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ABSTRACT An extensive network of transverse and longitudinal filamentous bridges was 
revealed when small myofibril bundles, prepared from Triton-EGTA-treated rabbit skeletal 
muscles, were extracted with KI to remove the majority of thin and thick filaments. Transmission 
and scanning electron microscopic studies of these salt-resistant cytoskeletal residues indicated: 
(a) small bundles of short transverse filaments connect adjacent myofibrils by forming Z to Z 
and M to M bridges; (b) parallel, continuous longitudinal filaments connect the peripheries of 
successive Z-disks and ensheath the sarcomere. These transverse and longitudinal filaments 
have the characteristic morphology of intermediate filaments; (c) two rings of tightly interwoven 
and tangled filaments, connected laterally by short filaments, encircle each Z disk. This double- 
ring also encircles a weblike meshwork which penetrates the sarcomeric space. From the 
peripheries of these rings, transverse and longitudinal intermediate filaments emerge; and (d) 
a massive amount of, material translocated and accumulated near Z disks during KI extraction. 
The residues were fairly resistant to solubilization by urea and SDS, and complete dissolution 
was achieved only with guanidinium chloride. SDS PAGE indicated that the residues consisted 
mainly of titin, nebulin, and variable amounts of residual myosin and actin. Desmin represented 
only a few percent of total residual proteins; however, it may be a major component of the 
intermediate filament network. We suggest that the intermediate filament should be considered 
an integral sarcomeric component that may play important cytoskeletal roles in muscle 
structure and mechanics. 

The characteristic cross-striated appearance of skeletal and 
cardiac muscles arises as a result of the transverse alignment of  
sarcomeric striations of neighboring myofibrils. The mainte- 
nance of this alignment has been attributed to the existence of 
filamentous bridges between Z disks and between M-lines 
across the fiber axis (for reviews, see references 16, 17). 

Most studies have focused on the fdamentous bridges that 
connect neighboring myofibrils--i.e.,  the transverse, interfibril- 
lar type. However, little attention has been paid to the possible 
existence of longitudinal, intrafibrillar bridges that may connect 
adjacent sarcomeric structures of the same myofibril. Residual 
longitudinal filaments spanning the gaps between IZI  brushes 
or between Z structures ~ of  the same myofibril have been 

l ln this paper the term "Z structure" is used to refer to the dense 
residual structure appearing after KI extraction at the position of "Z 
disk" of intact muscle. This distinction is considered important because 

repeatedly detected in myofibrils that were depleted of thin 
and thick filaments by selective salt extractions (e.g. 3, 9, 13, 
22), but the identity of  these residual filaments remains unre- 
solved. During our investigations oft i t in  and n e b u l i n - - a  group 
of large, major myofibrillar proteins (32-35)--we became in- 
trigued by these residual longitudinal filaments and considered 
it possible that they represent a new type of myofilament 
consisting of these proteins. We have, therefore, investigated 
the t'me structure and spatial organization of these fdaments in 
Kl-extracted rabbit skeletal myofibrils. We report that the 
longitudinal fdaments appear to be parallel, continuous, inter- 

KI extracts much of the density of Z disks and causes salt-resistant 
non-Z proteins to translocate and to accumulate near the remains of Z 
disks. Therefore, the Z structure may bear only partial resemblance in 
structure and in composition to the Z disk of intact muscle. (K. Wang, 
unpublished observations). 
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mediate filaments that form a sleeve surrounding each myofi- 
bril and connect the peripheries of  successive Z disks. 

Preliminary reports of  this work have appeared in several 
abstracts (24, 32, 33). 

MATERIALS AND METHODS 

Preparation of Rabbit Skeletal Myofibrils and 
Myofibril Bundles 

The following procedures were carried out at 4°C in a cold room. 
A New Zealand white rabbit (~6 mo old) was injected intravenously with a 

sublethal dose of nembutal (3 ml of 50 mg/ml) and then exsanguinated. Back 
muscle strips (1-3 mm thick) were tied to plastic rods either at resting length or 
after gentle stretching to 150% of resting length and then excised. They were 
soaked twice in a Triton X-t00-containing chemical skinning solution (1% (wt/ 
vol) Triton X-IOO, 0.1 M KCL 1 mM MgCI2, 6.67 mM potassium phosphate, 5 
mM EGTA, 0.1 mM DTT, pH 7.0) for 60 min each time, then washed three 
times with the skinning buffer without Triton X-IOO for 30 min each time. All 
procedures were performed in an apparatus designed according to the principle 
of the Bio-Rad tube gel diffusion destainer (Bio-Rad Laboratories, Richmond, 
CA) which circulates buffer (400 ml for 12 strips) efficiently around the firmly 
attached muscle strips. The skinned muscle strips were frequently used immedi- 
ately for myofibril preparation or after storage at - 2 0 ° C  in 500 (vol/vol) glycerol 
in Triton X-loo-free skinning buffer for no more than 2 wk. The muscle strips 
were chopped into 2-ram pieces with a scalpel, suspended in 10-20 ml of the 50% 
(vol/vol) glycerol solution, and then blended in a VirTis Model 23 blade 
homogenizer (VirTis Co., Inc., Gardiner, NY) at 30-s bursts for a total of  2-10 
min at a medium speed setting. Fragmentation was monitored with phase contrast 
microscopy. For the purpose of detecting interfibrillar connections, the blending 
was stopped when the majority of the myofibrils were stilt linked together as 
bundles consisting of two to five myofibrils. The preparation was washed one 
time with five volumes of  Triton X-loo-free skinning solution by centrifuging at 
5,000 rpm (3,000 gin,,) for 5 min in a Sorvall (DuPont Instruments-Sorvall 
Biomedical Div., Newtown, CT) SS-34 rotor and resuspended to 2-6 mg/mI. 

Preparation and Structural Studies of Potassium- 
Iodide-extracted Myofibrils 

LIGHT MICROSCOPY; A drop ofmyofibri l  suspension was placed between 
a slide and a coverslip for a few minutes and a drop of Triton X-t00-free skinning 
solution was added to one side of the cover slip while the buffer was withdrawn 
with a piece of filter paper on the other side to wash away nonadherent myofibrlls. 
Extraction with potassium iodide solution (0.6 M KI, 0.1 M Tris-Cl, 3 mM 
EGTA, 3 mM MgCI,2, 3 mM Na4P207, 5 mM Na2S203, 0.l mM DTT, pH 7.5) 
was performed immediately at room temperature by the same irrigation proce- 
dure. Individual myofibrils varied in the lag period before the commencement of 
extraction. Once started, however, the extraction process was rapid and was 
completed within 5-30 s. It was essential to perform the extraction within 10 min 
from the onset of the attachment of myofibrils to cover slips, because myofibrils 
became increasingly resistant to such extraction after prolonged attachment to 
the glass surface (>30 rain), despite the fact that nonadherent myofibrils in 
solution respond normally to such a treatment. 

Photomicrographs were taken with a Zeiss Universal microscope and a x 100 
phase-contrast lens on Kodak Pan-X film and were developed with Microdol-X. 

ELECTRON MICROSCOPY: A drop of myofibril suspension o n a piece of 
parafilm was mixed gently with an equal volume of  a 2x  concentrated KI 
solution for 2 min at room temperature. A loo-mesh grid, coated with a glow- 
discharged carbon film deposited on Formvar, was then inverted on top o f  the 
droplet. The grid was removed after 2 min, rinsed gently with a few drops of Ix  
KI solution, and fixed in 2% glutaraldehyde in 25 mM cacodylate, pH 7.2, for 4 
min. The fixed sample was rinsed twice with 0.l M KCI, 0.01 M Tris-maleate, 2 
mM MgCI.,, 2 mM EGTA, 0.1 mM DTT, pH 6.8, stained with a drop of 0.5% 
uranyl acetate for 5 s, and air-dried before observing it with a JEOL looCX 
transmission electron microscope operated at 80 kV. For scanning electron 
microscopy: small pieces of freshly cleaved mica were placed on top of  the KI- 
extracted myofibril suspension, rinsed, and fixed as described above. The fixed 
sample was rinsed thoroughly with water, dehydrated in ethanol, transferred 
through an amyl acetate in ethanol series, then critical-point dried. The samples 
were coated with 20 ~, of Au /Pd  and examined with a JEOL 100CX equipped 
with a high resolution scanning attachment. The microscope was operated at 40 
kV and calibrated for magnification with a Fullam calibration grating (463 nm/  
line). 

SDS GEL ELECTROPHORESIS: Samples for SDS gel electrophoresis were 
prepared by dissolving myofibrils or Kl-residue (extracted in suspension for 14 

min at room temperature and pelleted by centrifuging at 15,000 rpm for 10 min 
in a Sorvall SS-34 rotor) in a guanidinium chloride buffer (6 M guanidinium 
chloride, 0.05 M Tris.Cl, 5 mM EDTA, 10 mM DTT, pH 8.0) for 30 min at 
room temperature. The solubilized samples were dialyzed against 7 M urea buffer 
(7 M urea, 0.05 M Tris.Cl, 5 mM EDTA, 0.l M DTT, pH 8.0) to remove 
guanidinium chloride and then prepared for SDS gel electrophoresis by the 
addition of an appropriate volume of  3x  SDS sample buffer (0.03 M Tris. el ,  3 
mM EDTA, 0.12 M DTT, 3% [wt/vol] SDS, 300  [vot/vol] glycerol, 30 #g/ml  
Pyronin Y., pH 8.0), followed by incubation at 50 °C for 15 min. Guanidinium 
chloride was necessary for consistent gel patterns representative of the entire 
sample. The KI-residue frequently aggregated, especially after vigorous stirring 
or centrifugation, into a gellike material that could be solubilized only partially 
in SDS or urea. Both titin and nebulin resisted solubilization. The KI-residue, 
however, was completely dissolved in guanidinium chloride and remained soluble 
after being dialyzed into urea solution. 

SDS samples were electrophoresed on gradient polyacrylamide gels (2-12% 
linear gradient) and were stained with Coomassie Blue as described (27, cf. 
reference 5). 

DESMIN PREPARATION: Chicken gizzard desmin was purified according to 
Huiatt et al. (14). 

RESULTS 

Preservation of Myofibrillar Connections 
The rapid chemical skinning procedure was developed to 

minimize the rapid proteolysis of  titin and nebulin that occurs 
during conventional prolonged glycerination procedures (e.g., 
reference 26). This was achieved by adding 5 mM EGTA to 
inhibit calcium-activated proteases, by using Triton X-100 to 
permeabilize membranes, and by processing the muscle rapidly 
in the cold. It was unexpectedly difficult to prepare single 
myofibrils from these muscle fibers. Mechanical blending 
yielded mostly bundles of  curved myofibrils still aligned and 
linked together laterally at the Z lines through bridges visible 
in the light microscope (Figs. 1 A and 2). Further blending 
produced many single myofibrils with abnormal patterns (vari- 
able A-band width, spoollike A bands or zig-zag shaped sar- 
comeres). In contrast, mild blending was sufficient to generate 

FIGURE 1 KI extraction of myofibrillar bundles. Phase contrast mi- 
crographs of myofibrils before (A) and after (O) extraction. Arrows 
indicate positions where Z structures have apparently filled the gaps 
between adjacent myofibrils, x 410. 
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FIGURE 2 Transverse myofibri l lar connections between adjacent Z 
disks (arrows). x 1,200. 

single myofibrils of  normal patterns from muscle glycerinated 
by conventional procedures (26). 

This suggests that interfibrillar connections were well-pre- 
served in rapidly skinned fibers but were weakened in conven- 
tional glycerinated fibers. These connections must be mechan- 
ically robust, because the high shear necessary to sever the 
connections also produced disfigured sarcomeres. 

Organization and UItrastructure of 
Myofibrillar Connections 

Further details of these myofibrillar connections were re- 
vealed when most of  the thin and thick filaments of  the 
myofibril were removed by extraction with KI-containing so- 
lution (13). The extraction process was rapid and efficient: 
within 5-30 s, A bands disappeared, residual material (contain- 
ing titin and nebulin) translocated toward Z disks, and a string 
of thickened and darkened Z structures remained (Fig. 1A and 
B). The spacings between successive Z structures became in- 
creasingly irregular as the extraction progressed and, in some 
cases, appreciable shrinkage (20-40%) occurred along the my- 
o fibril length (data not shown). It is remarkable that Z struc- 
tures remained linked and none had floated away. Further- 
more, adjacent Z structures now appeared continuous because 
they had lengthened, filling gaps between neighboring myofi- 
brils of a bundle. Since similar structures were observed when 
myofibrils were extracted in suspension, maintenance of regu- 
lar spacings between Z structures did not require attachment 
to glass. 

TEM studies of whole-mounted samples demonstrated an 
extensive network of filaments connecting Z structures of the 
same as well as adjacent myofibrils. Although individual my- 
o fibrils varied widely in the rate and the extent of  extraction 
by KI, all sarcomeres in the same myofibril generally exhibited 
similar residual structures. Occasionally, one would fred a 
single myofibril bundle (Fig. 3A) consisting of strings of Z 
structures with varying degrees of structural damage. These 
revealed details of myofibrillar connections and were selected 
for in-depth studies. A schematic representation of the orga- 
nization of these filamentous bridges is presented in Fig. 7. 

Interfibrillar Bridges 

Transversely-aligned Z structures of  adjacent myofibrils 
were connected by interfibrillar bridges (Fig. 3.4), each of 
which consisted of  4 to l0 filaments. Most of these transverse- 
Z bridges (TZ) are of  the same length, but longer ones occurred 
wherever myofibrils were farther apart, suggesting that these 
bridges may be extensible. Adjacent myofibrils were also con- 
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nected at positions corresponding roughly to M lines by bridges 
(TM) of one or two filaments. In residues with more extensive 
disintegration (as reflected by the lack of accumulated material 
on Z structures; see discussion below), these bridges either 
attached at places other than the M line position or were no 
longer detectable. At high magnifications, filaments of  both 
TZ bridges and TM bridges appeared as knotty filaments that 
exhibited constricted (8-9 nm wide) and expanded (10-12 nm) 
segments alternating at -25-30-nm intervals (Fig. 3E).  In 
certain regions, thin protofilaments ( - 2  nm wide) could be 
discerned (Fig. 3 E). However, we were unable to determine 
the exact number of protofflaments. These filaments resemble 
intermediate filaments such as the reconstituted chicken giz- 
zard desmin intermediate filament shown in Fig. 3 D (also see 
references 14, 20, 28). 

Intrafibrillar Bridges 

Successive Z structures of  the same myofibril were linked 
together by longitudinal-Z (LZ) bridges composed o f -50 -100  
roughly parallel and equally spaced filaments. TM bridges 
were attached to the midpoint of one (or no more than two) of 
the outermost LZ filament causing the latter to bend sharply, 
suggesting that these longitudinal filaments may be extensible. 
The intrafibrillar LZ filaments also exhibited the characteristic 
morphology of intermediate filaments except that the knotty 
filament (Fig. 3 C, and inset) was less frequent and many 
filaments had fairly uniform diameters (8-9 nm) (Fig. 3 F) .  
Thin protofilaments (~2 nm wide) could be detected in favor- 
able cases. In one case, we observed near a Z structure a short 
stretch of fme axial periodicity ( - 5  nm repeat) along the 
laterally aligned protofilaments of several LZ filaments (Fig. 
3F) .  

In summary, the ultrastructural features of both the inter- 
and intrafibrillar filaments, irrespective of locations, are char- 
acteristically those of intermediate filaments and are com- 
pletely distinct from those of native thick or thin filaments 
stained identically (data not shown). Many of the thicker or 
curved filamentous bridges appeared to be laterally associated 
or twisted intermediate filament bundles. Most surface protru- 
sions on these filaments turned out to be small membranous 
vesicles attached tenaciously, at irregular intervals, to these 
filaments. 

Background Filaments 
In addition to the intermediate filaments discussed above, a 

second type of residual filament consisting of randomly ori- 
ented, ill-defmed ultra-thin filaments (2-6 nm wide) was seen 
on the background (Fig. 3 C, arrowheads). The morphology of 
these background filaments is highly reminiscent of  that of 
aggregated titin filaments (K. Wang and R. Ramirez-Mitchell, 
unpublished observations). 

Z Structures 
Z structures of the majority of extracted residues were heav- 

ily stained due to accumulation of  translocated material (right 
side of Fig. 3A). Therefore, the filament organization near Z 
structures was revealed only by those samples that have little 
or no accumulated material (left side of Fig. 3A). In Fig. 3A, 
Z structures of the lower myofibril underwent a gradual mor- 
phological transition from (right to left) triangular, linear, to 
"Y" shaped. A similar transition was also obvious in the top 
myofibril, except that Z structures on the left appeared as 



F)GURE 3 Organization and uttrastructure of myofibrillar connections. Myofibrils were extracted by KI, fixed, air dried, and stained 
as described in the text. (A) a bundle of highly extracted myofibrils with decreasing degrees of structural integrity (from right to 
left). TZ, Transverse filaments connecting Z to Z. TM, Transverse filaments connecting M to M. LZ, Longitudinal filaments 
connecting Z to Z. Z, Z structures. DZ, Doublet structure of highly disintegrated Z structures. IZ, Internal filaments in the gaps of 
doublet Z structures, x 6,200. (B) Surface topology of a portion of sample (A). Sample A was coated with a gold film and examined 
by SEM. (Z) denotes the same Z structure in A, B, and C. Arrow indicates the two ridges of a Z structure. X 7,300. (C) Fine structure 
of longitudinal (LZ) filaments (inset) and background ultrathin filaments (arrowheads). x 200,000. (D) Fine structure of 
reconstituted intermediate filaments (IF) of chicken gizzard desmin, x 200,000. (E) Fine structure of transverse-Z laments (TZ). 
Arrow indicates the region with discernible protofilaments (~2 nm). x 200,000. (F) Fine structure of longitudinal Z filaments (LZ). 
Parallel lines indicate the fine axial periodicity (~5 nm) along the length of one of the two or three protofilaments in the bundle. 
x 200,000. 
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doublets (DZ) with short connecting bridges ( IZ)  in between 
the gap (0.1-0.5/~m wide). We interpret these varied morphol- 
ogies as resulting from damages to a Z structure that is con- 
structed of two circular tings held together by connecting 
Filaments. Breakage at one or a few points along the periphery 
would lead to the formation of triangular or straight Z struc- 
tures; whereas additional damage on the connecting filaments 
would lead to "Y"-shaped or doublet morphology. The dimen- 
sions of Z structures were consistent with this interpretation: 
the contour length (~3 #m) of the triangular and the linear Z 
structures corresponds to the circumference of a circular disk 
of ~ 1 #m diameter. The surface topology of these Z structures 
was also consistent with this interpretation. SEM studies of the 
same field (Fig. 3 A) following metal coating revealed that these 
Z structures represented the major bulk of  the sample, while 
filamentous bridges appeared as very thin strands on the grid 
surface (Fig. 3 B). Certain Z structures clearly exhibited two 
ridges, again supporting the idea that each Z structure may 
consist of  two halves. 

Three-dimensional Organization of 
Filamentous Bridges 

Critical-point drying retained more faithfully certain three- 
dimensional features of the residues. Most Z structures ap- 
peared as fairly flattened ovals covered with a tangled mesh of 
filaments from which intrafibrillar filamentous bridges seemed 
to emerge (Fig. 4A and B). InterfibriUar bridges were difficult 
to discern because transversely-aligned Z structures were fre- 
quently in close contact after extraction (of. Fig. 1 B). However, 
outlines of  individual myofibrils could frequently be demar- 
cated by the change in packing density of LZ filaments. The 
LZ filaments appeared straight and taut. Thicker filaments 
arose from the coalescence of more than one filament emerging 
from the Z structure (Fig. 4D). Most LZ filaments had a 
mottled appearance and, in a few cases, exhibited fairly regular 
surface protrusions (Fig. 4 D). Large membranous vesicles were 
frequently attached to longitudinal filaments as well as to the 
peripheries of  Z structures. 

The attachment sites of  LZ filaments on the Z structure were 
best visualized by stereomicrographs. Most longitudinal fila- 
ments emanated from the peripheries of the flattened Z struc- 
tures (Fig. 4 C). Also, these filaments were continuous, which 
was most evident for those filaments suspended above the mica 
surface at the height of  the Z structure. Occasionally, discon- 
tinuous filaments of variable length were seen, with one end 
attached to Z structures. These filaments, frequently curved 
and with randomly oriented unattached ends, may represent 
remnants of  severed LZ filaments (Fig. 4 C, arrow). 

There were short transverse filaments that connected in a 
zig-zag fashion neighboring LZ filaments at the M line position 
(Fig. 4A and B). These frequently extended beyond the bound- 
ary of the myofibril, presumably corresponding to the TM 
bridges observed in Fig. 3 A. 

Weblike Network of Filaments in the Plane of 
Z Structures 

Although most Z structures appeared as solid disks with no 
discernible internal organization, highly extracted myofibrils 
exhibited a branching network of  filaments in the plane of  the 
Z structure (Fig. 5). In Fig. 5A, a myofibril segment consisting 
of three interconnected Z structures is shown. Although por- 
tions of the dense peripheries of each of the three Z structures 
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were torn apart, they were still connected by transverse fila- 
ments to the bulk of  the peripheries as well as by longitudinal 
filaments to successive Z structures. Within the boundary 
encircled by the peripheral fragments, there was a weblike 
network of filaments with openings about 0.1-0.3 #m in size. 
This internal meshwork is illustrated by stereomicrographs of 
one of the Z structures (Fig. 5 C) and in the schematic inter- 
pretation (Fig. 5 B). It should be noted that this sample may 
have been derived from a relatively large (~2 #m in diameter) 
myofibril, and that the peripheral fragments have been dis- 
placed radially outward after KI-extraction. The short con- 
necting filaments seen in the gaps of doublet Z structures (Fig. 
3A, DZ) may be the same or be derived from this internal 
weblike network. The fine structure of these internal filaments 
remains to be established. 

Protein Composition of Residual Structures 

KI extraction removed 80-90% of myosin, actin, and asso- 
ciated proteins, leaving behind titin and nebulin as the major 
components, and myosin heavy chain, a-actinin and actin as 
the minor components of the residue (Fig. 6). A 55-kdalton 
band co-migrating with chicken gizzard desmin was barely 
visible in intact myofibrils (Fig. 6A) and was enriched to a few 
percent by weight in the KI-residue (Fig. 6 B). 

DISCUSSION 

Characteristic features of the filamentous network are sum- 
marized in a composite diagram in Fig. 7. Although we have 
depicted all of the filaments as equivalent morphologically, 
only transverse-Z (TZ), transverse-M (TM), and longitudinal- 
Z (LZ) filaments have been identified as intermediate-type by 
high resolution EM. Filaments of  the dense peripheral tings 
and the internal meshwork of Z structures have similar mor- 
phology at low resolution, but high resolution data are lacking. 
Furthermore, the structural model is derived from studies of 
extracted rabbit myofibrils. Although it is reasonable to expect 
that a similar network of filaments exists in intact muscle, the 
detailed organization of  filaments in intact muscle may deviate 
from this model because the extent of breakage and distortion 
during muscle fiber and myofibril preparation remains un- 
known. It also remains to be established how widely distributed 
such a network is in other striated muscle tissues and in other 
species. In a preliminary survey, we have found similar cyto- 
skeletal networks in chicken and mouse skeletal muscles as 
well. It appears probable that this network may be a general 
feature of  vertebrate striated muscles. 

Transverse bridges 

Filamentous bridges corresponding to TZ and TM filaments 
have been reported repeatedly in intact striated muscles (see 
reviews: 16, 17). The detection of these interfibrillar bridges 
was difficult unless muscles were pretreated with hypotonic 
solutions to increase the separation between adjacent myofi- 
brils (12). The short connecting filaments encircling the M-line 
(Fig. 4 B), however, have not been reported in intact muscle. 
Recent immunoelectron microscopic localization studies dem- 
onstrated that desmin is a component of the TZ bridges (25; 
see Note Added in Proof). 

It has been proposed that the presence of  these interfibrillar 
bridges is responsible for the transverse stability of the cross- 
striated pattern during muscle contraction and relaxation cycles 
(16, 17). 



FIGURE 4 Three dimensional organization of f i lamentous bridges. Myofibri ls were extracted by KI, fixed, crit ical-point-dried, and 
processed for SEM. (A) General morphology of f i lamentous bridges derived from two adjacent myofibrils. (See Fig. 3 A for 
abbreviations.) Note the short filaments which connect longitudinal filaments at the M position, x 8,400. (B) The same as in A but 
at a higher magnification and a different specimen tilt. (Compare the relative positions of the globular membranous vesicle near 
a Z structure.) x 15,000. (C) A stereopair demonstrating the peripheral location of longitudinal filaments (arrow indicates a broken 
filament), x 8,400. (D) Fine morphology of longitudinal filaments. Note the irregular surface protrusions along the length of the 
filament, x 56,000 

Longitudinal Bridges 
Sarcomere-associated longitudinal intermediate filaments 

have not been observed in intact muscle. Perhaps their sparsity, 
their peri-sarcomeric location, their longitudinal orientation 
and their proximity to sarcoplasmic reticulum made them 
difficult to detect in thin sections (1). These filaments, however, 
have been reported by several workers in studies of extracted 
myofibrils (e.g. 3, 9, 13, 22). We consider it highly unlikely that 
these filaments represent translocated or residual thin and thick 
filaments judging from their distinct intermediate filament 
morphology, their continuity, their peri-sarcomeric location, 
and the lack of decoration by heavy meromyosin (unpublished 

result). Similarly, we do not favor the proposal that these 
longitudinal filaments represent a new type of salt-insoluble, 
continuous myofilament postulated to connect successive Z 
disks, or the ends of  thin or thick filaments to each other from 
within the sarcomere (i.e. the "third" myofdament). 2 Our inter- 

2 As will be reported in detail elsewhere, KI extraction caused the bulk 
of titin and nebulin, the likely components of the third myofilaments, 
to translocate and to accumulate on either side of Z structures. In other 
words, the putative third filaments have been dislodged and deranged 
by KI extraction, and some remnants appeared as ill-defined, ultrathin 
filaments on the background between Z structures (Fig. 3 C). The only 
residual filaments that remain connected to successive Z structures are 
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FIGURE 5 Weblike network of filaments in the plane of Z structures. Samples prepared as in Fig. 4. (A) An end-on view of three 
highly extracted and somewhat fragmented Z structures. Note the branching network of filaments wi th in the plane of each Z 
structure, x 3,600. (B) A schematic interpretation of A. Longitudinal filaments connect the peripheral fragments of each Z structure. 
(C) A stereopair of the top Z structure. Arrow indicates the internal network, x 8,300. 

pretation that these residual longitudinal filaments are inter- 
mediate filaments is consistent with a similar conclusion 
reached independently by Price and Sanger (22, 23) that the 
filaments that they observed in the gap regions of successive 
IZI bridges of negatively stained, A band-extracted chicken 
myofibrils were intermediate filaments. I 

The molecular composition and function of these continuous 
intermediate filaments remain to be elucidated. It is conceiv- 
able that they attach to and anchor sarcoplasmic reticulum 
and/or T-tubules which ensheathe the myofibril. It is also 
possible that they may have a mechanical role in limiting 
extreme length changes of sarcomeres, e.g., by exerting a 
restoring force to aid overstretched or supercontracted sarco- 
meres to return to normal length. Such a mechanical role 
would require that the filaments be elastic. 

the longitudinal intermediate filaments identified as LZ in Fig. 7. 
Failure to recognize the translocation of titin and nebulin during 
extraction has resulted in the misidentification of these intermediate 
filaments as the "third" myofilament (3, 4, 9, 19). 

Z Structure Filaments 

The identity of Z structure filaments remains to be estab- 
lished. Since a number of intermediate filament proteins such 
as desmin, vimentin, synemin were localized by immunofluo- 
rescence to a peripheral ring in the plane of the Z structure of 
KI-extracted chicken muscle (8, 9, 10, 17) and short, radially 
oriented intermediate filaments were seen connecting Z disks 
to nearby membranes in intact muscles (12, 15, 21), it is likely 
that at least part of the filaments in the peripheral ring, and 
possibly the internal meshwork, are also intermediate fila- 
ments. 

In intact muscles, it is conceivable the double peripheral 
rings may encircle, or even penetrate the sarcomere near the Z 
disk region. The exact location, however, remains unclear. 
Because the distance between the ridges of the double rings 
increased from 0.1 to 0.5/.tm as Z structures became progres- 
sively disintegrated (Fig. 3A), it is conceivable that the two 
rings may be in very close contact (with very short or no 
connecting filaments) and encircle the Z disk proper (as in 
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FIGURE 6 Protein composition of residual structures. A 2-12% gra- 
dient polyacrylamide gel pattern of (A) myofibrils, (B) KI residue, 
and (C) a mixture of desmin and actin. T, titin; N, nebulin; M, 
myosin; D, desmin; and A, actin. Note that desmin (arrowhead) 
comigrates with a very minor band in KI residues. 

TN TZ ~ DZ 

FIGURE 7 A highly schematic diagram of sarcomere-associated cy- 
toskeletal network_ Cytoskeletal filaments associated with two ad- 
jacent sarcomeres are depicted. This diagram emphasizes only the 
gross organizational principles of these filaments and is not drawn 
to scale. The disposition of cytoskeletal filaments relative to other 
sarcomere elements is discussed in the test. (See Fig. 3 A for abbre- 
viations.) 

WANG AND RAMIREZ-MFTCH[LL 

Figs. 4 and 5). However, it is also possible that the double rings 
are situated at the positions of the pair of  N1 lines which flank 
the two sides of each Z disk and are 0.3-0.4 #m apart (7). The 
latter interpretation is attractive because internal meshwork 
filaments would be placed outside of the Z disk in the vicinity 
of N~ lines where the spacings of the thin filament lattice would 
be adequate for the penetration of 10-nm wide filaments. 
Although the idea that intermediate filaments may penetrate 
into the thin filament lattice appears novel, that this could 
indeed happen has already been demonstrated in cardiac mus- 
cle (reference 6, plate 3). If  this is also true of skeletal muscle, 
then each Z disk may be surrounded on all  sides by interme- 
diate filaments. 

The double-ring structure may have implications in under- 
standing the phenomena of Z disk splitting that was observed 
in certain atrophic muscle fibers, or in developing muscle 
where Z disks divide and move apart during the elongation of 
myofibrils (see reference 30 for references). These phenomena 
would be easier to explain if Z disks were constructed out of  
two halves fused together by linkages which withstand normal 
physiological conditions but break apart under adverse stress 
(see reference 30 for a detailed discussion). Our results suggest 
that the double ring may be involved in the construction and /  
or maintenance of the proposed two half Z disks. 

These filamentous rings that encircle the Z disk, as well as 
the short connecting filaments that link LZ filaments at M line 
positions, may be involved in regulating the lattice spacings of 
thin and thick filaments; e.g., by restricting excessive lattice 
expansion during muscle supercontraction (29). 

Protein Composition of Residual Structures 

Our gel analysis indicated that titin and nebulin are consis- 
tently the major components of the residues (the relative 
amount of residual myosin and actin varied from preparation 
to preparation) and that desmin was at most a minor compo- 
nent. This was somewhat unexpected in view of a report which 
identified desmin as a major component of the KI residue of 
chicken myofibrils (9). This discrepancy can be explained, at 
least in part, by our observation that a major portion of  the 
residue mass represented by titin and nebulin became refrac- 
tory to solubilization by SDS and urea (see Materials and 
Methods). Therefore, the use of such ineffective denaturants 
led to an overestimation of the relative amount of preferentially 
solubilized components (9). Complete dissolution was achieved 
only by the use of guanidinium chloride. It is unlikely that the 
discrepancy is caused by proteolysis of desmin in our samples, 
because identical results were obtained when protease inhibi- 
tors such as phenylmethylsulfonylfluoride or leupeptin were 
included in various buffers. Furthermore, with our rapid skin- 
ning procedure, the extremely protease-prone titin and nebulin 
remained intact. Nor is it likely due to species differences, since 
we have obtained similar results with chicken myofibrils (un- 
published result), and a recent report on porcine skeletal muscle 
desmin agrees with our results (25). 

The fact that desmin represented only a minor component 
of the residue should not be interpreted to mean that it may 
not be a major component of the filament. This is because the 
photogenic filaments represent only a small portion of the 
residue volume (and therefore mass), as demonstrated by the 
scanning micrography of Fig. 3 B. The voluminous Z structures, 
containing translocated myofibrillar proteins, account for the 
majority of residue mass. It is thus possible that desmin may 
indeed be a major subunit of at least some of  the filaments. 
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The question of  molecular composition of these filaments 
should be considered open, however, in view of the well-known 
chemical heterogeneity of intermediate filaments (17, 28). The 
potential complexity in composition is already reflected by the 
fact that, in addition to desmin, proteins of 58 kdaltons (vi- 
mentin) (10), 68 kdaltons (31), 95 kdaltons (18), 210 kdaltons 
(18), 220 kdaltons (11) have been detected as intermediate- 
filament-associated proteins in adult skeletal muscle. Further- 
more, filaments at different locations of the network may have 
distinct composition. This intriguing possibility is raised based 
on a report (18) that a 210 kdalton intermediate filament 
protein is localized only on M lines, whereas a 95-kdalton 
intermediate filament protein is localized on both M lines and 
as a doublet on either side of Z disks of rat skeletal myofibrils. 

Although immunofluorescence studies of KI residues have 
indicated that myofibrillar proteins such as myosin (9), tropo- 
myosin (9), titin (32), and nebulin (unpublished observations) 
occasionally appeared as longitudinal strands spanning the 
distance between Z structures, it is most likely that such 
stainings arose from extracted or dislocated proteins adhered 
nonspecifically to the longitudinal intermediate filaments. 

Intermediate Filament Cytoskeletal Network and 
Muscle Tension Transmission 

The intermediate filament cytoskeletal network, abundant in 
smooth muscle (2) and in developing striated muscles (8, 15), 
also appears to be intimately associated with the sarcomere of 
adult striated muscle. Such a cytoskeletal network has many 
interesting implications in muscle mechanics. It is generally 
assumed that muscle tension is transmitted longitudinally 
through the unbroken chain of  serially connected sarcomeres 
of each myofibril to the myotendon junction. Theoretically, 
the intermediate filament network, by connecting all force- 
bearing structures, such as Z disks and M lines both longitu- 
dinally and transversely, would be capable of transmitting 
tension in both directions, even when certain individual sar- 
comeres fail to generate tension, e.g., due to nonoverlapping of 
thin and thick filaments or due to structural damage. Thus, this 
network may be an effective mechanism of bypassing defective 
force generators. The possible involvement of these filaments 
in active tension, passive tension, and elasticity of muscles 
remain to be explored. 
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Note Added in Proof." Drs. K. T. Tokuyasu, Anne H. Dutton, and S. 
J. Singer (all are at University of California, San Diego) have carried 
out immunoelectron microscopic studies of desmin localization in 

chicken skeletal and cardiac muscles. Results are detailed in manu- 
scripts that have been submitted for publication. 
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