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Meropenem is used to manage postneurosurgical meningitis, but its population pharmacokinetics (PPK) in plasma and cerebro-
spinal fluid (CSF) in this patient group are not well-known. Our aims were to (i) characterize meropenem PPK in plasma and
CSF and (ii) recommend favorable dosing regimens in postneurosurgical meningitis patients. Eighty-two patients were enrolled
to receive meropenem infusions of 2 g every 8 h (q8h), 1 g q8h, or 1 g q6h for at least 3 days. Serial blood and CSF samples were
collected, and concentrations were determined and analyzed via population modeling. Probabilities of target attainment (PTA)
were predicted via Monte Carlo simulations, using the target of unbound meropenem concentrations above the MICs for at least
40% of dosing intervals in plasma and at least of 50% or 100% of dosing intervals in CSF. A two-compartment model plus an-
other CSF compartment best described the data. The central, intercentral/peripheral, and intercentral/CSF compartment clear-
ances were 22.2 liters/h, 1.79 liters/h, and 0.01 liter/h, respectively. Distribution volumes of the central and peripheral compart-
ments were 17.9 liters and 3.84 liters, respectively. The CSF compartment volume was fixed at 0.13 liter, with its clearance
calculated by the observed drainage amount. The multiplier for the transfer from the central to the CSF compartment was 0.172.
Simulation results show that the PTAs increase as infusion is prolonged and as the daily CSF drainage volume decreases. A
4-hour infusion of 2 g q8h with CSF drainage of less than 150 ml/day, which provides a PTA of >90% for MICs of <8 mg/liter in
blood and of <0.5 mg/liter or 0.25 mg/liter in CSF, is recommended. (This study has been registered at ClinicalTrials.gov under
identifier NCT02506686.)

Postneurosurgical meningitis is a serious complication after
neurosurgical operation, with an incidence rate of about 3%

(1, 2) or even up to 20% if catheters are placed for drainage (3). It
is associated with a high mortality rate and severe neurological
sequelae if not identified at an early stage and treated in a timely
manner with effective antimicrobial agents (4, 5). Gram-negative
bacteria, especially antibiotic-resistant Acinetobacter baumannii,
are emerging as important pathogens of postneurosurgical men-
ingitis in recent years, though Staphylococcus aureus and coagu-
lase-negative Staphylococcus are still more common (2, 3, 6, 7).
The data on postoperative hospital-acquired bacterial meningitis
from 2000 to 2009 in Huashan Hospital revealed that Gram-neg-
ative bacteria, primarily Acinetobacter baumannii, Klebsiella pneu-
moniae, and Pseudomonas aeruginosa, accounted for 42.1% of the
pathogens isolated from postneurosurgical meningitis patients (8).

Meropenem is a potent broad-spectrum carbapenem with
high levels of activity against Gram-negative bacilli, Gram-posi-
tive cocci, and anaerobic bacteria. It was recommended by the
guidelines of both the Infectious Diseases Society of America in
2004 and the European Federation of Neurological Societies in
2008 (which are still effective) as one of the empirical treatments
for bacterial meningitis (9, 10). In common with other �-lactams,
it exhibits primarily time-dependent antimicrobial activity, and
the pharmacokinetics/pharmacodynamics (PK/PD) index that
best predicts clinical efficacy is the exposure time during which the
drug concentration remains above MIC (T�MIC) for the pathogen
(11, 12). There are a few pharmacokinetic and pharmacodynamic
studies of meropenem in patients with bacterial meningitis (13–
18); however, the patient numbers in these studies are usually

limited. There are few population PK studies to describe mero-
penem population PK profiles for penetration across the blood-
cerebrospinal fluid (CSF) barrier, and there is no PK/PD study in
postneurosurgical meningitis patients to guide meropenem dos-
ing regimen optimization for this specific patient group.

CSF drainage is a common operation in postneurosurgery pa-
tients to drain inflammatory mediator residual cells during the
operation and to manage central nervous system (CNS) symp-
toms (19–26); however, it also results in drug loss. There is no
PK/PD study in this patient group to recommend the proper CSF
drainage rate to seek a balance between bacterial killing and post-
surgery symptom management.

The aims of this study were (i) to develop a population PK
model for meropenem after intravenous administration in post-
neurosurgical meningitis patients and (ii) to recommend clinical
dosing regimen optimization for this patient group, including
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dose, dosing interval, infusion duration, and CSF drainage rate,
via PK/PD evaluation.

(Part of this study was presented at ASM Microbe, 16 to 20
June 2016, Boston, MA, USA.)

MATERIALS AND METHODS
Study design. This was a single-center, parallel, open-label, prospective
clinical study conducted in Huashan Hospital Affiliated to Fudan Univer-
sity. It was approved by the Hospital Institutional Review Board of
Huashan Hospital before execution and has been registered at Clinical-
Trials.gov under identifier NCT02506686.

Subjects. Patients were included if inclusion and exclusion criteria
were all satisfied. The inclusion criteria were as follows: (i) signed in-
formed consent form provided; (ii) postneurosurgery patients with clin-
ical diagnosis of probable bacterial meningitis (temperature of �37.5°C,
signs of meningeal irritation [including neck rigidity, Kernig sign, and
Brudzinski sign], and white blood cells in CSF at �300 � 106/liter) or
proven bacterial meningitis (if Gram-negative bacteria were identified
from CSF culture); (iii) CSF samples could be taken; and (iv) at least 18
years of age. The exclusion criteria were as follows: (i) patients who did not
receive at least 3 days of meropenem treatment or were hypersensitive to
meropenem; (ii) patients who were receiving hemodialysis, had unstable
vital signs, or had lumbar puncture contraindications and so were inap-
propriate for sample collection; (iii) patients with decompensated liver
disease (e.g., Child-Pugh class B or C clinical classification or clinical
evidence such as ascites or varices) or severe renal dysfunction (defined as
creatinine clearance [CLCR] of �10 ml/min), status epilepticus, potential
neurodegenerative diseases, and other meropenem contraindications,
and (iv) pregnant (with a positive urine pregnancy test at screening) or
lactating women.

Dosing regimens. The meropenem (0.5 g/vial) used in this study was
manufactured by Dainippon Sumitomo Pharma. Meropenem at 1 g and 2
g was dissolved in 100 ml and 250 ml 0.9% sodium chloride solution,
respectively, for injection. The infusion rate was kept at 1 g/h with the

actual infusion start and end times recorded. The meropenem dosing
regimen was determined according to the patient’s body temperature,
severity of systemic infection, CSF cell count, and pathogen. The total
daily dose of meropenem was 3 to 6 g divided into 3 or 4 intravenous
infusions. In most cases, meropenem at 1 g every 8 h (q8h) was given to
patients with a white blood cell count of �1,000 � 106/liter in CSF. Mero-
penem at 1 g q6h or 2 g q8h was given to patients with a white blood cell
count of �1,000 � 106/liter in CSF, depending on the patient’s body
temperature and general condition. The whole treatment lasted 3 to 14
days. Adverse events were observed and recorded per ICH good clinical
practices (GCP) and China GCP. One predose CSF sample was collected
and sent to the clinical microbiology department of the hospital for patho-
gen culture, isolation, identification, and antibiotic susceptibility testing.
Treatment regimens were adjusted according to susceptibility if necessary.

TABLE 1 Demographic and baseline clinical data for patients

Parameter Value (n � 82)

Sex, male/female 50/32
Age, yr (mean � SD, range) 43.4 � 13.1, 19–77
Height, cm (mean � SD, range) 167.7 � 7.2, 150–180
Weight, kg (mean � SD, range) 65.2 � 11.6, 41.5–100
BMI, kg/m2 (mean � SD, range) 23.1 � 3.5, 13.7–32.7
CLCR, ml/min (mean � SD, range) 142.6 � 52.8, 57.3–355.7
Body temp, °C (mean � SD, range) 38.9 � 0.6, 36.5–40.9
White blood cell count in CSF, 106/liter

(mean � SD, range)
2,139.5 � 2,877.7, 1–20,000

White blood cell count in blood test, 109/liter
(mean � SD, range)

12.6 � 4.4, 4.2–23.9

Proteins in CSF, g/liter (mean � SD, range) 1.9 � 1.5, 0.2–8.7
Glucose in CSF, mmol/liter (mean � SD,

range)
2.4 � 1.6, 0.3–7.9

Underlying disease, no.
Tumor 65
Trauma 8
Other 9

Combination treatment, no.
Vancomycin/norvancomycin 59
Other 7

CSF daily drainage vol, ml (mean � SD,
range)

126 � 81, 0–350
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FIG 1 Pharmacokinetic structural model for meropenem. V1, apparent
volume of central compartment; CL1, clearance of central compartment;
V2, volume of CSF compartment; CL2, clearance of CSF compartment; Q1,
intercompartmental clearance between central and CSF compartments; Q2,
intercompartmental clearance between central and peripheral compartments;
PC, transfer multiplier between central and CSF compartments; V3, volume of
peripheral compartment; k10, elimination rate constant for central compart-
ment; k20, elimination rate constant for CSF compartment.

TABLE 2 Pharmacokinetic parameter estimates and bootstrap
confidence intervals of the final model

Parameter (units)a

Estimate
Between-subject
variability (%)

Mean

Confidence range,
2.5th–97.5th
percentile
(bootstrap) Mean

Confidence range,
2.5th–97.5th
percentile
(bootstrap)

V1 (liters) 17.9 16.1–19.5 13.2 0–20.0
V2 (liters) 0.13 37.4 0–71.4
CL1 (liters/h) 22.2 20.5–24.0 22.4 17.3–26.5
Q1 (1/h) 0.010 0.010–0.010 84.4 50.0–104
PC 0.172 0.140–0.220 39.4 20.0–48.0
V3 (liters) 3.84 3.04–4.95
Q2 (1/h) 1.79 1.21–2.99
Residual error (%) 34.9 31.6–38.7
a V1, apparent volume of central compartment; CL1, clearance of central compartment;
V2, volume of CSF compartment; CL2, clearance of CSF compartment;
Q1, intercompartmental clearance between central and CSF compartments;
Q2, intercompartmental clearance between central and peripheral compartments;
PC, transfer multiplier between central and CSF compartments; V3, volume of
peripheral compartment.
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Blood and CSF sampling. Blood and CSF samples were collected si-
multaneously after the fourth dose of meropenem for concentration test-
ing. To increase the sample coverage of the concentration-versus-time
curve, patients were randomly assigned to two groups for sample collec-
tion at predefined time points: during intravenous infusion and 10 min, 2
h, and 4 h after the end of infusion in group 1 and immediately at the end
of infusion, 1 h and 3 h after the end of infusion, and immediately before
administration of the next dose in group 2. Blood samples were collected
from a vein of the arm without intravenous infusion. CSF samples were col-
lected through lumbar cistern drainage or external ventricular drainage.

Meropenem assay. Plasma samples were separated by centrifugation
and stored in duplicate along with CSF samples at �80 � 10°C for future
analysis. Validated high-pressure liquid chromatography (HPLC)-UV
chromatographic separation methods were used to extract meropenem
and detect its concentrations in plasma and CSF. Methodology details can
be found in our previous publications (27, 28).

Population PK model development. A nonlinear mixed-effects model
analysis was conducted using NONMEM version 7.3 (Icon Development
Solutions, Ellicott City, MD) with the G77 FORTRAN compiler. The first-
order conditional estimation method with interaction (FOCE-I) was used
throughout the model-building process. One specific CSF compartment
was added in the models to describe the meropenem disposition process
in CSF (29–32), which made the model a hybrid semiphysiologic model.
Models were selected based on several criteria, such as diagnostic scatter
plots, an objective function value (OFV) decrease of 3.84 (	 � 0.05, df �

1) for nested models, and the Akaike information criterion for nonnested
models. The residual-based model diagnostic was performed using con-
ditional weighted residuals. The covariate model building was performed
in a stepwise fashion with forward inclusion and backward deletion. Vari-
ables screened as covariates were age, sex, body weight, body mass index
(BMI), serum creatinine, creatinine clearance (CLCR), serum alanine ami-
notransferase (ALT), CSF white blood cell count, CSF red blood cell
count, CSF absolute neutrophil count, CSF glucose, CSF protein, CSF
chlorine, and concomitant medications (mannitol, dexamethasone, van-
comycin, fosfomycin, nimodipine, and sodium valproate). CLCR was es-
timated from the Cockcroft-Gault equation (33) using the age, body
weight, and serum creatinine level of each subject. The covariate screening
process was performed using visual (parameter-versus-variable scatter
plots) and numerical (generalized additive modeling implemented in
Xpose [v. 4]) approaches. Variables that passed the screening procedures
were included in the model and tested for significance as a covariate based
on the aforementioned model selection criteria. At the backward elimina-
tion step, covariates that did not increase the minimized OFV more than
6.63 (	 � 0.01, df � 1) were eliminated from the final model.

Bootstrapping and VPCs. The bootstrap resampling method was
used to evaluate the stability and robustness of the final PK model. Resa-
mpling with replacement generated 1,000 bootstrap data sets, and the
final population PK model was fitted repeatedly to each of them. Ninety-
five percent confidence intervals (CIs) for the final parameters were ob-
tained from the bootstrap empirical posterior distribution. Visual predic-
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FIG 2 Goodness-of-fit plots for the final population PK model. (A) Plot of observed meropenem concentrations versus population predictions. Black line, line
of identity; red line, data smoother. (B) Plot of observations versus individual predictions. Black line, line of identity; red line, data smoother. (C) Plot of
population weighted residuals (CWRES) versus population predictions. Black line, zero-slope line; red line, data smoother. (D) Plot of conditional weighted
residuals versus time. Black line, zero-slope line; red line, data smoother. Predicted concentrations are in milligrams per liter; time is in hours.
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tive checks (VPCs) were performed by overlaying observed data points
with 5th, 50th, and 95th percentile curves of 1,000 data sets simulated
from the final model.

Monte Carlo simulations. The steady state of the concentration-time
curve for meropenem on the basis of the model developed for the cur-
rently used dosage regimens (1 g q8h, 1 g q6h, and 2 g q8h at different
infusion durations of 0.5 h, 1 h, 2 h, 3 h, 4 h, and continuous infusion)
were obtained from 1,000 simulated virtual postneurosurgical meningitis
patients with different CSF rate amounts per clinical practice. The CSF
drainage rate was set at 0, 50 ml, 150 ml, and 250 ml per day.

PK/PD analysis. The free meropenem concentration in blood was
corrected by a protein binding rate of 2% (34), while it was assumed that
all meropenem in CSF is free. The fractions of patients achieving the
PK/PD targets of 40% (plasma) and 50%/100% (CSF) fT�MIC were cal-
culated to approximate the probability of target attainment (PTA) (18).
Target MICs for bacteria were selected according to most recent CLSI and
EUCAST guidance and extended to higher MICs to seek a chance to man-
age more resistant bacteria. The PK/PD target was defined as the highest
MIC with a probability of target attainment of at least 90%.

RESULTS
Patient characteristics. A total of 82 patients (50 males and 32
females) with postneurosurgery meningitis were enrolled in this
study, and initially 42 of them were treated with the dosing regi-
men of 1 g q8h, 19 with the regimen of 1 g q8h, and 21 with the
regimen of 2 g q8h, according to their baseline conditions. They
had different original diseases, including brain injury, brain bleed-
ing, brain glioma, astrocytoma, acoustic neurinoma, trigeminal
neurinoma, neurocytoma, meningioma, thalamic cyst, heman-
gioblastoma, encephalic angioma, cholesteatoma, etc. The base-
line characteristics of all enrolled patients are shown in Table 1. All
subjects signed informed consent forms by themselves. Forty pa-
tients were assigned to group 1 and 42 were assigned to group 2,
according to the times of their blood and CSF sample collection.

Population PK modeling. A total of 315 plasma and 297 CSF
meropenem concentration data points were included in develop-
ing the population PK model. The final model contained one cen-

tral compartment, one peripheral compartment, and one CSF
compartment, as shown in Fig. 1. The initial estimation of popu-
lation CSF volume was set at 0.15 liter (35), with the upper and
lower limits from 0.13 to 0.17 liter to reflect potential difference.
During the model-building process, 0.13 liter fit the data best, so
the CSF compartment volume was fixed to 0.13 liter. PC is defined
as transfer multiplier between the central and CSF compartments.
The intercompartmental rate constants were defined as K12 �
Q1 � PC/V1, K21 � Q1/V2, and k20 � daily CSF drainage volume/24.

The estimated population pharmacokinetics (PPK) parame-
ters are shown in Table 2. No covariate was identified to have
significant impact on the model from covariate screening. Good-
ness-of-fit plots for the final model were evaluated and showed no
apparent visual bias for the predictions, as shown in Fig. 2. The
95% confidence intervals for the parameters from the final model,
from 1,000 bootstrap runs, are presented in Table 2, and the VPC
plots are shown in Fig. 3. All parameter estimates were within the
ranges of the 95% confidence intervals from 1,000 bootstrap runs,
indicating the robustness of the final model. The visual predictive
check confirmed the predictive performance of the model. There
was a resemblance between observed and simulated data. Nearly
all the observations were within the percentile range. The very few
observations which were outside the percentile range were ran-
domly scattered and not aggregated at a particular time point. The
eta shrinkage range of the parameters was 7.75% to 69.7%, and the
epsilon shrinkage was 12.2%. These findings imply that the final
model had adequate predictive ability to describe the measured
meropenem concentrations.

Monte Carlo simulation and PK/PD analysis. The trends we
saw from Monte Carlo simulation results are that the probability
of target attainment (PTA) increases as the total daily dose in-
crease, while for the same dose, the longer the infusion time, the
higher the PTA. CSF drainage has no impact on PTAs in plasma,
but the more that CSF drained every day, the lower the PTA was in
CSF. Under all circumstances of regimens of 1 g q8h and 1 g q6h
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including no CSF drainage, the probabilities of achieving 50% and
100% T�MIC in CSF are less than 90% for MICs of �0.25 mg/liter
and �0.5 mg/liter, respectively, so these regimens are not recom-
mended. The PTAs of regimens of 2 g q8h are shown in Fig. 4.
Although meropenem could be administered as a continuous in-
fusion (36) and continuous infusion shows the highest PTAs in
the simulation results, its short room temperature stability of 
4
to 6 h makes these regimens less attractive (37). A 4-h infusion
with a limited CSF drainage rate (less than 150 ml/day) is recom-
mended from the simulations. In plasma, this has a �90% prob-
ability of achieving 40% T�MIC for MICs of �8 mg/liter. In CSF, it
has a �90% probability of achieving of achieving 50% and 100%
T�MIC for MICs of �0.5 mg/liter and �0.25 mg/liter, respectively,
and has a �80% probability of achieving 50% and 100% T�MIC

for MICs of �1 mg/liter and �0.5 mg/liter, respectively.

DISCUSSION

Postneurosurgery bacterial meningitis remains a severe disease
associated with high mortality rates. Although CSF culture is the
“gold standard” for diagnosis of meningitis and is important to
establish the susceptibility of the causative microorganism to ra-
tionalize treatment, it is time-consuming. Rapid initiation of ef-
fective empirical treatment is still crucial for patient outcomes
(38–43). There were some studies on prolonged infusion of mero-
penem; however, there was only one population PK study (18)
and two case studies (44, 45) focused on using meropenem to treat
nosocomial CNS infection. The population PK study enrolled
only 10 patients in the meropenem group, and the population
apparent CSF volume was estimated by their model to be 82.44 �
23.79 liters. Major limitations of their study were that (i) they did
not consider drug loss by CSF drainage and (ii) they investigated
only an infusion duration of 0.5 h. To the best of our knowledge,
our study included the largest number of patients, is the first study
which introduced CSF drainage as an element of the dosing regi-
men, and is the first study which has recommended a dose, dosing
interval, infusion duration, and CSF drainage rate together for
postneurosurgery patients.

In plasma, the CSF drainage rate had no impact on probabili-
ties of target attainment. This may be because the target was set at
40% and the amount of drug elimination from CSF drainage was
limited compared to the total drug amount in plasma. In CSF, the
CSF drainage rate had a significant impact on the drug amount in
CSF, though the trade-off between postsurgery symptom manage-
ment and maintaining drug concentrations in infection site
should be carefully made.

The final model is more than a classic population PK model
because it introduced a CSF compartment. The fixed CSF com-
partment volume was a little lower than the reported physiological
volume (35), which might be because Chinese people have lower
body weight and smaller body size and so might have lower CSF
volume than western people. There was no significant covariate
identified, which might be due to the relative sparseness of the
individual sampling schedule. All subjects we included had nor-
mal or mildly impaired renal function, and that might be the rea-
son that CRCL was not identified as a covariate. The variance of PK
parameters was relatively high but still meaningful, and this might
be because the patients had different baseline disease conditions,
different surgical operations, and different demographic charac-
teristics. Our approach can also be used to investigate and recom-

0

25

50

75

100

0.25 0.5 1 2 4 8 16

Pr
ob

ab
ili

ty
 o

f t
ar

ge
t a

tta
in

m
en

t i
n 

pl
as

m
a 

(%
)

3h 4h CI

0

25

50

75

100

0.25 0.5 1 2 4 8

MIC (mg/L)

Pr
ob

ab
ili

ty
 o

f t
ar

ge
t a

tta
in

m
en

t o
f m

er
op

en
em

 in
 c

er
eb

ro
sp

in
al

 fl
ui

d 
(%

)

3h / 0 4h / 0 CI / 0

3h / 50 ml 4h / 50 ml CI / 50 ml

3h / 150 ml 4h / 150 ml CI / 150 ml

3h / 250 ml 4h / 250 ml CI / 250 ml

Target of fT>MIC = 40%

Target of fT>MIC = 50%

Target of fT>MIC = 100%

0

25

50

75

100

0.25 0.5 1 2 4 8

FIG 4 Probabilities of target attainment of meropenem regimens of 2 g q8h.
(Top) Plasma, with a PK/PD target of 40% fT�MIC. The PTAs do not change at
different CSF drainage rates. The infusion duration of each dose is indicated.
CI, continuous infusion. (Middle and bottom) CSF, with a PK/PD target of
50% fT�MIC (middle) or 100% fT�MIC (bottom). The infusion duration of
each dose (hours) and the CSF drainage rate (milliliters per day) are indicated.

PPK and PK/PD of Meropenem in Postneurosurgery Patients

November 2016 Volume 60 Number 11 aac.asm.org 6623Antimicrobial Agents and Chemotherapy

http://aac.asm.org


mend favorable dosing regimens for other antibiotics to manage
this indication.

The PK/PD target for bactericidal activity in CSF is still a sub-
ject of debate; while some investigators choose 50% and 100%
fT�MIC (18, 46), some think that although not ideal, having bac-
teriostatic targets of 20 to 30% fT�MIC plus white blood cells in
CSF might be sufficient to eradicate the organism (44, 45). As CNS
infection is considered severe, we still believe that 50% and 100%
fT�MIC should be used.

A second debate is whether CSF drug concentration is a good
surrogate of infection site concentration. Ethically, the collection
of CSF samples does not require additional operations for the
patients and hence does not bring additional risks. Although there
was a study which measured the meropenem concentration in
cerebral extracellular fluid (ECF) in two patients via brain micro-
dialysis (47), this approach can be used only in patients with brain
injury.

A third debate is what the most appropriate CSF drainage
rate is. Although 50 ml/day provides a higher PTA for bacterial
killing, it might not be enough to manage the postsurgery syn-
dromes in some patients. Therefore, less than 150 ml/day was
recommended, and the clinicians could be reminded to drain
as little CSF as possible as long as the syndromes could be well
managed.

Our study has some limitations. First, it was not designed to
assess clinical outcome; therefore, no control was included. Sec-
ond, only 8 out of 82 enrolled patients had a positive result from
CSF bacterial culture, which indicated that the diagnosis criteria
for probable meningitis need to be improved. The bacteria iso-
lated included Acinetobacter baumannii (n � 6, with meropenem
MICs of 0.25, 0.5, 0.5, 16, 32, and 32 mg/liter), Klebsiella pneu-
moniae (n � 1, with a meropenem MIC of 1 mg/liter), and
Stenotrophomonas maltophilia (n � 1, with a meropenem MIC of
4 mg/liter). The 3 patients who were infected by meropenem-
resistant bacteria (MICs of 32, 32, and 4 mg/liter) were withdrawn
from the study and switched to the other treatment regimens, and
the clinical outcomes were not recorded. It is worthy of mention
that the individual fitting plots for the 8 subjects who had patho-
gens isolated from CSF imply that the final model predicted the
concentrations in this patient population well also.

In summary, our current study of population PK and PK/PD in
postneurosurgery meningitis patients found that 2 g of mero-
penem every 8 h, administered as a 4-hour infusion with a limited
CSF drainage rate (less than 150 ml/day), may provide the highest
possibility of target attainment. However, further large, well-de-
fined clinical trials with this patient population are required to
confirm these findings.
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