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Abstract

CD4+ helper T cells are critical orchestrators of immune responses to infection and vaccination. During primary responses,
naı̈ve CD8+ T cells may need ‘‘CD4 help’’ for optimal development of memory populations. The immunological factors
attributed to CD4 help depend on the context of immunization and vary depending on the priming system. In response to
immunization with radiation-attenuated Plasmodium yoelii sporozoites, CD8+ T cells in BALB/c mice fail to generate large
numbers of effector cells without help from CD4+ T cells – a defect not observed in most systems. Given this unique early
dependence on CD4 help, we evaluated the effects of CD4+ cells on the development of functional properties of CD8+ T
cells and on their ability to abolish infection. First, we determined that this effect was not mediated by CD4+ non-T cells and
did not involve CD1d-restricted NKT cells. We found that CD8+ T cells induced by sporozoites without CD4 help formed
memory populations severely reduced in magnitude that could not limit parasite development in the liver. The inability of
these ‘‘helpless’’ memory T cells to protect is not a result of defects in effector function, as their capacity to produce
cytokines and undergo cytotoxic degranulation was indistinguishable from control memory T cells. These data indicate that
CD4+ T help may not be necessary to develop the functional attributes of CD8+ T cells; however they are crucial to ensure
the survival of effector and memory cells induced in primary responses.
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Introduction

CD8+ T cells are critical to protection against infection by

intracellular pathogens, including liver stage malaria parasites.

CD8+ T cells induced by immunization with radiation-attenuated

Plasmodium sporozoites (c-spz) or sub-unit vaccines are capable of

inhibiting the development of liver stage parasites [1,2,3,4]. T cell

priming by c-spz occurs primarily in the skin-draining lymph node

after parasite inoculation in the skin by either needle or the bite of

an infected mosquito, followed by dissemination of effector T cells

throughout the body, including the spleen and liver [4]. This

priming in the lymph node is closely dependent on CD4+ cells and

the absence thereof results in a reduced effector population [5].

This dependence on helper T cells at such an early time point is

unique among models of CD8+ T cell priming, which often

demonstrate unaltered primary CD8+ T cell responses to

pathogens in the absence of helper T cells [6,7,8,9,10], with

defects only apparent in functional recall of resting memory cells

[7,9,11]. These studies have demonstrated an uncoupling of CD8+

T cell clonal expansion, survival, and acquisition of effector

function. In view of the clear and early dependence of c-spz-

induced CD8+ T cells on CD4+ T cells, we sought to characterize

the effect of helper T cells on the functional development of anti-

parasite CD8+ T cells.

In the current study, we evaluated the role of CD4+ T cell help

on the development of functional anti-malaria effector and

memory CD8+ T cells by using Thy-1 allelic mismatched T cells

so that survival could be measured independently of effector

function. We found that while effector and memory CD8+ T cells

from CD4-depleted mice (‘‘helpless’’ T cells) were severely reduced

in magnitude compared to those primed in the presence of CD4+

T cells, helpless effector and memory CD8+ T cells were fully

competent to produce cytokines and degranulate upon restimu-

lation ex vivo. Interestingly, however, helpless CD8+ T cells failed to

confer any level of protection against live sporozoite infection,

indicating that large numbers of anti-parasite CD8+ T cells are

critical to protection. Our studies indicate that the role of CD4+ T

cells in modulating the CD8+ T cell response to the circumspor-

ozoite protein of irradiated P. yoelii sporozoites appears to be

restricted to ensuring the survival of activated T cells, without a

discernible effect on the development of their functional

properties.
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Results

CD4+ helper T cells are necessary for CD8+ T cell
responses to c-spz

We have previously shown that CD4+ cells are critical for

optimal priming of both endogenous polyclonal CD8+ T cells and

antigen-specific TCR-Tg CD8+ T cells following immunization

with irradiated P. yoelii sporozoites [5]. In the current study, we

further characterized the effects of helper T cells on the

development of effector and memory CD8+ T cells and their

ability to protect from infection. While depletion of CD4+ cells by

antibody treatment clearly limits the development of the CD8+ T

cell response to c-spz (Figure 1A), the possible role of CD4+ cells of

the non-T-cell lineage, as well that of CD4+ NKT cells required

further elucidation. To determine if CD4 depletion was modulat-

ing the CD8+ T cell response to c-spz independently of depletion

of helper T cells, we treated mice with anti-Thy-1.2 antibodies to

deplete endogenous T cells while leaving the transferred Thy-1.1+

TCR-Tg cells intact. Depletion of Thy-1.2+ cells prior to c-spz

immunization resulted in a markedly reduced CD8+ T cell

response (Figure 1B), similar to the effects of depletion of CD4+

cells. Moreover, we found that transfer of CD4+Thy-1.1+ cells into

Thy-1.2-depleted mice rescued the CD8+ T cell response to c-spz

immunization (Figure 1B). Taken together, these data strongly

suggest that CD4+ T cells provide critical support to the

development of effector CD8+ T cells in response to c-spz. It is

important, however, that our results cannot rule out that other

CD4+Thy-12 cells may also have role in modulating the CD8+ T

cells responses.

Given that expression of CD4 among T cells is not exclusive to

MHC II-restricted T cells, we next tested if CD4+ CD1d-restricted

NKT cells played a role in supporting the CD8+ T cell response.

We found that CD1d2/2 mice, which lack NKT cells, were fully

competent to support CD8+ T cell priming to c-spz immunization

(Figure 1C). Further, Ja182/2 mice, which lack NKT cells

expressing the invariant TCR, also showed no defect in the CD8+

T cell response. These results extend our previous observations

indicating that a subset of NK1.1+ NKT cells are dispensable for

CD8+ T cell priming to c-spz immunization [5]. Together, these

data strongly support the notion that CD4 help to CD8+ T cells

following immunization with c-spz is provided by MHC II-

restricted CD4+ T cells.

CD4+ T cell help is needed for peak clonal expansion of
anti-parasite CD8+ T cells

To gain insight into the nature of the CD4 help, we analyzed

the early events of the T cell response to parasite immunization. As

early as four days post-immunization, a major reduction in the

number of effector CD8+ T cells in CD4-depleted mice was

observed in the spleen (Figure 2A). In the lymph nodes, a defect

was not observed until day 5. During the first week after

immunization, we observed similar kinetics of expression of most

surface activation markers independent of CD4 help (Figure S1),

consistent with normal initiation of proliferative responses and

early expansion (Figure 2A,B). Strikingly, however, we found that

helpless CD8+ T cells failed to express CD25 at any time during

the first week after immunization, in contrast to control CD8+ T

cells that transiently expressed high levels of CD25 at three days

post-immunization (Figure 2B,C). Since day 3 post-immunization

was the last day that the CD8+ T cell response was indistinguish-

able between control and CD4-depleted mice, it is possible that

lack of CD25 expression may be related to the early contraction of

the helpless T cell population. Thus, we next evaluated if helper T

cells were dispensable after the early clonal burst of CD8+ T cells

and expression of CD25. To test this, we depleted CD4+ T cells

beginning on day 4 after immunization and evaluated the number

of antigen-specific CD8+ T cells in the spleen at day 14 post-

immunization (Figure 2D). We found that delayed depletion of

CD4+ T cells did not alter the number of CD8+ T cells recovered

two weeks later compared to control mice. Together, these data

suggest that helper T cells were critical for supporting the size of

the CD8+ T cell compartment through mechanisms acting early in

the T cell response, potentially by inducing CD25 expression on

the anti-parasite CD8+ T cells.

The size of the memory CD8+ T cell pool induced by c-
spz is dependent on helper T cells in a precursor
frequency-dependent manner

We next evaluated the role of CD4+ T cells in the memory

development of c-spz-induced CD8+ T cells. At day 35 post-

immunization, the number of anti-parasite CD8+ T cells found in

CD4-depleted mice was reduced 76% compared to control mice

(Figure 3A). This relative reduction was similar to the 78%

reduction observed at day 10 (Figure 2A), suggesting that helper T

cells do not affect the size of the CD8+ T cell pool that transitions

from effector cells into memory cells and appear to only support

the size of the early effector pool. When the number of naı̈ve

TCR-Tg precursors was reduced from 26105 to 26104 or 26103,

no differences were observed in the number of memory CD8+ T

cells recovered thirty days after immunization from intact mice

and only a slight decrease was observed when 26102 naı̈ve T cells

were transferred (39% reduced compared to 26105, p = 0.047;

Figure 3A). However, in the absence of CD4+ cells, the relative

recovery of memory CD8+ T cells decreased dramatically with

reduced precursor frequency. With ten-fold serial reductions in

precursor frequency from 26105, the size of the helpless memory

CD8+ T cell pool was reduced 76%, 79%, 97%, and 99.8%

compared to control, respectively (Figure 3A). Importantly, the

TCR-Tg cells found in CD4-depleted mice at day 30 using higher

precursor frequencies (26105) did not represent undifferentiated

naı̈ve cells, as they uniformly expressed surface markers consistent

with effector and memory T cells: CD44hi, CD62Llo, CD122+,

and CD11ahi (Figure 3B), demonstrating both normal T cell

differentiation in the absence of CD4+ T cell help and a genuine

memory population not composed of residual naı̈ve T cells left

unprimed after immunization. Taken together with the results that

depletion of helper T cells after day 4 did not affect the size of the

effector CD8+ T cell pool (Figure 2D), these data suggest that

reduced memory pools observed one month after immunization

can be attributed to the early effects of helper T cells on CD8+ T

cell clonal expansion.

Helpless CD8+ T cells fail to protect from live malaria
challenge

While helper T cells clearly supported the size of the effector

CD8+ T cell pool, the CD4-dependence for survival was not

absolute, as helpless T cells were readily detected at ten and thirty

days post-immunization (Figure 2A, 3A). Thus, we next evaluated

the ability of the helpless CD8+ T cells to protect from malaria

infection by challenging immunized mice with live sporozoites.

Protection was quantified by measuring parasite load in the liver

forty hours after challenge. In control mice that received TCR-Tg

cells and c-spz immunization, the parasite load in the liver was

reduced by greater than 99% compared to control mice that

received TCR-Tg cells without immunization (Figure 4A). Deple-

tion of CD8+ cells just prior to challenge demonstrated that

protection was predominantly mediated by CD8+ T cells.

CD4 Help to CD8+ T Cells against Plasmodium yoelii
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Remarkably, the ‘‘helpless’’ CD8+ T cells in mice that were

immunized in the absence of CD4+ T cells conferred no protection

against subsequent live sporozoite challenge. This effect was not

due to loss of protective immunity mediated directly by CD4+ T

cells, as depletion of CD4+ cells from immunized mice just prior to

challenge had no effect on protection (Figure 4B). Thus, CD8+ T

cell-mediated control of liver stage malaria parasites is critically

dependent on CD4 help.

Development of cytotoxic effector function by effector
and memory CD8+ T cells occurs independently of helper
T cells

Given that CD8+ T cells primed in the absence of helper T cells

conferred no protection against live malaria sporozoite challenge,

we next directly evaluated the functionality of these T cells ex vivo.

Following adoptive transfer of TCR-Tg cells and c-spz immuni-

zation, lymphocytes from the spleen and draining lymph nodes of

control and CD4-depleted mice were harvested at various time

points, stimulated ex vivo with peptide-pulsed target cells and

stained for intracellular cytokines (IFN-c, TNF-a, or IL-2) and

surface mobilization of CD107a as an indicator of degranulation

and cytotoxic capacity [12,13,14]. Three days post-immunization

(prior to the peak of the response) primed T cells had rapidly

acquired effector functions, with cells from both normal and CD4-

depleted mice displaying robust capacity to degranulate

(CD107a+), produce IFN-c, TNF-a, or IL-2 in the lymph nodes

draining the site of immunization (Figure 5A). Combinatorial

analysis of polyfunctional effector function demonstrated indistin-

guishable profiles between CD8+ T cells from control and CD4-

depleted mice (Figure 5B). Distinct combinations of effector

molecule expression were observed (primarily CD107a+IFN-

c+TNF-a+IL-2+), with co-expression of 3-4 effector molecules

accounting for more than half of the T cells in both groups at three

days post-immunization. Similar polyfunctional effector profiles

were observed at the peak of the response at day 5 (Figure 5C),

despite the fact that the helpless CD8+ T cells had already begun a

premature contraction. The patterns of cytokine co-expression and

Figure 1. CD4+Thy-1+ helper cells are necessary for CD8+ T cell responses to c-spz. (A) Control and CD4-depleted BALB/c mice received
26105 Thy-1.1+ TCR-Tg CD8+ T cells and were immunized subcutaneously the following day at the base of the tail with 56104 P. yoelii c-spz. Ten days
later, the numbers of CD8+ Thy-1.1+ cells in the spleens were evaluated by FACS. (B) Thy-1.1+ TCR-Tg cells were transferred into naı̈ve BALB/c treated
with Thy-1.2-depleting antibodies or control mice. A group of Thy-1.2-depleted mice also received 36106 enriched CD4+Thy-1.1+ spleen cells. All mice
were then immunized and analyzed ten days later as described in (A). Bars represent mean 6 SEM of 6–14 mice per group for (A) and (B) and are
pooled from two-three independent experiments with similar results. (C) Thy-1.1+ TCR-Tg cells were transferred into naı̈ve BALB/c mice and CD1d2/2

or Ja182/2 mice and immunized the next day with c-spz. All mice were analyzed ten days later as described in (A). Bars represent mean 6 SEM of 3
mice per group and are representative of two independent experiments with similar results. **, p,0.01; ***, p,0.001; n.s., not significant, Mann-
Whitney test.
doi:10.1371/journal.pone.0015948.g001
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Figure 2. CD4 help is needed for peak clonal expansion of anti-parasite CD8+ T cells. (A) Control and CD4-depleted mice received 26105

Thy-1.1+ TCR-Tg CD8+ T cells prior to immunization with c-spz. Mice were sacrificed at the indicated time points and frequency of CD8+Thy-1.1+ cells
among total CD8+ cells in the spleen and draining lymph nodes are shown. (B,C) TCR-Tg cells were labeled with CFSE prior to adoptive transfer and c-
spz immunization. Three days later, CFSE dilution and CD25 expression on CD8+Thy-1.1+ cells harvested from the draining lymph nodes and spleen
was analyzed. (B) Dot plots represent TCR-Tg cells taken from the draining lymph nodes. (C) Percent of CFSElo (left) and CD25+ (right) CD8+Thy-1.1+ in
the spleen and dLN three days after c-spz immunization. (D) Control and CD4-depleted mice received 26105 Thy-1.1+ TCR-Tg CD8+ T cells prior to
immunization with c-spz. A third group of mice received CD4-depleting antibodies four days after immunization. Fourteen days after immunization,
the total numbers of CD8+Thy-1.1+ cells in the spleens was determined by FACS. * p,0.05, Mann-Whitney test. Symbols in (A) and bars in (C)
represent mean 6 SEM of 4–6 mice per group and are pooled from two-three independent experiments with similar results. Bars in (D) represent
mean 6 SEM of 4 mice per group and are representative of two independent experiments with similar results.
doi:10.1371/journal.pone.0015948.g002
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degranulation observed here are consistent with those reported in

human studies [15,16,17,18] and demonstrate the combination of

effector functions exhibited by CD8+ T cells is not stochastic, but

appears to follow discrete programs.

Previous reports on CD4-CD8 T cell interactions have

demonstrated the manifestations of CD4 help are evident only

in recall responses to resting memory CD8+ T cells, when helpless

CD8+ T cells display defective cytokine production, killing, and re-

expansion [7,9,11]. Thus, we evaluated the recall response of the

memory anti-parasite CD8+ T cells recovered from the spleen and

lymph nodes thirty days after c-spz immunization. Remarkably,

we found no differences between control and CD4-depleted mice

(Figure 6). Overall, the percentage of T cells producing effector

cytokines and degranulating (CD107a+) ex vivo from both groups

was lower than at the peak of the response, but the distribution of

co-expression patterns of effector molecules was the same.

Similarly, we found no role for NKT cells in supporting CD8+

T cell effector function, as donor TCR-Tg CD8+ T cells from

immunized CD1d2/2 recipient mice were indistinguishable from

control recipients (not shown). In all, these data demonstrate that

CD8+ T cells primed in the absence of helper T cells fail to expand

robustly, but develop into fully functional effector and memory

cells.

Discussion

Memory CD8+ T cells induced by irradiated malaria sporozo-

ites are critical for elimination of liver stage parasites and the

optimal development of primary effector CD8+ T cells to

sporozoite antigen is dependent on the presence of CD4+ helper

T cells [5]. In this report, we have shown that memory CD8+ T

cells developed in the absence of CD4 help failed to protect from

live malaria challenge. Nevertheless, CD8+ T cells primed without

CD4+ T cell help were fully functional by all indices measured,

including production of IFN-c, TNF-a, and IL-2, as well cytotoxic

degranulation. This disconnect between protection and T cell

functionality suggests that frequency or total numbers of antigen

specific CD8+ T cells are likely to be critical factors in determining

the ability of CD8+ T cells to control liver stage malaria parasites.

Indeed, recent reports on anti-Plasmodial CD8+ T cell immunity

have confirmed that large numbers of circulating T cells are

necessary to achieve sterile immunity [19,20].

A striking feature of this model of CD8+ T cell priming is the

very early time at which CD4+ T cell help is manifested (four days

post-immunization), which contrasts much literature that has

documented unaltered primary CD8+ T cell responses to

pathogens [6,7,8,9,10]. The defects in priming to c-spz without

CD4+ T cell help resemble models of priming under non-

inflammatory conditions [21,22,23,24,25,26], as well as priming to

select pathogens [27,28,29]. Thus, it is unclear what factors govern

the CD4-dependency of a given CD8+ T cell response and how

different aspects of CD8+ T cell biology are impacted separately.

Our observations that without CD4+ T cell help clonal expansion

is diminished but effector function is unaltered upon recall

contrasts models that demonstrate intact clonal expansion but

defective functional recall [7,9,11]. A variety of mechanisms of

CD4+ T cell help have been proposed, including: CD40-CD40L

interactions [21,22,24], DC ‘‘licensing’’ [29], cross-presentation

[30], or chemokine-related help [31,32]; though these mechanisms

are certainly not mutually-exclusive. In response to irradiated

sporozoites, the lack of expression of CD25 (IL-2Ra) by helpless

CD8+ T cells is intriguing and suggests that induction of signaling

through the high affinity IL-2 receptor is a mechanism of CD4

help, as has been suggested by previous studies [28,29]. Indeed,

IL-2 secreting CD4+ T cells are associated with slower HIV

disease progression [33] and studies evaluating the functionality of

anti-HIV CD8+ T cell responses point to a role of IL-2 in

supporting recall responses [34,35].

Interestingly, the magnitude of the defect in clonal population

size in the absence of CD4 help was enhanced at low CD8+ T cell

precursor frequency. These results are consistent with the

observation that helpless CD8+ T cells proliferate and expand

for only 3–4 days before contraction. Under conditions of

progressively lower precursor frequency, the peak of the

proliferative expansion is progressively delayed [36,37], thus

reducing the total number of effector T cells generated in the

first few days after immunization. This reduction may ultimately

diminish the size of the surviving memory population, as the size of

the memory pool is closely related to the size of the initial clonal

burst [38,39]. Given the correlation between precursor frequency

and relative expression of CD62L on memory CD8+ T cells

[36,40], we examined CD62L expression and found no differences

Figure 3. The size of the memory CD8+ T cell pool induced by c-
spz is dependent on helper T cells in a precursor frequency-
dependent manner. Control and CD4-depleted mice received
indicated numbers of Thy-1.1+ TCR-Tg CD8+ T cells prior to
immunization with c-spz and were sacrificed thirty-five days later. (A)
The numbers of CD8+Thy-1.1+ cells recovered from the spleens were
determined by FACS. Data is cumulative of six independent experi-
ments with similar results with a total 6–30 mice per group (minimum 3
mice/group/experiment). Bar graphs represent mean 6 SEM. Numbers
over open bars indicate the average percent reduction of CD8+Thy-1.1+

cells from CD4-depleted mice compared to the corresponding control.
*, p,0.05; **, p,0.01; ***, p,0.001; Mann-Whitney test. (B) Surface
marker expression was evaluated on CD8+Thy-1.1+ cells at day 35 from
mice that received 26105 TCR-Tg cells and c-spz immunization.
doi:10.1371/journal.pone.0015948.g003
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in CD62L expression on memory anti-parasite T cells from intact

and CD4-depleted hosts, though the relative expression of CD62L

on the memory cells was reduced with decreased precursor

frequency (not shown), consistent with previous reports [36,40].

These data suggest there are not selective differences in the need

for CD4+ T cell help of effector and central memory T cells for

survival that could account for our observations. Importantly,

while changes in precursor frequency has subtle changes in the

percent of CD62L+ memory T cells, the polyfunctional profile of

CD8+ T cells was consistent, regardless of precursor frequency

(data not shown). Finally, we found no defect in helpless CD8+ T

cell function in the absence of helper T cells when the initial CD8+

T cell precursor frequency was reduced 10-fold to 26104 cells per

mouse (Figure S2).

Taken together, our data provide further evidence that CD8+ T

cell expansion and functionality are separate facets of T cell

programming that can be uncoupled and revealed in the absence

of helper T cells. However, contrary to current models that

attribute CD4+ T cell help to CD8+ T cell functionality and not

clonal size, our data demonstrate that CD8+ T cells specific for the

circumsporozoite protein of P. yoelii that are induced by c-spz

require CD4 help to promote optimal clonal expansion, but not

effector function. Resolution of the signals that regulate these

separate facets are critical to our understanding of T cell

biology.

Methods

Ethics Statement
All animal procedures were approved by the Institutional

Animal Care and Use Committee of the Johns Hopkins University

(Protocol Number MO09H41) following the National Institutes of

Health guidelines for animal housing and care.

Mice
Female BALB/c mice 5–8 weeks of age were purchased from

Taconic Farms and housed in microisolater cages. Transgenic

mice expressing a TCR specific for a H-2Kd-restricted epitope of

the Plasmodium yoelii circumsporozoite protein (SYVPSAEQI) have

been previously described [41]. For adoptive transfer, TCR-

transgenic CD8+ T cells from whole splenocytes were injected

intravenously into naı̈ve BALB/c mice. Ja182/2 mice were kindly

provided by Mitchell Kronenberg (La Jolla Institute for Allergy

and Immunology) with permission of Masaru Taniguchi (RIKEN).

CD1d2/2 mice were purchased from Jackson Laboratories.

Depletion of CD4+ and Thy-1.2+ cells
For in vivo depletion of CD4+ cells, 200 mg of anti-CD4

monoclonal antibody (clone GK1.5) was injected intraperitoneally

on two consecutive days prior to immunization with irradiated

sporozoites on the fourth day. Mice were then treated with 200 mg

of GK1.5 antibody weekly until sacrifice. For depletion of Thy-

1.2+ cells, 200 mg of anti-Thy-1.2 monoclonal antibody (clone 30-

H12) was administered every other day beginning three days

before immunization for ten days. For reconstitution of Thy-1.2-

depleted mice with CD4+Thy-1.1+ T cells, spleen and lymph node

cells were pooled from BALB/c Thy-1.1+ mice and CD4+ cells

were enriched by depletion of CD8+ and B220+ cells according to

the manufacturer’s instructions (Miltenyi Biotec). 36106 enriched

CD4+ T cells were then transferred into anti-Thy-1.2-treated mice

one day before immunization.

Immunization
Plasmodium yoelii 17XNL sporozoites were harvested from the

salivary glands of infected female Anopheles stephensi mosquitoes and

irradiated as previously described [41]. For immunization,

Figure 4. Helpless CD8+ T cells do not limit liver stage parasite development. Control and CD4-depleted BALB/c mice received TCR-Tg cells
and were then immunized with c-spz. To evaluate protection, mice were challenged with 26104 live sporozoites twelve days after immunization.
Forty hours after challenge, livers were excised and control of parasite development was evaluated by quantitative PCR for P. yoelii 18S rRNA. (A) Mice
were depleted of CD4+ cells prior to immunization or were depleted of CD8+ cells on day 10 after immunization. (B) Mice were depleted of CD4+ cells
either three days prior to (‘‘Before’’) – or ten days after (‘‘After’’) c-spz immunization. Dashed horizontal lines represent limit of detection for the
individual experiment. *, p,0.05; **, p,0.01, Mann-Whitney test. Bars represent mean 6 SEM of 4–5 mice per group and are representative of two
independent experiments with similar results.
doi:10.1371/journal.pone.0015948.g004
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irradiated sporozoites were suspended in HBSS containing 1%

heat-inactivated mouse serum and mice were then immunized

with 56104 sporozoites in the skin at the base of the tail.

Quantification of parasite development the liver
For challenge experiments, live sporozoites were injected

intravenously to ensure uniform trafficking of parasites to the

liver and the development of liver stage parasites was determined.

Forty hours after challenge, livers were excised and parasite load

was determined by quantitative PCR for P. yoelii 18S rRNA using

SYBR Green (Applied Biosystems) as previously described [42].

Ex vivo stimulation
For analysis of T cell functionality based on cytokine

production, lymphocytes were incubated with peptide-coated

target cells in the presence of protein transport inhibitors and

then stained for intracellular cytokines. Briefly, A20 target cells

were pulsed with SYVPSAEQI peptide (2 mg/mL) and control

A20 cells were incubated without peptide. Peptide-coated or

control target cells were added to effector cells from the spleen or

lymph nodes of immunized mice. To measure cytokine produc-

tion, cells were incubated with brefeldin A (GolgiPlug, BD

Biosciences) to block protein transport. To measure degranulation,

cells were incubated with anti-CD107a-FITC (clone 1D4B, BD

Bioscience) with monensin (GolgiStop, BD Biosciences). Cells were

incubated for 4 hours at 37uC and then washed twice in cold

media.

Flow Cytometry
All antibodies were purchased from eBioscience unless other-

wise noted. The frequency of parasite-specific CD8+ TCR-Tg T

cells was determined by staining of single cell suspensions with

anti-CD8-APC (clone 53–6.7) and anti-Thy-1.1-PE (clone His51,

BD Biosciences), followed by analysis on a BD FACSCalibur (BD

Biosciences). For intracellular cytokine staining, cells were

stimulated as described above and surface stained with anti-

CD8-APC-AlexaFlour750 (clone 53–6.7) and anti-Thy-1.1-PE.

Cells were then permeabilized and fixed using a Cytofix/

Cytoperm kit (BD Biosciences) according to the manufacturer’s

instructions and stained for intracellular cytokines using anti-IFN-

c-PE-Cy7 (clone XMG1.2), anti-TNF-a-Pacific Blue (clone MP6-

XT22), or anti-IL-2-APC (clone JES6-5H4) at pre-determined

concentrations. Cells were then washed and analyzed on a LSR II

flow cytometer (BD Bioscience).

Figure 6. Memory CD8+ T cell functionality is independent of CD4+ T cells. Control and CD4-depleted BALB/c mice received TCR-Tg cells
and were then immunized with c-spz. Thirty days after immunization, lymph node and spleen cells suspensions were stimulated ex vivo with
SYVPSAEQI peptide-coated target cells and T cell functionality was evaluated by cytokine staining and surface mobilization of CD107a. Bars represent
mean 6 SD of 3–4 mice per group. Data is representative of three independent experiments with similar results.
doi:10.1371/journal.pone.0015948.g006

Figure 5. Development of cytotoxic effector function by effector and memory CD8+ T cells occurs independently of helper T cells.
Control and CD4-depleted BALB/c mice received TCR-Tg cells and were then immunized with c-spz. (A) Three days after immunization, lymph node
suspensions were stimulated ex vivo with SYVPSAEQI peptide-coated target cells and T cell functionality was evaluated by cytokine staining and
surface mobilization of CD107a. Dot plots are gated on CD8+Thy-1.1+ lymphocytes. Numbers on dot plots indicate percent of cells in each quadrant.
(B,C) Simultaneous polyfunctional effector function was evaluated on days 3 (B) and 5 (C) post-immunization. Bars represent mean 6 SD of 3–4 mice
per group and are representative of two-three independent experiments with similar results.
doi:10.1371/journal.pone.0015948.g005
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Polyfunctional Analysis
Analysis of all FACS data was done using FlowJo software

(TreeStar). Boolean combination gates were created and data was

exported to PESTLE and SPICE for analysis (both kindly

provided by Mario Roederer). For analysis of cytokine production,

approximately 26103 CD8+Thy-1.1+ cells were collected in each

sample (individual samples range from 46102–26104).

Statistical Analysis
Mann-Whitney tests were done using Prism 4 software

(GraphPad Software). Permutation tests of significance of poly-

functional distributions were done using SPICE software.

Supporting Information

Figure S1 Surface marker expression of control and
helpless CD8+ T cells. Control and CD4-depleted BALB/c

mice received 26105 TCR-Tg cells and were then immunized

with c-spz. Beginning on two days post-immunization, draining

lymph nodes were removed and surface expression of the

indicated surface markers was evaluated by FACS. Histograms

are gated on CD8+Thy-1.1+ lymphocytes from control (line) and

CD4-depleted (shaded) mice.

(TIFF)

Figure S2 Helpless CD8+ T cells maintain functionality
at lower precursor frequency. Control and CD4-depleted

BALB/c mice received 26104 TCR-Tg cells and were then

immunized with c-spz. Thirty days after immunization, lymph

node and spleen cells suspensions were stimulated ex vivo with

SYVPSAEQI peptide-coated target cells and T cell functionality

was evaluated by cytokine staining and surface mobilization of

CD107a. Bars represent mean 6 SD of 3 mice per group and are

representative of two independent experiments with similar results.

(TIFF)
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