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Citrus limon Peel Powder Reduces Intestinal Barrier Defects
and Inflammation in a Colitic Murine Experimental Model
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Abstract: This study examines the ameliorative effects of lemon (Citrus limon) peel (LP) powder on
intestinal inflammation and barrier defects in dextran sulfate sodium (DSS)-induced colitic mice. The
whole LP powder was fractionated into methanol (MetOH) extract and its extraction residue (MetOH
residue), which were rich in polyphenolic compounds and dietary fibers, respectively. Mice were fed
diets containing whole LP powder, MetOH extract, and MetOH residue for 16 d. DSS administration
for 9 d induced bodyweight loss, reduced colon length, reduced the colonic expression of tight
junction proteins including zonula occludens-1 and -2, and claudin-3 and -7, and upregulated colonic
mRNA expression of interleukin 6, chemokine (C-X-C motif) ligand 2, and C-C motif chemokine
ligand 2. Feeding LP powder restored these abnormalities, and the MetOH residue, but not MetOH
extract, also showed similar restorations. Feeding LP powder and MetOH residue increased fecal
concentrations of acetate and n-butyrate. Taken together, LP powder reduced intestinal damage
through the protection of tight junction barriers and suppressed an inflammatory reaction in colitic
mice. These results suggest that acetate and n-butyrate produced from the microbial metabolism of
dietary fibers in LP powder contributed to reducing colitis.

Keywords: colitis; dietary fiber; lemon peel; inflammatory cytokine; tight junction

1. Introduction

Inflammatory bowel diseases (IBDs) mainly consist of ulcerative colitis and Crohn’s
disease, which are chronic idiopathic disorders causing intestinal inflammation [1]. Patients
with IBDs suffer from diarrhea, rectal bleeding, abdominal pain and fever, and experience
altering periods of remission and relapse [1]. Originally, the incidence of IBDs was higher in
western countries, such as North America and western Europe; however, it is increasing in
South America, eastern Europe, Asia, and Africa [2]. These data suggest that both genetic
and environmental factors, such as dietary habits, are involved in IBD pathogenesis.

Although IBD pathogenesis is not fully understood, data from basic and clinical
studies show that an impaired intestinal barrier triggers intestinal inflammation [3]. An
impaired intestinal barrier allows noxious molecules, such as bacterial toxins and dietary
antigens, to permeate intestinal tissues, resulting in the robust and chronic activation of
immune cells [3]. The intestinal barrier is organized by different barrier components and
structures, but the tight junction (TJ) structure expressed in intestinal epithelial cells is one
of the major determinants of the intestinal barrier [4]. The TJ structure is a multiple protein
complex, consisting of transmembrane and cytosolic plaque proteins, including the trans-
membrane proteins, occludin, and claudins, whose extracellular loops directly interact with
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adjacent cells to create a barrier against luminal noxious molecules [5,6]. The intracellular
region of the transmembrane protein is bound to cytosolic plaque proteins, such as zonula
occludens (ZO), which anchors the TJ complex to the actin cytoskeleton [7]. Although
the TJ barrier is regulated by endogenous factors, such as growth factors, cytokines, and
hormones [8–10], dietary factors, such as polyphenolic compounds and dietary fibers, also
have a role in its regulation [11–13]. Thus, plant-derived food materials rich in polyphenols
and fibers could be developed as a novel tool against intestinal damage and inflammation.

Lemon (Citrus limon) is one of the most important fruits in crop production and is
widely used as beverages, ice creams, dessert, and cook materials, due to its tart flavor.
Lemon fruits contain many bioactive compounds such as vitamin C, citric acid, phenolic
compounds, dietary fibers, and essential oil. These compounds often provide us health
benefits, including anti-microbial, anti-inflammatory, and anti-oxidant activities [14–16].
Thus, lemon fruits have a strong commercial value in the fresh product market and food
industry. However, except for edible flesh used in the processing industry, other inedible
parts, such as peels, seeds, and pulp matrixes, are mostly wasted as by-products. Previous
studies demonstrate that the lemon peel (LP) includes more polyphenolic compounds
and dietary fibers than those of the flesh [17,18]. Structurally, the LP consists of the outer
layer, called flavedo, and the inner layer, called albedo; the flavedo contains high amounts
of polyphenolic compounds, such as hesperidin, diosmin, eriocitrin, and narirutin [18],
whereas the albedo is rich in fibers, particularly pectin. Hesperidin, one of the principal
polyphenols in lemon, have been shown to possess various biological properties, such
as anti-oxidant, anti-inflammatory, and anti-cancer effects [19–21]. Diosmin, eriocitrin,
and narirutin are also reported to contribute to health care [22–24]. In addition, the
supplemental dietary fibers influence the activity and composition of intestinal microflora,
which are closely related to our health. Our previous studies demonstrated that fermentable
fibers reduced the disease symptoms in murine models of colitis and chronic kidney
disease [25,26]. Although different mechanisms may exist in the dietary fiber-mediated
effects, organic acids produced from the microbial metabolism of dietary fibers regulate
the intestinal inflammation and barrier. Thus, LP could be an excellent source of functional
food materials to promote human health, however, the roles of LP in the regulation of
intestinal homeostasis have not been investigated so far.

The objective of the present study was to examine the ameliorative effect of LP powder
on intestinal inflammation and barrier defects in a colitis murine model. In addition, LP
powder was separated into two fractions, which were rich in polyphenolic compounds
and dietary fibers, respectively, and which fraction had a role in the ameliorative effect on
colitis was examined.

2. Materials and Methods
2.1. Chemicals

Dextran sulfate sodium (DSS; molecular weight: 36,000–50,000) was purchased from
MP Biomedicals (Santa Ana, CA, USA). Rabbit anti-ZO-1 (61-7300), occludin (71-1500),
claudin-3 (34-1700), claudin-4 (36-4800), claudin-7 (34-9100), and goat Alexa Fluor 488-
conjugated anti-rabbit IgG antibodies (A11034) were purchased from Thermo Fisher Sci-
entific (Waltham, MA, USA). Rabbit anti-ZO-2 antibody was purchased from Santa Cruz
Biotechnology (sc-11448, Dallas, TX, USA). Horseradish peroxidase-conjugated anti-rabbit
IgG antibody was purchased from SeraCare (074-1506, Milford, MA, USA). All other
chemicals were obtained from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan).

2.2. Preparation of Citrus Limon Peel Powder and Fractions

Fresh Citrus limon peel was purchased from Pokka Sapporo Food and Beverage (Tokyo,
Japan). Diced Citrus limon peel was freeze-dried and milled to a fine powder with a mill
mixer (IFM-66ODG; Iwatani, Osaka, Japan). The resultant powder was passed through a
mesh sieve (ϕ1 mm) and designated as the whole LP powder.
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Whole LP powder contained polyphenols and dietary fibers as major bioactive compo-
nents at high concentrations. To examine which component had a role in the ameliorative
effect on colitis, whole LP powder was separated into two fractions rich in polyphenols and
fibers, respectively, using a methanol (MetOH) extraction method. Whole LP powder (45 g)
was vigorously mixed with 300 mL MetOH, sonicated using an ultrasonic bath (Bransonic
1210; Emerson Electric, St. Louis, MO, USA) for 60 min, and allowed to stand for 16 h.
The mixture was centrifuged at 10,000× g at 15 ◦C for 20 min to allow the separation into
supernatant and pellet. The pellet was immersed in 300 mL MetOH, vigorously mixed,
and centrifuged again. Two additional extractions were performed in the same manner.
The pellet obtained through the repeated extractions was air-dried, milled to a fine powder,
and designated as the MetOH extraction residue (MetOH residue) of LP powder. The
supernatant obtained through the repeated extractions was filtered and evaporated under
vacuum at 50 ◦C. The resultant concentrate was dispersed in 45 g of maize starch powder
for faithful handling, air-dried, and designated as MetOH extract of LP powder.

2.3. Nutritional Analyses of Citrus limon Peel Powder and the Two Fractions

The nutritional components, including protein, lipid, ash, and moisture in the whole
LP powder and the MetOH residue, were analyzed using the Kjeldahl [27], Soxhlet extrac-
tion [28], dry ashing (Association of Official Agricultural Chemists [AOAC] 942.05) [29],
and air-oven drying methods (AOAC 930.15) [30], respectively. The fiber content in
whole LP powder and MetOH residue was determined using the enzymatic-gravimetric
method (AOAC 985.29 and 991.43) [31]. Because LP powder is rich in polyphenols, such as
hesperidin, eriocitrin, diosmin, and narirutin [17,18], the polyphenols in whole LP pow-
der, MetOH extract, and MetOH residue were determined using liquid chromatography-
tandem mass spectrometry (LC/MS/MS) analysis (Acquity UPLC-TQD; Waters, Milford,
MA, USA). The UPLC system was fitted with a 1.8-µm C18 column (ACQUITY UPLC BEH
C18, 2.1 × 100 mm, Waters) set at 40 ◦C and a flow rate of 0.3 mL/min. The separation was
achieved by gradient elution with methanol-water (30:70) and 100% methanol containing
0.1% formic acid as mobile phases. The auto sampler was kept at 4 ◦C, and the sample
injection volume was 5 µL. The MS analysis was operated by multiple reaction monitoring
(MRM) in positive-ion mode. The following MRM transitions were monitored: Hes-
peridin 611.09→ 303.06, eriocitrin 597.21→ 289.03, diosmin 609.08→ 301.04, and narirutin
581.08→ 273.03. A source temperature of 150 ◦C and a desolvation temperature of 450 ◦C
were used. The desolvation and cone gas flow were 650 and 35 L/h, respectively.

2.4. Animals and Diets

All study protocols were preapproved by the Animal Use Committee of Hiroshima
University (authorization No. C19-19), and animal experiments were performed in accor-
dance with Hiroshima University guidelines for the care and use of laboratory animals.
Male 7-week old Balb/c mice were purchased from Charles River Japan (Yokohama, Japan).
All mice were housed under conditions with a controlled room temperature (20–24 ◦C),
relative humidity (40–60%), and lighting from 8:00 to 20:00 throughout the experimental
period. Mice had free access to the AIN-93G-based control diet (Table 1) [32] and distilled
water for 1 week during the acclimatization period, prior to the start of the experiment.

Whole LP powder, MetOH extract, and MetOH residue were added to the AIN-
93G-based control diet at 5, 6.5, and 4.4% by weight, respectively. LC/MS/MS analysis
demonstrated that the recovery ratio of hesperidin, eriocitrin, and diosmin, major polyphe-
nols in the whole LP powder, in the MetOH extract was approximately 97, 77, and 89%,
respectively, of those from the original whole LP powder (Table 4). To ensure that these
three polyphenols were present at concentrations at least equivalent to those in the 5%
whole LP powder diet, the MetOH extract was added to the control diet at 6.5%. Addi-
tionally, the fiber content in the MetOH residue increased to 1.13-fold that in the original
powder; thus, to ensure that the concentration was approximately equivalent to that in the
5% whole LP powder diet, the MetOH residue was added to the control diet at 4.4%.
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Table 1. Composition of experimental diets a.

Ingredient Control Diet

g/kg diet

Casein b 200
α-Corn starch c 529.5

Sucrose 100
Soybean oil 70

Choline bitartrate 2.5
L-Cystine 3

Mineral mixture d 35
Vitamin mixture d 10

Cellulose e 50
a Whole LP powder, the MetOH extract, and the MetOH extraction residue were added to the control diet at 5,
6.5, and 4.4%, respectively, by substitution for equal amounts of starch. b Casein (ALACID; New Zealand Daily
Board, Wellington, New Zealand). c α-Corn starch (Amylalpha CL; Chuo-Shokuryou Co. Ltd., Aichi, Japan).
d Mineral and vitamin mixtures were prepared according to the AIN-93G formulation. e Powdered cellulose (Just
fiber; International Fiber Corporation, New York, NY, USA).

2.5. Experimental Design

Mice (n = 35) were randomly divided into five groups: The control, DSS, DSS + whole
LP, DSS + MetOH extract, and DSS + MetOH residue (seven mice/group). The control and
DSS groups were fed the control diet for the 16-d experimental period. The DSS + whole LP,
DSS + MetOH extract, and DSS + MetOH residue groups were fed the diets containing 5%
whole LP powder, 6.5% MetOH extract, and 4.4% MetOH residue by weight, respectively,
through the experimental period. Seven days after the start of feeding mice the experimen-
tal diets, four DSS treatment groups were administered 2% (w/v) DSS solution through
their drinking water for 9 d to induce experimental colitis, whereas the control group
only received distilled water. After DSS administration for 9 d, mice were euthanized by
exsanguination under isoflurane anesthesia. The colon was quickly dissected and colon
length was measured. The colon was isolated for histological, immunoblot, quantitative
reverse transcription-polymerase chain reaction (qRT-PCR), and immunostaining analyses,
as described below.

2.6. Colitis Clinical Score

To determine the severity of colitis, mouse bodyweight and colitis clinical score were
measured every day after the start of DSS administration [16,33]. Briefly, bodyweight loss,
diarrhea, bloody stool, and stool consistency were scored from 0 (unaffected) to 4 (severely
affected). The detailed scoring system is shown in Table 2.

Table 2. Clinical scoring system.

Score Diarrhea Stool Bloody Stool Weight Loss
(% of Initial)

0 Normal Normal color <1
1 Mildly soft Brown color 1–5
2 Very soft Reddish color 6–10
3 Watery Bloody stool 11–20
4 More watery More bloody >21

The sum of the scores of three parameters was defined as the clinical score.

2.7. Histopathology

Mouse colonic tissues were embedded in optimal cutting temperature compounds
(Sakura Finetek Japan, Tokyo, Japan), and frozen tissue sections (8 µm-thickness) were
prepared on glass slides using a LEICA CM1850 microtome (LEICA, Wetzlar, Germany).
Sections were fixed in 4% paraformaldehyde and stained with Mayer’s hematoxylin and
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eosin using a standard protocol. Images of colonic sections were acquired by a Leica DMI
6000 B microscope (LEICA).

2.8. Immunoblot Analysis

A segment of mouse colonic tissues (20 mg) was homogenized in 600 µL lysis buffer
with protease and phosphatase inhibitors (1% [w/v] sodium dodecyl sulfate, 1% [v/v] Triton
X-100, 1% [w/v] sodium deoxycholate, and 30 mmol/L 2-amino-2-(hydroxymethyl)-1,3-
propanediol trimethylolaminomethane) using a Polytron-type homogenizer (Kinematica
AG, Lucerne, Switzerland). The supernatant obtained after centrifugation was subjected
to immunoblot analyses of TJ proteins, ZO-1, ZO-2, occludin, claudin-3, claudin-4, and
claudin-7 using specific antibodies in combination with horseradish peroxidase-conjugated
anti-rabbit IgG antibodies. Blots were developed using enhanced chemiluminescence
detection reagents (Perkin Elmer Life Sciences, Waltham, MA, USA).

2.9. Immunofluorescence

Frozen colonic sections, prepared as described in Section 2.7, were blocked with 4%
skimmed milk, and incubated with anti-claudin-3 antibody for 16 h, followed by Alexa
Fluor 488-conjugated anti-rabbit IgG antibody for 1 h. The specimens were preserved
in mounting fluid, and the fluorescence was visualized using an LCM700 confocal laser
scanning microscope (Carl Zeiss, Oberkochen, Germany).

2.10. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)

The colonic expression of cytokines and chemokines, such as interleukin 6 (Il6), Il17A,
chemokine (C-X-C motif) ligand 2 (Cxcl2), and C-C motif chemokine ligand 2 (Ccl2) was
determined by qRT-PCR. Total RNA from mouse colonic tissues was isolated using a
NucleoSpin® RNA kit (Macherey-Nagel, Düren, Germany) and reverse-transcribed into
cDNA using the ReverTra Ace qPCR RT Master Mix kit (Toyobo, Osaka, Japan), according
to the manufacturers’ instructions. The PCR reaction was performed in a StepOne Real-
Time PCR System (Thermo Fisher Scientific) with 2× Brilliant III Ultra-Fast SYBR Green
QPCR Master Mix (Agilent Technologies, Santa Clara, CA, USA) in accordance with the
manufacturers’ protocol. The primer sequences are shown in Table 3. The expression of
target genes was calculated by the delta delta Ct method using ribosomal protein L13
(Rpl13) as the reference gene.

Table 3. Primer sequences used for qRT-PCR analysis.

Target Gene Forward Reverse

Mouse Il6 5′-CTGATGCTGGTGACAACCAC-3′ 5′-TCCACGATTTCCCAGAGAAC-3′

Mouse Il17a 5′-AGCTGGACCACCACTTGAAT-3′ 5′-ACACCCACCAGCATCTTCTC-3′

Mouse Ccl2 5′-GGAATGGGTCCAGACATACATTA-3′ 5′-TAGCTTCAGATTTACGGGTCAAC-3′

Mouse Cxcl2 5′-AGTGAACTGCGCTGTCAATG-3′ 5′-ACTTTTTGACCGCCCTTGAG-3′

Mouse Rpl13 5′-TCAAGAAGGTGGTGAAGCAG-3′ 5′-AAGGTGGAAGAGTGGGAGTTG-3′

2.11. Fecal Organic Acid Analysis

Fresh fecal samples were collected 4 d after the start of DSS treatment for organic acid
analysis [34], with minor modifications. Briefly, fecal samples were diluted and homoge-
nized with a 9× volume of distilled water. The supernatant obtained after centrifugation
was deproteinized with 50% acetonitrile. Organic acids were chemically derivatized by
3-nitrophenylhydrazine to their 3-nitrophenylhydrazones. Crotonic acid was used as an
internal standard. Derivatives of the organic acids (acetate, propionate, butyrate, valerate,
lactate, and succinate) were determined by ultraperformance liquid chromatography-mass
spectrometry (Waters, Germany).
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2.12. Statistical Analysis

All data are expressed as mean with a standard error of mean. Statistical analyses were
performed using Predictive Analytics Software (PASW) Statistics 18. Statistical differences
among groups were determined by one-way analysis of variance (ANOVA) followed by a
Tukey-Kramer test. Differences were considered significant at a p < 0.05.

3. Results
3.1. Nutritional Characterization of Whole LP Powder and Its Fractions

The nutritional composition of whole LP powder is shown in Table 4. The sum of
protein, lipid, ash, and moisture was 15.9% by weight in whole LP powder. The amount of
total dietary fiber in whole LP powder was 47.1%, which included water-soluble fiber at
12.3% and water-insoluble fiber at 34.8%. Protein, lipid, and ash were mostly retained in
the MetOH residue of LP powder, and the values were roughly similar to those in whole
LP powder. The total dietary fiber amount in the MetOH residue was 53.1%, which was
1.13 times higher than that of the original whole LP powder. This increment might be due
to eliminating mono- and disaccharides by MetOH extraction. Protein, ash, and fiber were
not analyzed in the MetOH extract, because these nutrients were not extracted by MetOH.
Hesperidin, eriocitrin, diosmin, and narirutin in the whole LP powder and MetOH extract,
but not MetOH extraction residue, were successfully detected using LC/MS/MS analysis,
and the chromatograms were shown in Figure 1. The polyphenol compositions determined
in whole LP powder seemed to be consistent with the previous results [17,18], although the
compositions varied among the cultivars of lemon. The hesperidin amount in the MetOH
extract (423 mg/100 g) was equivalent to that in the whole LP powder (427 mg/100 g),
but the amounts of eriocitrin, diosmin, and narirutin were approximately 77, 89, and 51%,
respectively, of those in whole LP powder.
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Table 4. Nutritional composition of whole lemon peel (LP) powder, the MetOH extract, and the
MetOH extraction residue.

Whole LP Powder MetOH Extract MetOH Extraction
Residue

Protein (g/100 g powder) 0.7 N.A. 0.7
Lipid (g/100 g powder) 4.3 N.A. 5.8
Ash (g/100 g powder) 3.9 N.A. 4.0

Dietary fiber (g/100 g powder) 47.1 N.A. 53.1
Water soluble 12.3 N.A. 17.8

Water insoluble 34.8 N.A. 35.3
Moisture 7.0 N.A. 9.2
Polyphenols (mg/100 g powder)

Hesperidin 427 423 N.D.
Eriocitrin 174 134 N.D.
Diosmin 146 130 N.D.
Narirutin 26.5 13.5 N.D.

N.A., not analyzed. N.D., not detected.

3.2. Effects of Whole LP Powder and Its Fractions on Bodyweight Loss and Colitis Clinical Score

Experimental colitis was induced by DSS administration 7 d after the start of feeding
mice the experimental diets. DSS administration caused bodyweight loss and increased
clinical score, indicating the induction of colitis (Figure 2). Bodyweight gain in the DSS
group was lower than those in the control group at, and after, day 5. Feeding mice whole
LP powder and MetOH residue attenuated bodyweight loss at, and after, day 6. The
clinical score in the DSS group was higher than that in the control group at, and after, day
3, and the increments were partially attenuated by feeding mice whole LP powder and
MetOH residue. The clinical score in the MetOH extract group was lower than that in the
DSS group on days 3 and 4; however, the ameliorative effects on bodyweight gain was
not observed.
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Figure 2. Effects of whole LP powder, methanol (MetOH) extract, and MetOH extraction residue
(MetOH residue) on bodyweight change and clinical score in dextran sodium sulfate (DSS)-induced
colitic mice. Bodyweight change (a) and clinical score (b) of mice fed diets with and without whole
LP powder, MetOH extract, and MetOH residue, with or without DSS administration. Values are the
mean ± SEM (n = 7). Means without a common letter differ, p < 0.05.
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Colon length is inversely associated with the severity of DSS-induced colitis and
is often evaluated as another indicator of colitis. DSS administration shortened colon
length in mice; however, feeding mice whole LP powder and MetOH residue attenuated
this colon shortening (Figure 3a,b). Based on hematoxylin and eosin staining of colonic
specimens, DSS administration caused the loss and distortion of crypts, loss of goblet cells,
severe epithelial injury, and inflammatory cell infiltration in the mucosa and submucosa
(Figure 3c). Feeding mice whole LP powder and MetOH residue partially, but clearly,
attenuated these abnormal symptoms, and the crypt structures were relatively preserved
in these two groups. Although the MetOH extract also reduced DSS-induced histological
changes, the reduction looked weaker than those in the whole LP powder and the MetOH
residue groups.
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Figure 3. Effects of whole LP powder, methanol (MetOH) extract, and MetOH extraction residue (MetOH residue) on colon
length and mucosal structure in dextran sodium sulfate (DSS)-induced colitic mice. Colon length (a,b) of mice fed diets with
and without whole LP powder, MetOH extract, and MetOH residue, with or without DSS administration. Representative
images of the cecum and colon of seven mice in each group are shown in (a). Scale bar represents 10 mm. Colonic sections
of mice were stained with hematoxylin and eosin. Representative images of seven mice in each group are shown in (c).
Scale bar represents 100 µm. Values are the mean ± SEM (n = 7). Means without a common letter differ, p < 0.05.

3.3. Effect of Whole LP Powder and Its Fractions on the Colonic TJ Barrier

An impaired intestinal TJ barrier has a role in the pathogenesis of IBDs [3]. The colonic
expression of ZO-1, ZO-2, claudin-3, and claudin-7 in the DSS group was lower than those
in the control group (Figure 4). DSS administration reduced occludin expression, but the
reduction was not statistically significant. Feeding mice whole LP powder restored the
decreased expression of these TJ proteins, although the restoration in claudin-7 expres-
sion was not significant. Feeding mice MetOH residue also restored ZO-2, claudin-3, and
claudin-7 expression. Meanwhile, any TJ proteins examined in the DSS + MetOH extract
group did not differ from those in the DSS group. Because claudin-3 is one of the major
isoforms expressed in the colonic epithelium and whole LP powder and MetOH residue
significantly restored its expression, its cellular localization was examined by immunofluo-
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rescence analysis (Figure 5). In the control group, claudin-3 was observed at basolateral,
as well as in the junctional regions of epithelial cells. DSS administration impaired the
expression and localization, while feeding mice whole LP powder and MetOH residue, but
not the MetOH extract, partially, but clearly, restored them. These data suggest that the
restoration of the colonic TJ barrier by whole LP powder and MetOH residue was involved
in reducing colitis.
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Figure 4. Effects of whole LP powder, methanol (MetOH) extract, and MetOH extraction residue
(MetOH residue) on tight junction protein expression in the colon of dextran sodium sulfate (DSS)-
induced colitic mice. Protein expression of zonula occludens (ZO)-1, ZO-2, occludin, claudin-3, and
claudin-7 in the colon of mice fed diets with and without whole LP powder, MetOH extract, and
MetOH residue, with or without DSS administration, as determined by immunoblot analysis. Values
are the mean ± SEM (n = 7). Means without a common letter differ, p < 0.05.
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Figure 5. Effects of whole LP powder, methanol (MetOH extract), and MetOH extraction residue
(MetOH residue) on claudin-3 expression in the colon of dextran sodium sulfate (DSS)-induced colitic
mice. Immunolocalization of claudin-3 in the colon of mice fed diets with and without whole LP
powder, MetOH extract, and MetOH residue, with or without DSS administration, as analyzed by
immunofluorescence microscopy. Representative images of seven mice in each group are shown.

3.4. Effect of Whole LP Powder and Its Fractions on Colonic Gene Expression

An impaired colonic TJ barrier allows luminal noxious molecules to permeate into
colonic mucosal tissues and causes robust and uncontrolled expression of inflammatory
cytokines and chemokines [35]. DSS administration upregulated expression of Il6, Il17A,
Cxcl2, and Ccl2 in colonic tissues, whereas feeding mice whole LP powder and MetOH
residue suppressed expression of Il6, Cxcl2, and Ccl2, but not Il17A (Figure 6). These results
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suggest that the suppression of the inflammatory reaction was another mechanism under-
lying the reduction of colitis. The MetOH extract modestly suppressed Cxcl2 expression,
but did not influence the other genes.
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Figure 6. Effects of whole LP powder, methanol (MetOH) extract, and MetOH extraction residue
(MetOH residue) on inflammatory cytokine expression in the colon of dextran sodium sulfate
(DSS)-induced colitic mice. Gene expression of Il6, Il17A, Cxcl2, and Ccl2 in the colon of mice fed
diets with and without whole LP powder, MetOH extract, and MetOH residue, with or without
DSS administration, as determined by real-time quantitative polymerase chain reaction (RT-qPCR)
analysis. Values are the mean ± SEM (n = 7). Means without a common letter differ, p < 0.05.

3.5. Effect of Whole LP Powder and Its Fractions on Fecal Organic Acids

Organic acids (acetate, propionate, butyrate, valerate, lactate, and succinate) are major
metabolites of undigested carbohydrates from intestinal microorganisms [34]. In particular,
acetate, propionate, butyrate, and valerate are categorized into short-chain fatty acids
(SCFAs). Because the MetOH residue, rich in dietary fibers, exhibited ameliorative effects
in colitic mice in a manner partially similar to that of whole LP powder, we speculated that
the microbial metabolism of dietary fibers in whole LP powder was involved in reducing
colitis. Acetate, n-butyrate, iso-butyrate, and lactate in the DSS + whole LP group and
acetate, n-butyrate, and lactate in the DSS + MetOH residue group were higher than those
in the DSS group (Figure 7). Succinate in the DSS + whole LP and DSS + MetOH residue
groups were or tended to be lower than that in the DSS group. There was no difference in
propionate, n-valerate, and iso-valerate among the groups.
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Figure 7. Effects of whole LP powder, methanol (MetOH) extract, and MetOH extraction residue
(MetOH residue) on organic acid concentrations in feces of dextran sodium sulfate (DSS)-induced
colitic mice. Fecal concentrations of acetate, propionate, n-butyrate, iso-butyrate, n-valerate, iso-
valerate, lactate, and succinate in mice fed diets with and without whole LP powder, MetOH
extract, and MetOH residue, with or without DSS administration, as determined by liquid chromato-
graph/tandem mass spectrometry (LC/MS/MS) analysis. Values are the mean± SEM (n = 7). Means
without a common letter differ, p < 0.05.
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4. Discussion

IBDs affect the health of millions of people and pose a considerable health burden
worldwide [2]. Currently, aminosalicylates, glucocorticoids, immunosuppressive agents,
and biological drugs are used to treat IBDs; however, these treatments often involve severe
side-effects, an insufficient response, and high cost [36]. Therefore, the development of
novel preventive or therapeutic approaches using natural herbal medicines and dietary
supplements is desired. This study demonstrated that whole LP powder, rich in polypheno-
lic compounds and dietary fibers, attenuated an intestinal barrier defect and inflammation
in a murine model of colitis. The LP-mediated ameliorative effects seemed to be involved
in the protection of the colonic TJ barrier and suppression of an inflammatory reaction. In
addition, our results indicated that dietary fibers in whole LP powder had an important
role in reducing colitis. In the previous studies, the peel extracts of other citrus fruits,
such as orange (Citrus sinensis), yuzu (Citrus junos Tanaka), and Kawachibankan (Citrus
kawachiensis), also reduced the intestinal inflammation in colitic mice [16,37,38]. In agree-
ment with our findings, it is suggested that dietary fibers in these peels are at least in part
involved in the regulation of intestinal inflammation.

One of the most important findings of the present study was that the MetOH residue,
rich in dietary fibers, exhibited ameliorative effects on colitis in a manner similar to that
of whole LP powder. In addition, feeding mice the MetOH residue, as well as whole LP
powder, influenced some organic acids in feces. In particular, acetate, n-butyrate, and
lactate were increased, and succinate was decreased by both whole peel powder and
MetOH residue. These data suggest that the alterations of these organic acids, at least in
part, contributed to the whole LP powder-mediated reduction of colitis. Our previous
study demonstrates that feeding mice fermentable fibers leading to increased luminal
SCFAs reduces intestinal inflammation and barrier defects in colitic mice [25]. Clinical
studies have also shown lower fecal SCFA levels in patients with IBDs than those in healthy
subjects [39,40].

At least two mechanisms are involved in the organic acid-mediated reduction of
colitis: The regulation of the colonic TJ barrier and inflammatory cytokine production.
The intestinal TJ barrier limits the permeation of luminal noxious molecules into mucosal
tissues and prevents uncontrolled activation of immune cells [35]. Feeding mice whole LP
powder and MetOH residue restored the structure of the colonic TJ barrier. Organic acids
have been reported to regulate the integrity and structure of the intestinal TJ barrier [41–44].
Acetate, n-butyrate, and lactate enhance TJ barrier integrity in rat cecum and intestinal
Caco-2 cells [41]. Whereas, succinate, which was increased by DSS administration, have
been shown to induce the hyperpermeability of intestinal TJ [41]. Additionally, feeding
mice whole LP powder and MetOH residue suppressed inflammatory cytokine expression,
including Il6 and Cxcl2 (a murine homolog of Il8). SCFAs, including acetate and n-butyrate,
but not lactate, have been reported to suppress the inflammatory response of intestinal
epithelial cells [45]. Stimulation of intestinal Caco-2 cells and mouse colonic tissues with
tumor necrosis factor-α induces inflammatory cytokine production, including IL-6 and
IL-8, but treatment with acetate and n-butyrate reduces cytokine production [45]. IL-8,
secreted by epithelial cells, recruits neutrophils into inflamed colonic tissues, where neu-
trophils develop mucosal inflammation through intercellular interactions with other cells,
such as macrophages and T cells [46]. In clinical studies, various immune cells, including
neutrophils, accumulate in inflamed tissues of patients with ulcerative colitis [47]. Admin-
istration of a neutralizing antibody against the IL-8 receptor and C-X-C motif chemokine
receptor 2 attenuates disease symptoms in DSS-induced colitic mice [48]. Although the
DSS administration and whole LP powder modestly influenced the fecal iso-butyrate,
its physiological role is poorly understood. Thus, the acetate and n-butyrate-mediated
reduction of inflammatory cytokines, such as IL-6 and IL-8, seems to be another mechanism
underlying the reduction of colitis.

Accumulating evidence indicates that the intestinal microflora has an important role
in the pathogenesis of IBDs [49,50]. The present study did not examine the effects of LP
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powder on the intestinal microflora, but the alteration of fecal SCFAs implied that the
supplemental LP possibly influenced the activity or composition of intestinal microflora.
Some studies show the distinct composition of intestinal microflora in patients with IBDs
from healthy people [49]. The patients with ulcerative colitis often show the reduced
abundance of “protective bacteria”, such as lactobacilli and bifidobacteria [49,50]. Oral
administration of these bacteria reduces the disease symptoms both in the animal models
of colitis and patients with IBDs [51–53]. On the other hand, sulfate-reducing bacteria
have been detected more frequently in the patients with IBDs, compared to healthy peo-
ple [54]. The involvement of sulfate-reducing bacteria in intestinal inflammation remains
unclear, but it seems that the hydrogen sulfide produced by these bacteria induces mucosal
damage [55]. To understand the precise roles of LP powder in the regulation of intesti-
nal inflammation and barrier, the intestinal microflora in mice fed LP powder should be
analyzed in future studies.

Although we hypothesized that dietary fiber has an important role in whole LP
powder-mediated reduction of colitis, other bioactive components, such as polyphenols,
also marginally contributed. This was because the restoration of TJ proteins, such as ZO-1
and occludin by the MetOH residue, was not as effective as that by whole LP powder,
even though both the diets included the same levels of dietary fibers. In addition, feeding
mice MetOH extract partly, but significantly, reduced DSS-induced Cxcl2 expression in
colonic tissues. Previous studies showed that oral administration of hesperidin (10–40
mg/kg bodyweight) and eriocitrin (20 mg/kg bodyweight) reduces disease symptoms in
DSS-induced colitic mice [56,57]. The doses of hesperidin and eriocitrin achieved through
feeding mice whole LP powder and MetOH extract were approximately equivalent to 17
and 7 mg/kg bodyweight, respectively, under the feeding conditions of this study. At
least, hesperidin in whole LP powder and MetOH extract could be expected to exhibit
ameliorative effects on colitic mice [57]. The reason for the weaker ameliorative effect of the
MetOH extract than that was expected might be due to minor differences in experimental
conditions. Previously, hesperidin was administered to C57BL/6 mice by oral gavage [57],
whereas, in this study, whole LP powder was mixed in the diet and provided to Balb/c mice.

Our results suggest that SCFAs target the TJ barrier and inflammatory reaction in the
colonic epithelium and mediate the protective effect of whole LP powder in colitic mice;
however, additional mechanisms may also exist. N-butyrate promotes the expansion of
regulatory T cells, which suppress an inflammatory reaction [58]. Acetate also induces
the intestinal production of immunoglobulin A, which protects intestinal tissue from
inflammation [59]. Possible involvement of these mechanisms should be investigated in
further studies.

5. Conclusions

This study examined the ameliorative effects of LP powder on intestinal inflammation
and barrier defects, and the bioactive components responsible for the effect were examined
in DSS-induced colitic mice. Results showed that the supplemental feeding of LP powder
reduced the intestinal inflammation and damage in colitic mice. Although the LP powder
is rich in both polyphenols and dietary fibers, the dietary fibers in LP powder largely
contributed to reducing colitis. Although the underlying mechanisms were not fully
understood, our results suggest that SCFAs produced from colonic fermentation of dietary
fibers in LP powder protected the colonic TJ barrier and suppressed an inflammatory
response. Further studies will investigate the possible application of LP powder to treat
intestinal damage and inflammation.
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