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Determination of differentially regulated proteins upon
proteasome inhibition in AML cell lines by the
combination of large-scale and targeted quantitative

proteomics
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The ubiquitin-proteasome pathway (UPP) plays a critical role in the degradation of proteins
implicated in cell cycle control, signal transduction, DNA damage response, apoptosis and
immune response. Proteasome inhibitors can inhibit the growth of a broad spectrum of human
cancer cells by altering the balance of intracellular proteins. However, the targets of these
compounds in acute myeloid leukemia (AML) cells have not been fully characterized. Herein,
we combined large-scale quantitative analysis by SILAC-MS and targeted quantitative proteomic
analysis in order to identify proteins regulated upon proteasome inhibition in two AML cell
lines displaying different stages of maturation: immature KG1a cells and mature U937 cells. In-
depth data analysis enabled accurate quantification of more than 7000 proteins in these two cell
lines. Several candidates were validated by selected reaction monitoring (SRM) measurements
in a large number of samples. Despite the broad range of proteins known to be affected by
proteasome inhibition, such as heat shock (HSP) and cell cycle proteins, our analysis identified
new differentially regulated proteins, including IL-32, MORF family mortality factors and
apoptosis inducing factor SIVA, a target of p53. It could explain why proteasome inhibitors
induce stronger apoptotic responses in immature AML cells.
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The 26S proteasome is a multi-catalytic enzyme complex
containing a 20S catalytic core and two 19S regulatory com-
plexes [1]. About 80% of intracellular proteins are tagged with
ubiquitin for recognition and subsequent degradation by the
Ubiquitin-Proteasome Pathway (UPP). The degradation of
cellular proteins is a complex and tightly controlled process
that is central to regulating cellular function and maintain-
ing protein homeostasis. Therefore, the UPP is a common
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Significance of the study

In this study we applied a quantitative proteomics approach
to study the effect of proteasome inhibition in two human
acute myeloid leukaemia (AML) cells at differential matura-
tion stages. The global change in the proteome upon protea-
somal inhibition in AML cells remains largely unexplored.
Herein, we combined large-scale quantitative analysis by
SILAC-MS and targeted quantitative proteomic analysis in
order to identify proteins regulated upon proteasome inhi-
bition in two AML cell lines displaying different stages of
maturation: immature KGla cells and mature U937 cells.
In-depth data analysis enabled accurate quantification of
more than 7000 proteins in these two cell lines. Several

regulatory modification system involved in the regulation of
the cell cycle, apoptosis, and response to cellular stress, i.e.,
DNA damage, hypoxia, and intracellular signal transduction.
Subsequently, abnormal regulation of cell cycle proteins can
result in accelerated and uncontrolled cell division, leading
to tumorigenesis and cancer formation [2].

Proteasome inhibitors have gained interest as promising
chemotherapeutic agents based on their ability to inhibit the
growth of cancer cells by altering the balance of intracellular
proteins [3, 4]. There are currently two small molecular in-
hibitors of this pathway approved for clinical use, bortezomib
and carfilzomib, both of which function by inhibiting pro-
teasomal activity [5-7]. Bortezomib was the first proteasome
inhibitor to enter the clinical arena, validating the UPP as
a possible feasible therapeutic target and leading to a series
of next generation proteasome inhibitors, many of which are
in clinical development [8]. Novel approaches for targeting
the UPS are also being actively investigated, including the
development of small molecule inhibitors of enzymes such
as ATPases and deubiquitinase, which act at an earlier stage
in the UPP [9-11]. An alternative approach is to target key
effectors that act earlier in signal transduction [12].

The proteasome plays a key role within the cell, so that
inhibiting this mechanism would be expected to impact sig-
nificantly on normal, as well as malignant cells. However, it
is recognized that there is an elevated level of proteasome
activity both in leukaemic cells and serum from patients
with haematological malignancies, which is believed to in-
crease their vulnerability to proteasome inhibition [7, 13].
In haematological malignancies, the efficacy and safety of
bortezomib alone or in combination with chemotherapy in
multiple myeloma have been further investigated and borte-
zomib was shown to induce a higher level of apoptosis in
malignant, compared to normal cells. Several reports, includ-
ing our own previous study [14], demonstrated that protea-
some inhibitors induce apoptosis in model leukemia cell lines
[15, 16]. Likewise, we have previously demonstrated that in-
creased proteasome level and activity in leukemia cells lines,
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candidates were validated by selected reaction monitoring
(SRM) measurements in a large number of samples. Despite
the broad range of proteins known to be affected by protea-
some inhibition, such as heat shock (HSP) and cell cycle
proteins, our analysis identified new differentially regulated
proteins, including IL-32, MORF family mortality factors and
apoptosis inducing factor SIVA, a target of p53. Our results
suggest that apoptosis induced by the proteasome inhibition
in U937 cells is p53-dependent pathway and might be dif-
ferent for KG1a cells. These results open up new avenues to
investigate the mechanism of the proteasome inhibitors in
AML.

and primary human cells from patients, are correlated with
increased sensitivity to proteasome inhibitors [14]. However,
the precise mode of action of such inhibitors still remains
unclear.

Multiple techniques have been used to investigate the
mechanism of action of proteasome inhibitors, each hav-
ing its own strengths and limitations. Several studies used
alarge transcriptomic approach and measured the regulation
of genes upon proteasome inhibition [17,18]. However genes
regulation does not always correlated with change in protein
abundance, which carry most biological activity in cells, and
therefore does not elucidate the mechanism by which these
molecules act on cancer cells. In contrast, proteomic studies
present the advantage to take protein expression their post-
transcriptional events into account, particularly when altered
protein degradation is expected to underlie studied mecha-
nism, as upon treatments with proteasome inhibition. So far,
very few proteomic studies have attempted to investigate the
global cellular response to proteasome inhibition [19]. Im-
munoblotting techniques have been widely used to measure
protein abundance upon proteasome inhibition, but this strat-
egy is restricted to well-known pathway due to the availability
of specific antibodies [18, 20, 21]. One of the first large-scale
mass spectrometry (MS)-based proteomic studies to decipher
mechanism of proteasome inhibitors was performed in our
lab by Uttenweiller and colleagues, and reported the effect of
bortezomib on both differentiated and undifferentiated Acute
Promyelocytic Leukemia (APL) cells and revealed that the dif-
ferential apoptotic effects of bortezomib on these particular
cells are mainly due to distinct protein toxicity levels [22].
Quantitative proteomics analysis based on iTRAQ™ peptide
labeling allowed the quantification of 14 regulated proteins
involved in protein stress response and apoptosis after pro-
teasome inhibition.

With recent advances in instrumentation, new MS-based
proteomic approaches have been introduced, mainly differ-
ing with respect to their analytical performance in terms of
reproducibility, dynamic range, limit of detection (LOD) and
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resolving power. To-date, three main acquisition modes are
used in bottom-up proteomics field: Data Dependent Acquisi-
tion (DDA, frequently termed shotgun, or discovery), targeted
data acquisition (Selected Reaction Monitoring and Paral-
lel Reaction Monitoring) and Data Independent Acquisition
(DIA, SWATH-MS). Shotgun (or discovery) proteomics is the
best method to identify large numbers of proteins found in
complex mixtures, where no prior knowledge is available.
Here, precursor ions are only selected for sequencing when
they are detected at the MS level. This approach allows the
identification of thousands of proteins in any cell type or or-
ganism and provides a comprehensive view of complex pro-
teomes [23-28]. However, when multiple samples are com-
pared, a major weakness of this technique is the selection
of precursor ions that are biased towards abundant peptides,
leading to irreproducible replicates of shotgun experiments,
and thus, incomplete MS data sets. Lately, SWATH-MS [27]
was introduced to overcome this issue. Herein, the instru-
ment is forced to fragment the whole precursor ion mass
range continuously during the LC separation. Therefore, all
peptides in the biological sample are fragmented, allowing
for the complete identification and characterization of the
(detectable) protein content. Peptides are subsequently iden-
tified using a reference spectral library. Consequently, the
main limitation of this approach is a requirement for high-
quality assay libraries prior to quantification [29,30]. Targeted
data acquisition method was developed for the systematic
and precise detection and quantification of well-defined sets
of peptides and proteins in complex samples. This strategy
allows the consistent monitoring of peptides with a high de-
gree of specificity and sensitivity. In contrast to unsupervised
approaches, targeted methods are hypothesis-driven and re-
quire the careful selection of the peptides used to repre-
sent their parent proteins. The analyses are commonly per-
formed in selected reaction monitoring (SRM) mode on triple
quadrupole mass spectrometers (QQQ) [31]. In SRM, the first
(Q1) and the third (Q3) quadrupoles act as filters to specifi-
cally select predefined m/z values corresponding to a peptide
ion and a specific fragment ion of the peptide, whereas the
second quadrupole serves as a collision cell [32-34]. Suitable
sets of precursor and fragment ion masses for a given peptide,
called SRM transitions, can be used in MS assays to identify
each peptide and the corresponding proteins. The main lim-
itations of this method are: the requirement for transition
lists, which are time consuming to establish, the maximum
number of targeted peptides that can be monitored in single
analysis without jeopardising precision of the measurement
[35]. With its selectivity and sensitivity, SRM represents a
powerful tool for the validation of selected candidates previ-
ously identified by shotgun across a large number of samples
[35]. This approach is frequently used in biomarker studies
[33, 34]. More recently, a new strategy has been introduced,
named parallel reaction monitoring (PRM). In PRM mode, all
ions resulting from the fragmentation of a single, or several,
precursor ions are measured simultaneously in one MS/MS
scan [7, 36].
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In this work, we employed quantitative proteomic ap-
proaches to achieve very extensive proteomic coverage of two
human AML cells with differential maturation stages, before
and after proteasome inhibition. We combined stable isotope
labeling with amino acids in cell culture (SILAC-based quan-
titative shotgun analysis, extensive subcellular and protein-
level fractionation, and high resolution MS, to study system-
wide effects of proteasome inhibition in KG1a cells and U937
cells that display a differential response to proteasome inhibi-
tion [14]. Subsequently, a defined list of modulated proteins
identified during the discovery phase, was validated by SRM
across multiple samples and conditions.

2 Materials and methods
2.1 Drugs and reagents

Bortezomib (VELCADE®) was generously provided by Mil-
lennium Pharmaceuticals Inc. (Cambridge, MA, USA). MG-
132 (Z-LLL-CHO) and Lactacystin was purchased from
Sigma Aldrich. Antibodies against human PARP, actin and
a-tubulin were purchased from Santa Cruz biotechnology
[37,38]. Sequencing Grade Modified Trypsin V511A was ob-
tained from Promega.

2.2 Cell culture

Human leukemic cell lines KG1a and U937 were purchased
from the German Collection of Microorganisms and Cell Cul-
tures (Braunschweig, Germany). U937 cell lines and KGla
cell lines were grown in RPMI 1640 media, depleted of argi-
nine and lysine (Invitrogen), and supplemented with 10%
or 20% of fetal bovine serum (FBS) dialyzed with a cutoff
of 10 kDa (Invitrogen, 26400-044), respectively. The media
was supplemented with 100-units/mL of penicillin / strep-
tomycin, 2 mM L-glutamine (Gibco). Arginine (Arg; R) and
lysine (Lys; K) amino acid isotopes were added to a final
concentration of 100 mg/L each in the culture medium:
[12CJ, [“N]s-L-Arg (MW = 174.1117) plus [12CJg, [“*N],-L-
Lys (MW = 146.1055) for ROKO ‘light’ (L) medium; [*C]s,
[5N]-L-Arg (MW = 184.1241) plus [®C]s, [“N],-L-Lys (MW
= 152.1259) for R10K6 ‘heavy’ (H) medium. Cells were
tested for incorporation of the labeled amino acids after six
passages.

2.3 Whole proteome extraction and subcellular
fractionation of SILAC labeled KG1a cells and
U937 cells

Cells were treated with either DMSO, or 5 wM Lacta-

cytin or 10 nM bortezomib for 2, 6, 12 and 24 h. Whole
proteome extract (For SRM analysis): all heavy isotope—labeled
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cells were mixed together to prepare the super SILAC mix
for the SRM analysis [37, 38]. Briefly, the light cells were
treated separately (treated and untreated, see Fig. 3). Pro-
teins were extracted from the heavy mix and light cells using
8 M urea in 0.1 M Tris-HCI pH 8.0. After protein isolation,
an equal protein amount from heavy mix cells were spiked
into each light sample. The mixed samples were subjected
to an in solution digestion following the protocol described
by Matondo et al. [33, 39]. Subcellular Fractionation (For Shot-
gun analysis): Treated and untreated cells were combined in
a ratio 1:1 of cells. Mixed cells, for proteome variation study,
were separated into cytoplasm and nuclear fractions using
the following protocol. Briefly, 40x10° cells were washed
three times with PBS, resuspended in 1 mL of buffer A
(20 mM Tris-HCl pH 7.5, 0.5 mM MgCl,, 0. % NP40, protease
inhibitor (Roche)), and sonicated. The sonication efficiency
was checked using phase-contrast microscopy, ensuring that
there were no intact cells and that the nucleoli were readily ob-
served as dense, refractile bodies. The sonicated sample was
centrifuged at 800 x g for 10 min at 4°C. The supernatant rep-
resenting the cytoplasmic fraction was centrifuged at 15 000
x g for 45 min at 4°C. This was then washed three times with
cooled acetone. The nuclear pellet was resuspended in 1 mL
of buffer Bo (4.5 mM MgCl,; 5 mM CaCl, and 1 uM DNase
I) and incubated 10 min at 30°C, followed by centrifugation
at 800 x g for 10 min at 4°C. The pellets were then resus-
pended in 1 mL buffer Bo with 1 M NaCl and centrifuged at
800 x g for 15 min at 4°C. Both nuclear extracts were pooled
together. Proteins were quantified by the Bradford method.
Equal amounts of total protein from each fraction were loaded
onto a SDS-PAGE gel and the purity of the isolated frac-
tions was checked by Western blot, using antibodies against
the nuclear PARP protein, cytoplasmic actin (see Supporting
Information).

2.4 1D SDS-PAGE fractionation and
Nano-LC-MS/MS analysis of proteins

After reduction and alkylation, 100 g of proteins were sep-
arated on a 12% acrylamide SDS-PAGE gel. Proteins were
visualized by Coomassie Blue staining. Each lane was cut
into 50 homogenous slices that were washed in 100 mM
ammonium bicarbonate for 15 min, followed by a second
wash in 100 mM ammonium bicarbonate, acetonitrile (1:1)
for 15 min. Both washes were performed at 37°C. Second
cycle of washes in ammonium bicarbonate and ammonium
bicarbonate/acetonitrile was then performed. Proteins were
digested by incubating each gel slice with 0.6 pg of modified
sequencing grade trypsin in 50 mM ammonium bicarbon-
ate overnight at 37°C. The resulting peptides were extracted
from the gel in three steps: a first incubation in 50 mM am-
monium bicarbonate for 15 min at 37°C and two incubations
in 10% formic acid, acetonitrile (1:1) for 15 min at 37°C. The
three collected extracts were pooled with the initial digestion
supernatant, dried in a Speed-Vac, and resuspended with
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17 wL of 5% acetonitrile, 0.05% trifluoroacetic acid (TFA).
The peptides mixtures were analyzed by nano-LC-MS/MS
using an Ultimate 3000 system (Dionex) coupled to an LTQ-
Orbitrap Velos mass spectrometer or LTQ- Orbitrap XL
(Thermo Fisher Scientific). Five microliters of each sample
were loaded onto a C18 pre-column (300 wm id, 5 mm;
Dionex), at 20 pL/min, in 5% acetonitrile, 0.05W% TFA.
After 5 min of desalting, the pre-column was switched on
line with the analytical C18 column (75 um id x 15 cm C18
column; packed in-house with Reprosil C18-AQ Pur 3 pm
resin, Dr. Maisch; Proxeon Biosystems), equilibrated in 95%
solvent A (5 acetonitrile, 0.2 formic acid) and 5% solvent B
(80 acetonitrile, 0.2 formic acid). Peptides were eluted using a
5-50% gradient of solvent B over 80 min and at a flow rate of
300 nL/min.

The LTQ-Orbitrap Velos and XL were operated in DDA
mode to automatically switch between full scan MS and
MS/MS acquisition using Xcalibur software. Survey scan MS
was acquired in the Orbitrap over the m/z 300-2000 range,
with the resolution set to a value of 60 000 (m/z 400). The
20 most intense ions per survey scan were selected for CID
fragmentation and the resulting fragments were analyzed
in the linear trap (LTQ). Dynamic exclusion was employed
within 60 seconds to prevent repetitive selection of the same
peptide. Standard mass spectrometric conditions for all ex-
periments were: spray voltage, 2.2 kV; no sheath and auxiliary
gas flow; heated capillary temperature, 200°C; predictive au-
tomatic gain control (AGC) enabled, and an S-lens RF level
of 50-60%.

2.5 Bioinformatics analysis

MS raw files were analyzed using the MaxQuant software
version 1.5.3.8 [40,41]. MS/MS spectra were searched in the
Andromeda search engine against the forward and reverse
Human Uniprot database (‘Human Reference Proteome’ re-
trieved on February 2014) combined with a commonly ob-
served contaminants list. The digestion enzyme was set to
trypsin/ with up to two missed cleavages. Methionine oxida-
tion, ubiquitylation (GlyGly (K)) and N-terminal acetylation
were search as variable modifications and carbamidomethyl
of cysteine as fixed modification. Parent peptide masses and
fragment masses were searched with maximal initial mass
deviation of 6-20 ppm, respectively. Mass recalibration was
performed by a preceding Andromeda search with a mass
window of 20 ppm Match between run was used. A first
level of False Discovery Rate (FDR) filtration was done on the
peptide-spectrum match level, and this was followed by a sec-
ond level of FDR control on the protein level. Both filtrations
were performed at a 1% FDR. These filtrations were done
using a standard target-decoy database approach. When two
proteins (isoforms and homologues with two Uniprot iden-
tifiers) could not be distinguished based on the identified
peptides, they were merged by MaxQuant into one protein
group (See Supporting Information table S2).
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Statistical analysis of the data was performed using
Perseus 1.5.2.6 [42] (www.perseus-framework.org), environ-
ment R, String (http://string-db.org/), and cytoscape tools
(http:/ /www.cytoscape.org/) [43].

2.6 SRM-LC-MS/MS

Extracted proteins were solubilized in denaturation buffer (2-
amino-2-hydroxymethyl-1,3-propanediol (Tris) 100 mM pH
8.0, 8 M urea). Reduction of disulfide bridges was performed
in 5 mM DTT for 30 min at room temperature; alkylation
was performed in 20 mM iodocacetamide in the dark for 30
min at room temperature. Protein solutions was diluted in
50 mM ammonium bicarbonate (BA), until the urea concen-
tration was below 1 M. Proteins were digested with trypsin
(Promega, Madison, WI, USA) using a ratio of 1:100 enzyme
/ protein at 37°C overnight. Resulting peptides were purified
using Sep-Pak C18. Briefly, 50 mg of C18 phase was activated
in methanol, rinsed once in 80% acetonitrile (ACN) 0.1% FA,
and washed thrice in 0.1% FA. Tryptic peptides were analyzed
on a TSQ Vantage Triple Quadrupole mass spectrometer
(ThermoFisher scientific, San Jose, CA), equipped with a na-
noelectrospray ion source. A spray voltage of 1.3 kV was used
with a heated ion transfer tube set to a temperature of 280°C.
Chromatographic separations of peptides were performed on
a NanoLC-2D plus HPLC system (Eksigent, Dublin, CA) cou-
pled to a 10 cm fused silica emitter, 75 pm id, packed with a
Magic C18 AQ 5 pm resin (Michrom BioResources, Auburn,
CA, USA). Peptides were loaded onto the column from a
cooled (4°C) Eksigent autosampler and separated with a lin-
ear gradient of acetonitrile/water, containing 0.1% formic
acid, and at a flow rate of 300 nL/min. A gradient of 5 to 35%
acetonitrile in 40 minutes was used. The mass spectrom-
eter was operated with selected reaction monitoring (SRM)
mode. For SRM acquisitions, Q1 and Q3 were measured at 0.7
unit mass resolution. Transitions were recorded for the en-
dogenous (light) and the internal standard (heavy) peptides.
Time-based SRM was used to achieve a high dwell time, i.e >
50 ms, for each transition, where an acquisition time window
of 3 min was set around their elution time. Argon was used as
the collision gas at a nominal pressure of 1.5 mTorr. Collision
energies (CE) for each transition were calculated according
to the following equations: CE = 0.034 * m/z + 3.314 and
CE = 0.044 * m/z + 3.314 (for doubly and triply charged
precursor ions, respectively. The intensity of each SRM was
extracted using Skyline (https://skyline.gs.washington.edu)
and the relative protein abundances were summarized across
all peptide intensities for each sample using MSstats [44,45]
(http:/ /www.msstats.org).

For each target protein up to three signature peptides
were selected for the SRM measurement. This selection
was based on shotgun analysis performed previously, their
proteotypicity (i.e., specific, to the protein of interest), their
reported frequency in proteomic data repositories such as
Peptide Atlas [46] and Human SRMAtlas [47]. In total, three
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transitions per peptide were monitored resulting in a total of
1063 transitions (292 precursors, and 771 fragments) for the
66 targeted proteins (see Supporting Information Table S4).

3 Results and discussion

3.1 The level of apoptosis induced by Lactacystin
and MG132 in immature KG1a AML (MO) cells is
higher than in more mature U937 AML cells (M5)

KG1aand U937 cells were treated either with DM SO as a con-
trol or with proteasome inhibitors (Lactacystin or MG132) for
24 h and the percentage of apoptotic cells were measured
as described in our previous study [14]. Figure 1 displays
results obtained using 5 M MG132 (Fig. 1A) and 5 pM Lac-
tacystin (Fig. 1B). These results show that both MG132 and
Lactacystin induced high level apoptosis in immature KGla
AML cells (~65% and ~20% respectively) compared to U937
AML cells (~25% and ~10% respectively). The percentage
of apoptotic cells induced by MG132 for both cell lines, less
specific inhibitor of the proteasome, is higher than the per-
centage induced by Lactacystin, the specific inhibitor of the
proteasome.

Dose-response experiments were then performed with Lac-
tacystin to better characterize the induction of apoptosis after
proteasome inhibition using this specific inhibitor on KG1la
and U937 AML cells. The corresponding curves were plotted
(Fig. 1C). As described in our previous study for Bortezomib
and MG132 proteasome inhibitor [14], apoptotic response in-
duced by Lactacystin present the same trend that the two
others inhibitors and was dose-dependent. The results indi-
cated that the proportion of apoptotic cells was higher for
KG1a cells than for U937 cells at all inhibitor concentrations
used (Fig. 1C).

3.2 Workflow to map protein expression changes
associated with proteasome inhibition

To identify proteins regulated after inhibition of proteasome
in AML cells at different stages of maturation, a treatment
with a covalent and specific inhibitor of the proteasome,
Lactacystin [48], was applied to KGla and U937 cells. Du-
ration of treatment and concentration of the drugs were
chosen to study early events that could explain differential
apoptotic level response between KGla and U937 cells af-
ter proteasome inhibition (Supporting Information figure
S1). Apoptotic response of both cells at 6 h and 5 pM
of Lactacystin were compared (data not shown) and this
condition was selected for the large-scale shotgun analy-
sis. As a control, cells were treated with DMSO for 6 h.
The DMSO- control and Lactacystin-treated cells were grown
in either “light” (L) or “heavy” (H), respectively ROKO or
R10K6 SILAC media (see Materials and Methods). After 6
h of incubation, the two cell populations were mixed in
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Figure 1. Comparison of the induction of apoptosis in KG1a and U937 AML cell lines. Induction of apoptosis in KG1a and U937 cells using
two proteasome inhibitors, MG132 and Lactacystin. The percentage of apoptotic cells was measured using Annexin V assays performed
24 h after the treatment of KG1a and U937 AML cell lines with either DMSO or 5 uM MG132 (A) or 5 uM Lactacystin (B). Comparison of the
induction of apoptosis in KG1a and U937 AML cell lines using increasing concentrations of Lactacystin (C). The percentage of apoptotic
cells was measured using Annexin V assays performed 24 h after the treatment of KG1a and U937 cells with 0.1 wM to 50 WM Lactacystin as
describded in our previous work Matondo et al., 2010 [14]. Results correspond to the mean + SD of at least three independent experiments.

equal proportions and processed for MS analysis as described
below.

The two mixed-cell populations were first fractionated
into their subcellular compartments in order to reduce the
complexity of sample protein content. Subsequently, nuclear
and cytoplasmic subcellular fractions were analysed by SDS-
PAGE gel, then each gel lane was subdivided into 50 bands
(Fig. 2). Proteins from each band were digested with trypsin
and analysed by LC-MS/MS. Samples were prepared twice
and peptides analyzed by MS in a LTQ -Orbitrap mass spec-
trometer. The subcellular distribution of selected marker pro-
teins known to be mainly present in vivo in either the cyto-
plasm (actin) or the nucleus (PARP) confirmed that each
fraction was correctly prepared (Supporting Information fig-
ure S2). Extensive fractionation of our samples reduced their
complexity and increased the chance to identify low abundant
proteins by shotgun analysis.

Two individual experiments were analysed on the same
Maxquant search and statistical analysis performed with
Perseus to allow the comparison between experiments [42].
Our analysis gave a large coverage of AML cells proteomic,
with approximatively 100000 identified sequence-unique
peptides and more than 7000 identified proteins with 1%
FDR, both on the peptide-spectrum match, and protein levels
(Supporting Information Tables S1 and S2). Our results in-
clude the identification of low abundant proteins such as im-
portant transcription factors including JUN, ¢-Myc, SP1 and
ATF3 (Supporting Information Tables S1 and S2) or Inter-
leukin family proteins. In-depth comparison of the identified
proteins from each fraction showed a high overlap (> 70%)
between our two experiments. Due to its higher performance,
the LTQ-Orbitrap Velos leads to significantly more identifica-
tions at protein and peptides levels in the analysis of complex
peptide mixtures (Supporting Information figure S3). About
3918 proteins were quantified in KGla cytoplasmic fraction
of the replicate 2 whereas 3070 proteins were quantified on
replicate 1. From these quantified proteins, 2258 were com-
mon between the two replicates. The same trend was ob-
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served for U937 cells where 3708 proteins were quantified
in the cytoplasmic fraction of replicate 2 and 2919 proteins
were quantified of replicate 1. From these quantified proteins,
2267 were common between the two replicates. These results
are particularly pronounced in the nuclear fraction. For both
cell lines the LTQ-Orbitrap Velos allows identification of ap-
prox. 50% more proteins in nuclear fraction (3958 versus 1477
proteins for KG1la, and 3495 versus 1809 proteins for U937)
(Supporting Information figure S3). This trend might also
Dbe related to better extraction of the nuclear proteins for the
second biological replicate. Conversely, a large majority of the
quantified proteins were found in both replicates and allows
for their comparison.

In addition, identified proteins from KGla and U937
cells cellular models were similar and therefore allowed
an unbiased comparison of their respective proteomes
and their modulation after proteasome inhibition (Sup-
porting Information Tables S1 and S2). The large num-
ber of proteins identified in this work offers a system-wide
quantitative view of the proteome variations in KGla and
U937 cells upon proteasome inhibition, which may serve as
a basis for further downstream computational analysis and
biological interpretation.

3.3 Functional discrimination between KG1a cells
and U937 cells

Herein, we analysed the proteins that change in abundance
and could explain the differential apoptotic responses to the
proteasomal inhibition observed between immature KGla
and mature U937 AML cells. The total proteome dataset from
each cell line was examined for responses to inhibition of
proteasome by Lactacystin. Comparison of the quantified pro-
teins from the two replicates of each cell line showed a high
reproducibility (Supporting Information figure S4). These re-
sults validated our strategy.

www.proteomics-journal.com
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(U937 cells) Figure 2. Overview of the ex-
perimental workflow used in
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I lysine (cf. Materials and Meth-
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Subcellular fractionation : nuclear and cytoplasmic
Protein fractionation (1D SDS-PAGE gel separation )
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J
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To define a robust biological response, we set a conser-
vative cutoff of a minimal 1.5-fold change in the abundance
ratio. We obtained three categories of proteins: up-regulated
(minimal ratio of heavy/light (H/L) of 1.5), down-regulated
(maximal ratio H/L of 0.7), and unchanged (0.7 < ratio H/L
< 1.5). In both cell lines and subcellular fraction, less than
5% of the quantified proteins showed a significant change in
abundance after proteasome inhibition, i.e., either increase,
or decrease, greater than ~1.5 fold after 6 h of Lactacystin
treatment (Supporting Information Table S1 and S2). In to-
tal, 266 proteins were found significantly changed in cyto-
plasmic fraction and 134 proteins in the nuclear fraction of
KG1a cells. Conversely, 103 and 148 proteins were found sig-
nificantly changed in the cytoplasmic and nuclear fractions of
U937 cells, respectively (Supporting Information Tables S3).
Interestingly, some proteins that change in abundance were
common to both cell lines, such as cyclin, heat shock and pro-
tein from UPP pathway, reflecting the global response of the
cells to proteasome inhibition (Supporting Information Ta-
bles S3). These proteins are targets of the UPP. Others were
specific to individual cell lines, for example 1L32, and may
potentially be involved in the differential apoptotic response
to proteasome inhibition.

3.4 Proteasome inhibition induces the unfolded
protein response and stress response

Protein abundance changes measured in the present study
derive from two different processes following proteasome
inhibition, i.e., decrease of protein degradation (accumula-
tion of poly-ubiquitinylated proteins) and regulation of spe-
cific genes. Indeed, it has been reported that proteasome in-

Combined cells 1:1

the experiment was done in du-
plicate. Proteins were fraction-
ated into cytoplasmic and nu-

ods). Cells were incubated for
6 h with 5 WM Lactacystin, and

clear fractions. Equal amount
of each fraction was then sepa-
rated by 1D SDS-PAGE, proteins
from each slice digested us-
ing trypsin. Resulting peptides
were analyzed by nanolLC and
measured on an LTQ-Orbitrap
instrument. Protein identifica-
tion was accomplished with
Maxquant and data analysis
with Perseus.

hibition induces the accumulation of k-48-linked ubiquitin
protein targets and a loss of ubiquitin from a cohort of puta-
tively monoubiquitylated proteins in the cells [49,50]. Herein,
we quantified the up-regulation (H/L>1.5) of Ubiquitin C
(UBC), indicating the accumulation of polyubiquitylated pro-
teins after 6 hours of proteasome inhibition in cytoplasmic
fractions of both cell lines [49] (Supporting Information fig-
ure S5A). In addition, in order to cope with this inhibition
[17], cells activate a specific gene expression response, leading
to a change in abundance of some proteins.

As previously described in the literature, we quantified
the de novo formation of the catalytic subunits of the 20S
core complex to replace the inhibited forms, as well as the
accumulation of the other subunits of the 20S core [51-53].
This was particularly observed in the cytoplasm, confirming
a recent result from our group showing that 20S proteasome
is ~1.5 higher in KG1a cells than in U937 cells [14,54]. Other
compounds of the UPP were also found to be up-regulated
in both cell lines after proteasome inhibition, including E2
conjugating (UBE2C) and E3 ligase enzymes, proteasome
regulators (PSMD3, PSMEL. .. ), and proteins from the cullin
family (Fig. 3) (Supporting Information figure S5B).

Other well-known pathways were found to be differen-
tially regulated in this study and used as positive control to
validate our results. A global increase of Heat-Shock Pro-
teins (HSP) (Supporting Information figure S5C), including
HSP701A/1B, HSP105 HSPH1, HSPJ2 and HSP40 DNAJB1
was observed with a greater ratio in KG1a cells than U937 cells
(Fig. 3, Supporting Information figure S5C). Our proteomics
data showed an increase of proteins that are associated with
the induction of the unfolded protein response, including
ATF3,HSF2, PDRG1and HSP 90AB1. Overall, these changes
reflect a stress response in both cells lines, which would be

© 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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Figure 3. Functional analysis of regulated proteins after proteasome inhibition with Lactacystin in both KG1a and U937 cells. Figure displays
significantly regulated proteins (H/L>1.5) in cytoplasmic fraction (A,cC) and nuclear fraction (B, D) of KG1a and U937 cells respectively.
Figures were made using String and Cytoscape. Colors indicate different process affected by the proteasome inhibition.

consistent with the well-documented role of these molecu-
lar chaperones in conferring protection against therapeutic
agents [22,55]. However, these effects were found to be more
pronounced in KG1a cells than in U937 cells, which shown
to be more sensitive to proteasome inhibitors [14].

3.5 Cell cycle regulated proteins and pro-apoptotic
proteins

In agreement with several other studies, cyclins and the cell-
cycle progression pathway were found to be up-regulated af-
ter proteasome inhibition in both nuclear and cytoplasmic
fractions, for both cell lines (Fig. 3, Supporting Information
figure S5D) [17,18]. Stathmin-3 was found to be highly mod-
ulated in cytoplasm of KG1a cells (Supporting Information
figure S5D). The pro-apoptotic protein SIVA, previously de-
scribed as a direct p53-dependant gene selectively induced
during apoptosis [55], was found specifically up-regulated in
the cytoplasmic fraction of KG1a cells (Supporting Informa-
tion figure S6A). In contrast, cell cycle and apoptosis regu-

© 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

lator proteins 1 and 2 (CARP-1 and 2), an apoptosis inducer
that regulates apoptosis signalling, were found to be down-
regulated only in U937 cells (Supporting Information Table
S3). These regulated proteins tend to enhance the apoptotic
effect of the proteasome inhibitor in KG1a cells.

3.6 MORF/MRG family of novel transcription factors

We quantified the accumulation of three well-known in-
teraction partners, i.e, two chromatin regulatory proteins,
MORF 4L1 and L2, and MRFAP1, in both cell lines af-
ter proteasome inhibition (Supporting Information figure
S6B). Recent studies have shown that MRFAP1 proteins
have fast turnover rates, and are rapidly degraded via the
ubiquitin-proteasome system [56, 57]. This protein and its
interaction partner MORF4L1 were found amongst the most
up-regulated proteins after NEDD8 inhibition, in multiple hu-
man cell lines [57-59]. The function of NEDDS, an ubiquitin-
like protein, is to promote the protein degradation of substrate
through the UPP. NEDDS is first activated by an E1 enzyme

www.proteomics-journal.com
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Figure 4. Workflow for the verification of potential candidates by SRM. Two cell populations of KG1a and U937 cells were SILAC-encoded
by growing them in the presence of (light and heavy) stable isotope-labeled arginine and lysine. Cells were then treated either with 5 pM
of lactacystin or 10 nM of bortezomib for 2, 6, 12 and 24 h. All heavy cells were mixed and used as standards for quantification. After
protein isolation, the same amount of Heavy labeled proteins was added into each sample. Heavy and light-labeled proteins were then
digested using trypsin. Resulting peptides were analyzed by nanoLC-SRM on the TSQ vantage. A list of 66 proteins, identified previously

by shotgun, was targeted by SRM (Table 1).

(NEDDS activating enzyme (NAE; a heterodimer of NAE1
and UBA3 subunits)), transferred to an E2 enzyme (Ubc12,
also known as UBE2M), and then conjugated to target sub-
strates. To-date, the most well characterized substrates of the
NEDD8 pathway are the cullin family of proteins, including
CUL4B [60].

Finally, Larance and colleagues have shown that MRFAP1
may regulate the ability for MORF4L1 to interact with chro-
matin modifying enzymes by binding to MORF4L1 in a mu-
tually exclusive manner, with MRGBP part of the NuA4 com-
plex [57]. These proteins may play an important role in disease
states, such as our cellular system, that could be influenced by
alterations in histone acetylation and related modifications.
This knowledge, combined with the fact that MORF proteins
are rapidly accumulated after treatment with proteasome
inhibitors used for the treatment of several types of myeloma
and lymphoma, prompted development of specific inhibitors
of the NEDD8 machinery and opens up new avenues of ex-
ploration for the mechanism of the proteasome inhibitor in
haematological cells.

3.7 Cytokines responses: IL32, a potentially new
pro-apoptotic factor

Although a large number of interleukin family protein mem-
bers were identified in this study, only IL32 was found to
be specifically regulated with an average ratio of H/L greater
than 6 in KG1a cells after inhibition.

IL-32 is an inflammatory cytokine produced by T lym-
phocytes, natural killer (NK) cells, epithelial cells, and blood
monocytes [61,62]. The expression of this protein is increased

© 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

after the activation of T-cells by mitogens or the activation of
NK cells by IL-2. IL-32 induces tumor necrosis factor-alpha
(INF-a), IL-1B, IL-6, and IL-10 and thereby may play an im-
portant role in tumor development. This protein encodes
for six isoforms from alternate transcriptional splice variants
[62, 63]. One of the isoforms IL-32 beta, has recently been
described as a main player in the activation of NF-kB and
STAT3 pathways, which control tumor growth [64]. In our
study we covered about 60% of the sequence of IL32 pro-
tein but could not differentiated the isoform that changes in
abundance after proteasome inhibition.

Even if we do not have functional validation of this can-
didate, we hypothesize that the up-regulation of IL32 pro-
tein following proteasome inhibition, which appears from
our result to be specific to KG1a cells, may be an impor-
tant player in the differential apoptotic response [65] between
both cell types. This may be related to the modulation of
the NF-kB pathway, although alternative mechanisms may
also underly the role of IL32 in the proteasomal inhibition
response.

3.8 \Verification of new candidates by SRM

Atargeted-MS approach based on SRM [31,35,45] was used to
follow the change of abundance of selected proteins over time
after proteasome inhibition. Herein, we wanted to evaluate
and compare the effects of bortezomib, used in the treatment
of some AML patients, and Lactacystin (Fig. 4).

A total of 66 proteins that were identified in the shotgun
experiment were selected for further verification by SRM
(Table 1). This list of proteins included tubulin and HSP

www.proteomics-journal.com
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Table 1. List of the 66 selected candidates from Shotgun analysis for the SRM measurement. Selected proteins are involved in the cell
cycle apoptosis, transcription DNA repair, and stress response and chromosome organization

GO Process Protein names Gene names Uniprot Acc Entry name

Apoptosis, Cell death Apoptosis-enhancing nuclease AEN Q8WTP8 AEN_HUMAN

Apoptosis, Cell death Phorbol-12-myristate-13-acetate- PMAIP1 Q13794 APR_HUMAN
induced protein 1 (PMA-induced
protein 1)

Apoptosis, Cell death Apoptosis regulator BAX (Bcl-2-like BAX Q07812 BAX_HUMAN
protein 4) (Bcl2-L-4)

Apoptosis, Cell death Apoptosis regulator Bcl-2 BCL2 P10415 BCL2_HUMAN

Apoptosis, Cell death BH3-interacting domain death BID P55957 BID_HUMAN
agonist (p22 BID) (BID)

Apoptosis, Cell death Bcl-2-interacting killer (Apoptosis BIK Q13323 BIK_HUMAN
inducer NBK) (BIP1) (BP4)

Apoptosis, Cell death Baculoviral IAP repeat-containing BIRC3 Q13489 BIRC3_HUMAN
protein 3 (EC 6.3.2.-) (Apoptosis
inhibitor 2)

Apoptosis, Cell death Growth arrest and DNA GADD45B 075293 GA45B_HUMAN
damage-inducible protein GADD45
beta

Apoptosis, Cell death NF-kappa-B inhibitor alpha NFKBIA P25963 IKBA_HUMAN
(I-kappa-B-alpha) (IkB-alpha)

Apoptosis, Cell death Induced myeloid leukemia cell MCL1 Q07820 MCL1_HUMAN
differentiation protein Mcl-1

Apoptosis, Cell death Pleckstrin homology-like domain PHLDAS3 Q9Y5J5 PHLA3_HUMAN
family A member 3

Apoptosis, Cell death Apoptosis regulatory protein Siva SIVA1 015304 SIVA_HUMAN

Cell adhesion Protocadherin alpha-C2 PCDHAC2 Q9Y514 PCDC2_HUMAN
(PCDH-alpha-C2)

Cell cycle G2/mitotic-specific cyclin-B1 CCNB1 P14635 CCNB1_HUMAN

Cell cycle Cell division cycle 7-related protein CDC7 000311 CDC7_HUMAN
kinase

Cell cycle Cyclin-dependent kinase 1 (CDK1) CDK1 P06493 CDK1_HUMAN

Cell cycle Cyclin-dependent kinase inhibitor 1 CDKN1A P38936 CDN1A_HUMAN
(CDK-interacting protein 1)

Cell cycle Cyclin-dependent kinase inhibitor 1B CDKN1B P46527 CDN1B_HUMAN

Cell cycle Cell cycle checkpoint control protein RAD9B Q6WBX8 RAD9B_HUMAN
RAD9B

Cell cycle Kinesin-like protein KIFC1 KIFC1 Q9BW19 KIFC1_HUMAN
(Kinesin-like protein 2)

Cell cycle Proline/serine-rich coiled-coil protein PSRC1 Q6PGN9 PSRC1_HUMAN
1

Cell cycle, apoptosis NEDD8-activating enzyme E1 NAE1 Q13564 ULA1T_HUMAN
regulatory subunit

Cytoskeleton Tubulin alpha-1A chain TUBA1A Q71U36 TBA1A_HUMAN

Organization, cell (Alpha-tubulin 3)

cycle

DNA repair Protein BTG2 (BTG family member 2) BTG2 P78543 BTG2_HUMAN

DNA repair Mortality factor 4-like protein 1 MORF4L1 Q9UBUS8 MO4L1_HUMAN

DNA repair Mortality factor 4-like protein 2 MORF4L2 Q15014 MO4L2_HUMAN

DNA repair MORF4 family-associated protein 1 MRFAP1 Q9Y605 MOFA1_HUMAN

DNA repair MRG/MORF4L-binding protein MRGBP QI9NV56 MRGBP_HUMAN

DNA repair PCNA-associated factor KIAA0101 Q15004 PAF15_HUMAN

Histone deacetylase Ankyrin repeat family A protein 2 ANKRA2 Q9H9E1 ANRA2_HUMAN

binding (RFXANK-like protein 2)

Immune response, Interleukin-32 (IL-32) 1L32 P24001 IL32_HUMAN

cell adhesion

Others Beta-1,3-N- LFNG Q8NES3 LFNG_HUMAN
acetylglucosaminyltransferase
lunatic fringe

Protein folding p53 and DNA damage-regulated PDRG1 QINUG6 PDRG1_HUMAN

protein 1

© 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Table 1. Continued
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GO Process Protein names Gene names Uniprot Acc Entry name

Response to stress Putative heat shock protein HSP HSP90A Q58FF8 H90B2_HUMAN
90-beta 2

Response to stress Putative heat shock protein HSP HSP90BC Q58FF7 H90B3_HUMAN
90-beta-3

Response to stress Heat shock 70 kDa protein 1A HSPA1A PODMV8 HS71A_HUMAN

Response to stress Heat shock 70 kDa protein 1B HSPA1B PODMV9 HS71B_HUMAN

Response to stress Heat shock 70 kDa protein 1-like (Heat HSPA1L P34931 HS71L_HUMAN
shock 70 kDa protein 1L) (Heat shock
70 kDa protein 1-Hom) (HSP70-Hom)

Response to stress Heat shock protein HSP 90-alpha A2 HSP90AA2P Q14568 HS902_HUMAN

Response to stress Putative heat shock protein HSP HSP90AA4P Q58FG1 HS904_HUMAN
90-alpha A4

Response to stress Heat shock protein HSP 90-alpha HSP90AA1 P07900 HS90A_HUMAN

Response to stress Heat shock protein beta-1 (HspB1) HSPB1 P04792 HSPB1_HUMAN

Response to stress DnaJ homolog subfamily B member DNAJB1 P25685 DNJB1_HUMAN
1

Signal transduction NF-kappa-B inhibitor-interacting KBRAS1 QI9NYSO0 KBRS1_HUMAN
Ras-like protein 1

Signal transduction NF-kappa-B inhibitor-interacting KBRAS2 QI9NYR9 KBRS2_HUMAN
Ras-like protein 2

Transcription Transcription factor E2F7 (E2F-7) E2F7 Q96AV8 E2F7_HUMAN

Transcription Transcription factor MafF (U-Maf) MAFF Q9ULX9 MAFF_HUMAN

Transcription Nuclear factor NF-kappa-B p105 NFKB1 P19838 NFKB1_HUMAN
subunit p50 subunit]

Transcription Nuclear factor NF-kappa-B p100 NFKB2 Q00653 NFKB2_HUMAN
subunit

Transcription, DNA Cellular tumor antigen p53 P53 P04637 P53_HUMAN

damage response

Ubiquitin Proteasome Proteasome subunit alpha type-1 PSMA1 P25786 PSA1_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit alpha type-2 PSMA2 P25787 PSA2_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit alpha type-3 PSMAS3 P25788 PSA3_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit alpha type-4 PSMA4 P25789 PSA4_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit alpha type-5 PSMA5 P28066 PSA5_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit alpha type-6 PSMA6 P60900 PSA6_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit alpha type-7 PSMA7 014818 PSA7_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit beta type-10 PSMB10 P40306 PSB10_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit beta type-5 PSMB5 P28074 PSB5_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit beta type-6 PSMB6 P28072 PSB6_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit beta type-7 PSMB7 Q99436 PSB7_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit beta type-8 PSMB8 P28062 PSB8_HUMAN

pathway

Ubiquitin Proteasome Proteasome subunit beta type-9 PSMB9 P28065 PSB9_HUMAN

pathway

Ubiquitin Proteasome Proteasome activator complex PSME1 Q06323 PSME1_HUMAN

pathway subunit 1

Ubiquitin Proteasome Proteasome activator complex PSME2 Q9UL46 PSME2_HUMAN

pathway subunit 2

Ubiquitin Proteasome Proteasome activator complex PSME3 P61289 PSME3_HUMAN

pathway subunit 3

© 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 5. Quantitative analysis of proteins that change in abundance after proteasome inhibition with bortezomib (A) or Lactacystin (B) in
both KG1a and U937 cells. The volcano plot represent the statistical significance expression level change (p-value, SRM stat), as a function
of protein expression ratio between control and treated cells. The red and blue dots indicate up- and down regulated proteins, respectively.

proteins, well-known to be regulated after proteasome
inhibition, as negative and positive controls, respectively.
These proteins also served to evaluate the variation of sample
preparation and MS measurement, and to normalize the data.
The selected proteins for SRM quantification are involved in
cell cycle control, apoptosis, transcription, DNA repair, and
stress response and chromosome organization.

Treated cells with either Lactacystin or bortezomib were
harvested at 2, 6, 12 and 24 hours after inhibition. As a
reference, we used the spike-in method as described by T.

© 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Geider [66] and AQUA peptides. Mixtures of heavy- and
light stable isotope-labeled proteins were processed for MS
analysis as described in Fig. 4. For the missing proteins
in the spike-in mixture, such as IL32, we used AQUA
peptides to quantify the protein of interest (Supporting
Information Table S4). Three individual biological replicates
were prepared.

Out of the 66 human proteins, only 53% could be suc-
cessfully detected and quantified in the majority of samples.
Proteins which were not constituently detected in similar

www.proteomics-journal.com
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Figure 6. Differential regulation of IL32 and SIVA upon the pro-
teasome inhibition measured by SRM. Cells were treated with
10 nM bortezomib and total protein were extracted and digested
with trypsin and measured by SRM (see Materials and Methods).
Graph reported the protein abundances (log 2 Fold change) over
time (0 to 24 h) of IL32 (A) and SIVA (B) proteins after protea-
some inhibition with bortezomib of both KG1a (blue) and U937
(red) cells. Results correspond to the mean + SD of at least three
independent experiments.

replicate were excluded for the further analysis. The suc-
cess rate could be explained by the fact that we measured
non-fractionated samples by SRM and therefore lost the
deeper analytical profile provided by extensive fractionation,
as performed in the global shotgun approach. Indeed our
selected proteins for the SRM measurement, such as tran-
scription factors, are low abundant proteins. Therefore these
proteins are not easy to detect in total extract proteome by
SRM with sufficient number of transitions, even if the SRM
is very sensitive. In addition, the spike-in strategy used for the
quantification also increases the complexity of the mixture
and therefore reduced the ability to detect very low abundant
proteins. After the extraction and integration of the peak in-
tensity with Skyline, the statistical analysis of the data was

© 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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performed with MSstats [34, 44, 45]. The results of the sta-
tistical tests were summarized by Volcano plots (adjusted
p-value versus log fold change) for the treatment of both KG1a
and U937 cells with bortezomib (Fig. 5A) and Lactacystin
(Fig. 5B).

As anticipated, the abundance of HSP71 protein, our pos-
itive control, increases over time after the proteasome inhibi-
tion with bortezomib (Fig. 5A), while the abundance of tubu-
lin proteins does not change, for both KG1la cells and U937
cells (Supporting Information figure S7). The same trend was
observed after inhibition with Lactacystin. The abundance of
HSP71 increase faster in KG1a cells which is more sensitive
to proteasome inhibitor than in U937 (Supplemental figure
S8). Other proteins selected from the shotgun experiment
were also found up- or down-regulated by SRM with the
same behavior (Bax, PSB7, BIRC3.). Herein, in contrast to
the shotgun analysis, cells were not fractionated into subcel-
lular fractionation, therefore, modulation of the abundance
this proteins reflects the change at the cellular level. Pro-
teins found to change in abundance tend to be in favour
of the induction of apoptosis in our cells. KBRS1 protein a
Ras-like protein that acts as a potent regulator of NF-kappa-
B activity by preventing the degradation of NF-kappa-B in-
hibitor beta (NFKBIB) was found to be up-regulated in both
KG1a and U937 cells after proteasome inhibition with Lacta-
cystin and bortezomib. Furthermore, Apoptosis-enhancing
nuclease protein (AEN), an exonuclease with an activ-
ity against single- and double-stranded DNA and RNA,
was found to be rapidly up-regulated in U937 cells.
This protein mediates p53-induced apoptosis. This re-
sults suggest that apoptosis induced by proteasome in-
hibitor in U937 is mediated by p53-dependent pathways of
apoptosis.

In agreement with our global analysis, SIVA, and MORF
proteins were found to be rapidly regulated after proteasome
inhibition with either bortezomib or Lactacystin (Fig. 5A and
B). Our data showed that the abundance of SIVA plateaus
(Fig. 6) and is in agreement with the % rate of the apoptosis
measured by FACS [14]. IL32 was confidently quantified in
KG1a cells. IL32 protein was found to be rapidly up-regulated
in KGla, with a ratio higher than 10 after only 2 hours of
inhibition with either bortezomib or Lactacystin (Fig. 5).
Interestingly, IL32 up-regulation occurs in KGla cells,
where an important apoptotic response is also observed
(Fig. 6 and Supporting Information Figure 1). Inhibitor-
induced apoptosis is greatly delayed in U937 cells, where
the IL32 expression level is also less affected. It has been
established that IL-32 may antagonize cancer growth and
represent a useful target for human breast cancer [67].
Therefore, we believe that this protein could be a potential
key protein in the mechanism of action of proteasome
inhibitors in KGla cells and U937 cells. Complemen-
tary approaches, such as gene silencing, will help to
better characterize the roles SIVA, MORF and IL32 in the
mechanism of proteasome inhibitors in KGla cells and
U937 cells.
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4 Concluding remarks

In conclusion, we have used SILAC-based quantitative MS
combined with targeted approaches to characterize proteins
that change in abundance upon proteasomes inhibition in
two different AML cells and at differential stages of matura-
tion. Our data establish for the first time a global profiling of
these cells after proteasome inhibition with high quantifica-
tion accuracy, allowing a deeper exploration of the biological
processes involved. Proteins found to change in abundance
are in agreement with high apoptosis levels induced in KG1a
cells by all the proteasome inhibitors tested. In addition to the
well-known regulated proteins upon proteasome inhibition,
we identified novel players, including IL32, SIVA, and MORF
family proteins, that could potentially explain the differential
apoptotic response observed. Our results suggest that apop-
tosis induced by the proteasome inhibition in U937 cells is
p53-dependent pathway and might be different for KG1a cells.
These results open up new avenues to investigate the mech-
anism of the proteasome inhibitors in AML, but also for the
development of inhibitors with higher therapeutic potency
and minimal toxicity to normal cells.
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