lesko LJ. Personalized medicine: elusive dream or imminent reality? Clin Pharmacol Ther. 2007; 81

(6):807–16. Epub 2007/05/17. https://doi.org/10.1038/sj.clpt.6100204 PMID: 17505496.

55. Ahmed M, Li LC. Adaptation and clonal selection models of castration-resistant prostate cancer: current

perspective. International journal of urology: official journal of the Japanese Urological Association.

2013; 20(4):362–71. Epub 2012/11/21. https://doi.org/10.1111/iju.12005 PMID: 23163774.

56. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges.

Genes & Development. 2010; 24(18):1967–2000. https://doi.org/10.1101/gad.1965810 PMID:

20844012; PubMed Central PMCID: PMC2939361.

PLOS ONE Disease progression modeling of hormone-sensitive prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0230571 March 24, 2020 21 / 22

https://doi.org/10.1007/s11095-005-5642-4
http://www.ncbi.nlm.nih.gov/pubmed/16028009
https://doi.org/10.1007/s00280-010-1393-y
http://www.ncbi.nlm.nih.gov/pubmed/20614121
https://doi.org/10.1177/0091270005277075
http://www.ncbi.nlm.nih.gov/pubmed/15951469
https://doi.org/10.1007/s00280-009-1023-8
http://www.ncbi.nlm.nih.gov/pubmed/19468731
https://doi.org/10.1023/a:1012299115260
http://www.ncbi.nlm.nih.gov/pubmed/11768292
https://doi.org/10.1023/a:1011579109640
http://www.ncbi.nlm.nih.gov/pubmed/11468940
https://doi.org/10.2307/1990256
https://doi.org/10.1208/s12248-011-9255-z
http://www.ncbi.nlm.nih.gov/pubmed/21302010
https://doi.org/10.1200/JCO.2015.64.2702
https://doi.org/10.1200/JCO.2015.64.2702
http://www.ncbi.nlm.nih.gov/pubmed/26903579
https://doi.org/10.1002/cam4.1451
http://www.ncbi.nlm.nih.gov/pubmed/29601662
https://doi.org/10.1002/pros.21174
http://www.ncbi.nlm.nih.gov/pubmed/20687212
https://doi.org/10.1007/bf01061728
http://www.ncbi.nlm.nih.gov/pubmed/925881
https://doi.org/10.1093/annonc/mdv245
https://doi.org/10.1093/annonc/mdv245
http://www.ncbi.nlm.nih.gov/pubmed/26002607
https://doi.org/10.1038/sj.clpt.6100204
http://www.ncbi.nlm.nih.gov/pubmed/17505496
https://doi.org/10.1111/iju.12005
http://www.ncbi.nlm.nih.gov/pubmed/23163774
https://doi.org/10.1101/gad.1965810
http://www.ncbi.nlm.nih.gov/pubmed/20844012
https://doi.org/10.1371/journal.pone.0230571


57. Pietro GD, Chornokur G, Kumar NB, Davis C, Park JY. Racial Differences in the Diagnosis and Treat-

ment of Prostate Cancer. International neurourology journal. 2016; 20(Suppl 2):S112–9. Epub 2016/12/

06. https://doi.org/10.5213/inj.1632722.361 PMID: 27915474; PubMed Central PMCID: PMC5169094.

58. Han KS, Hong SJ. Exponential Rise in Prostate-Specific Antigen (PSA) during Anti-Androgen With-

drawal Predicts PSA Flare after Docetaxel Chemotherapy in Patients with Castration-Resistant Pros-

tate Cancer. Yonsei Medical Journal. 2015; 56(2):368–74. https://doi.org/10.3349/ymj.2015.56.2.368

PMID: 25683983; PubMed Central PMCID: PMC4329346.

59. Shevach J, Sydes MR, Hussain M. Revisiting Intermittent Therapy in Metastatic Prostate Cancer: Can

Less Be More in the "New World Order"? Eur Urol Focus. 2019. Epub 2019/02/26. https://doi.org/10.

1016/j.euf.2019.02.006 PMID: 30803926.

60. Voth AM, Alford JG, Swim EW. Mathematical modeling of continuous and intermittent androgen sup-

pression for the treatment of advanced prostate cancer. Mathematical biosciences and engineering:

MBE. 2017; 14(3):777–804. Epub 2017/01/18. https://doi.org/10.3934/mbe.2017043 PMID: 28092963.

61. Crook JM, O’Callaghan CJ, Duncan G, Dearnaley DP, Higano CS, Horwitz EM, et al. Intermittent

Androgen Suppression for Rising PSA Level after Radiotherapy. New England Journal of Medicine.

2012; 367(10):895–903. https://doi.org/10.1056/NEJMoa1201546 PMID: 22931259.

62. Calais da Silva F, Calais da Silva FM, Goncalves F, Santos A, Kliment J, Whelan P, et al. Locally

advanced and metastatic prostate cancer treated with intermittent androgen monotherapy or maximal

androgen blockade: results from a randomised phase 3 study by the South European Uroncological

Group. Eur Urol. 2014; 66(2):232–9. Epub 2013/04/16. https://doi.org/10.1016/j.eururo.2013.03.055

PMID: 23582949.

63. Hussain M, Tangen CM, Berry DL, Higano CS, Crawford ED, Liu G, et al. Intermittent versus Continu-

ous Androgen Deprivation in Prostate Cancer. The New England journal of medicine. 2013; 368

(14):1314–25. https://doi.org/10.1056/NEJMoa1212299 PMID: 23550669; PubMed Central PMCID:

PMC3682658.

64. Wilke D, Patil N, Hollenhorst H, Bowes D, Rutledge R, Ago C. Testosterone Suppression with Luteiniz-

ing Hormone-Releasing Hormone (LHRH) Agonists in Patients Receiving Radiotherapy for Prostate

Cancer. Pharmacotherapy. 2018; 38(3):327–33. Epub 2018/01/18. https://doi.org/10.1002/phar.2084

PMID: 29337395.

65. Vollmer RT, Kantoff PW, Dawson NA, Vogelzang NJ. A prognostic score for hormone-refractory pros-

tate cancer: analysis of two cancer and leukemia group B studies. Clin Cancer Res. 1999; 5(4):831–7.

PMID: 10213219

PLOS ONE Disease progression modeling of hormone-sensitive prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0230571 March 24, 2020 22 / 22

https://doi.org/10.5213/inj.1632722.361
http://www.ncbi.nlm.nih.gov/pubmed/27915474
https://doi.org/10.3349/ymj.2015.56.2.368
http://www.ncbi.nlm.nih.gov/pubmed/25683983
https://doi.org/10.1016/j.euf.2019.02.006
https://doi.org/10.1016/j.euf.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/30803926
https://doi.org/10.3934/mbe.2017043
http://www.ncbi.nlm.nih.gov/pubmed/28092963
https://doi.org/10.1056/NEJMoa1201546
http://www.ncbi.nlm.nih.gov/pubmed/22931259
https://doi.org/10.1016/j.eururo.2013.03.055
http://www.ncbi.nlm.nih.gov/pubmed/23582949
https://doi.org/10.1056/NEJMoa1212299
http://www.ncbi.nlm.nih.gov/pubmed/23550669
https://doi.org/10.1002/phar.2084
http://www.ncbi.nlm.nih.gov/pubmed/29337395
http://www.ncbi.nlm.nih.gov/pubmed/10213219
https://doi.org/10.1371/journal.pone.0230571

