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ABSTRACT Laboratory models are a cornerstone of modern microbiology, but the
accuracy of these models has not been systematically evaluated. As a result, re-
searchers often choose models based on intuition or incomplete data. We propose a
general quantitative framework to assess model accuracy from RNA sequencing data
and use this framework to evaluate models of Pseudomonas aeruginosa cystic fibro-
sis (CF) lung infection. We found that an in vitro synthetic CF sputum medium
model and a CF airway epithelial cell model had the highest genome-wide accuracy
but underperformed on distinct functional categories, including porins and poly-
amine biosynthesis for the synthetic sputum medium and protein synthesis for the
epithelial cell model. We identified 211 “elusive” genes that were not mimicked in a
reference strain grown in any laboratory model but found that many were captured
by using a clinical isolate. These methods provide researchers with an evidence-
based foundation to select and improve laboratory models.

IMPORTANCE Laboratory models have become a cornerstone of modern microbiol-
ogy. However, the accuracy of even the most commonly used models has never
been evaluated. Here, we propose a quantitative framework based on gene expres-
sion data to evaluate model performance and apply it to models of Pseudomonas
aeruginosa cystic fibrosis lung infection. We discovered that these models captured
different aspects of P. aeruginosa infection physiology, and we identify which func-
tional categories are and are not captured by each model. These methods will pro-
vide researchers with a solid basis to choose among laboratory models depending
on the scientific question of interest and will help improve existing experimental
models.

KEYWORDS Pseudomonas aeruginosa, model, transcriptomics, cystic fibrosis,
infection

For over a century, microbiologists have relied on laboratory models to study
pathogenic bacteria (1, 2). Due to obvious ethical prohibitions on human experi-

mentation, laboratory infection models have become a cornerstone in bacterial patho-
gen research. These models range in complexity from standard laboratory media, to in
vitro models specifically designed to mimic infection, to the most complex class of
models, animal hosts.

There are typically a range of laboratory models used to study any given infection
type. These model systems are selected based on a balance between each model’s
perceived strengths and limitations. For instance, in vitro models are often inexpensive
and highly controllable, whereas animal models are thought to capture important
aspects of human pathogenesis, such as host immunity and tissue structure, which can
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be difficult to reproduce in vitro (2). The accuracy of a laboratory model is likely shaped
by several factors, including the bacterial genotype used (3), the chemical and physical
environment the bacteria are exposed to (4), and even the mode of inoculation (5).
Although most researchers are aware of these considerations, there is no clear frame-
work for deciding which model best addresses a given research question. Until recently
there have been insufficient data on bacterial behavior and physiology in clinical
infections to effectively evaluate laboratory model performance, and beyond this
limitation, there has been no formalized framework to do so. The lack of a systematic
framework for model selection has left researchers to rely on intuition or ad hoc
rationalizations for selecting their model.

We address this issue by proposing a framework to evaluate the accuracy of human
infection models using RNA sequencing (RNA-seq) data. RNA-seq provides a snapshot
of pathogen gene expression, giving a rare glimpse of bacterial behavior and physiol-
ogy in a natural, unmanipulated human infection environment. The present study was
motivated by a desire to evaluate the accuracy of models used to study Pseudomonas
aeruginosa infection of the lungs of cystic fibrosis (CF) patients. CF is a recessive genetic
disease caused by mutations in the gene encoding the cystic fibrosis transmembrane
conductance regulator (CFTR), an ion channel that conducts chloride and bicarbonate
across epithelial cell membranes. Mutations in CFTR result in accumulation of viscous
mucus (sputum) in an individual’s lungs, which is subsequently colonized by P. aerugi-
nosa and other bacteria (6, 7). After colonization, P. aeruginosa can use lung sputum as
a carbon and energy source (8–10), allowing it to grow to high densities and persist
throughout a patient’s life.

One of the challenges to studying CF infection biology has been the lack of robust
in vivo and in vitro model systems. Numerous murine models have been developed to
study P. aeruginosa lung infection, many of which use mice with wild-type CFTR
(11–16). Models using mice with mutant CFTR have also been developed (17), although
these models generally show high-level resistance to P. aeruginosa infection, which is
likely due to specific aspects of mouse lung physiology (18). Several in vitro models
have also been developed, including one in which P. aeruginosa is inoculated on the
apical surface of CFTR mutant human airway epithelial cells that have been differen-
tiated at the air-liquid interface (19). While clearly a simplified model compared to the
mouse, this model has been used to study coinfection (20) and has the advantage of
studying the host-pathogen interaction while maintaining experimental versatility.
Other in vitro model systems do not include host cells but are instead meant to mimic
the chemical and physical aspects of expectorated CF sputum. These models include a
defined synthetic CF sputum medium (SCFM2) that both mimics the chemistry and
viscosity of CF sputum (9, 10, 21, 22). P. aeruginosa grown in synthetic sputum has a
similar gene expression signature to P. aeruginosa grown in human CF sputum in vitro
(22), and P. aeruginosa requires similar genes to grow in SCFM2 as it does in expecto-
rated human CF sputum (23).

Though the relevance of the models outlined above has been rationalized for the
study of CF infection, it is likely that these models do not capture all aspects of P.
aeruginosa physiology in the CF lung. To further explore this possibility, we analyzed P.
aeruginosa transcriptomes from human CF sputum samples taken immediately follow-
ing expectoration from two CF clinics, one in Copenhagen, Denmark, and one in
Atlanta, GA. We propose a computational framework that uses these transcriptomic
data, along with transcriptomic data from CF infection models, to assess the overall
model accuracy for reproducing P. aeruginosa CF lung physiology. In addition to
assessing overall accuracy, we used gene expression to infer P. aeruginosa biological
functions that are and are not reproduced in each model. Our results revealed that
SCFM2 and an in vitro CF epithelial cell model mimicked the P. aeruginosa transcrip-
tome in expectorated human sputum better than other models tested, including a
mouse lung infection model currently used to study CF lung infections. Although the
models differed in overall accuracy, we found that each model reproduces particular P.
aeruginosa functions present in CF lung infections and, further, that some functions

Cornforth et al. ®

January/February 2020 Volume 11 Issue 1 e03042-19 mbio.asm.org 2

https://mbio.asm.org


were not reproduced by any models we tested. The framework we propose is a step
toward a grounded, evidence-based approach for selection of an infection model based
on the function(s) of interest and for identifying strategies for model improvement.

RESULTS
Acquisition and mapping of P. aeruginosa RNA-seq reads from expectorated

human CF sputum. We analyzed P. aeruginosa transcriptomes from 20 CF sputum
samples collected from 19 clinically stable patients. Samples were stored in RNAlater
(Invitrogen) immediately after expectoration until RNA extraction. Seven of these
samples were collected from a Danish clinic and analyzed previously (24), and 13
samples were collected from the Center for Cystic Fibrosis and Airway Disease Research
in Atlanta, GA, and are being analyzed for the first time here. Because CF lung infections
are often polymicrobial, after trimming adapters, we mapped all RNA-seq reads to 54
bacterial species that we previously identified as present among CF sputum samples
using CLARK (24) (see Data Set S1 in the supplemental material). We initially mapped
against one or more genomes from each of these non-P. aeruginosa species (totaling
101 genomes). We ignored reads that mapped to these non-P. aeruginosa species in
order to avoid attributing differences in transcript frequencies to P. aeruginosa when
another bacterium was potentially responsible. This approach was conservative be-
cause P. aeruginosa-mapping reads that closely resembled sequences of other species
were discarded, but it gives us confidence that the differences we observed were
caused by differences in P. aeruginosa RNA levels. We mapped all remaining reads to
genes of the well-annotated P. aeruginosa reference strain PAO1. All samples used in
our analyses had reads mapping to at least 4,000 of PAO1’s 5,570 genes (Data Set S1).
We similarly analyzed 67 published transcriptomes of P. aeruginosa grown in a range of
laboratory models, including lysogeny broth (LB), MOPS (morpholinepropanesulfonic
acid)-succinate (4), SCFM2 (23), a mouse lung infection model (13), and an in vitro CFTR
ΔF508 CFBE41o– mutant polarized epithelial cell model (19, 20) (see Data Set S1 for a
description of all analyzed samples).

P. aeruginosa transcriptome from expectorated human CF sputum is distinct
from that from laboratory models. To assess overall relationships among the P.
aeruginosa transcriptomes from expectorated CF sputum and model systems, we first
performed principal-component analysis (PCA) (Fig. 1). We restricted this initial analysis
to 2,606 genes for which all transcriptomes had at least one read mapping to avoid
biasing results due to the presence or absence of certain genes across strains. The PCA
results in Fig. 1 show a clear separation between human P. aeruginosa CF sputum
transcriptomes and those of laboratory models (see Fig. S1 for a scree plot showing the
total variance in the data explained by each principal component). The separation

FIG 1 P. aeruginosa transcriptomes from human CF sputum cluster distinctly from in vitro and mouse
acute lung transcriptomes using principal-component analysis. The analysis is based on 2,606 genes that
had at least one read mapping to them in all samples (see Data Set S2 for this shared gene list). For
clarity, in all laboratory conditions, only one replicate from each experiment is shown, which is identified
in Data Set S1 in the supplemental material.
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between human and in vitro transcriptomes occurs primarily along the first principal
component, which accounts for approximately 32% of the overall variance in the
transcriptomes. Genes contributing most to the differences in the first principal com-
ponent included several genes with higher expression in the CF sputum transcriptomes
than in in vitro ones, such as llda (L-lactate dehydrogenase), genes involved in alginate
production (algA and alg8), and a heme uptake receptor (phuR). In addition, genes with
higher expression in vitro also contributed significantly to the first principal component
included an aerotaxis methyl-accepting chemotaxis protein (aer2), elastase (lasB), and
a gene encoding a quinolone signal response protein (pqsE).

While sputum samples from the United States and Denmark clinics were shown to
be similar in Fig. 1, a PCA conducted only among the sputum samples demonstrates a
separation between transcriptomes from the two clinics (see Fig. S2 in the supplemen-
tal material). Consistent with this separation, differential expression analysis indicates
several differences in P. aeruginosa gene expression between the two clinic populations
(see Data Set S2 in the supplemental material). The genes with the largest expression
differences between clinics had no reads mapping for many samples, such as the
AraC-like transcriptional regulator vqsM that had no reads mapping to it in any sputum
transcriptomes except for three samples from the U.S. clinic. Because it is difficult to
determine whether these differences were caused by strain differences in gene content
rather than differences in regulation, we restricted the differential expression analysis
to the 3,225 genes that had at least one read mapping to them in all CF sputum
transcriptomes. The most differentially expressed genes with this approach were often
not consistently different between the clinics. For instance, the gene most differentially
expressed between the two clinics was the autoinducer synthase lasI (expressed at
�26-fold-higher levels in the Denmark samples, P � 9.5 � 10�5), which encodes a
protein that produces a quorum sensing signal in P. aeruginosa. However, the magni-
tude of this effect is primarily due to relatively high expression in just two of the seven
Denmark samples. Other highly differentially expressed genes include dctA (C4-
dicarboxylate transport protein, higher in the Denmark sputum samples), lptG (lipo-
polysaccharide export system permease protein LptG, higher in the Denmark sputum
samples) and flgI (flagella P-ring protein precursor, higher in the U.S. sputum samples).
We also found that the beta-lactamase precursor ampC was expressed at 6.7-fold-
higher levels among the Denmark samples.

P. aeruginosa metabolism in CF sputum. One of our major interests is microbial

metabolism during infection, and the 20 CF sputum transcriptomes provided an
opportunity to examine P. aeruginosa metabolism in the CF lung. To accomplish this,
we compared the CF sputum transcriptomes to a well-characterized laboratory envi-
ronment in which cellular metabolism is well understood. Specifically, we compared the
sputum transcriptomes to transcriptomes of the reference strain PAO1 grown plank-
tonically with vigorous shaking to mid-logarithmic phase in a well-defined MOPS-
buffered medium with succinate as a sole carbon source (4). The sputum samples
showed several indications of lower oxygen levels compared to growth in MOPS-
succinate, including higher expression of denitrification operons nor, nir, nar, nos, and
nap. In addition the sputum transcriptomes displayed relatively high expression of
genes encoding the high-affinity cyanide insensitive terminal oxidase (cioAB). However,
genes encoding the low-affinity cytochrome o ubiquinol oxidase (cyoABCDE), which is
not critical for growth in low oxygen concentrations (�2%), were also highly upregu-
lated in sputum. Decreased expression of genes encoding enzymes for several decar-
boxylation steps of the tricarboxylic acid cycle (via sucA, sucC, and lpd), together with
increases in aceA and glcB expression, suggest an increased flux in carbon through the
glyoxylate shunt among sputum samples. Also, consistent with previous work, we
observed higher expression of lldA in sputum samples, which is involved in L-lactate
catabolism, as well as greater expression of zinc uptake and transport genes (znuB,
znuC, and zur) (24).
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To identify additional differences in metabolic activity between the MOPS-succinate
and sputum transcriptomes, we performed gene set enrichment analysis (GSEA) with
Pseudocyc gene annotations (25) (see Materials and Methods for details). Compared to
those of the MOPS-succinate samples, the sputum sample transcriptomes showed
enrichment of genes with lower expression in sputum among pathways involved in the
synthesis of several amino acids and intermediate products including threonine (P �

3.5 � 10�3), homoserine (P � 2.9 � 10�3), leucine (P � 1.7 � 10�2), isoleucine (P �

1.9 � 10�2), histidine (P � 7.0 � 10�3), and glutamate (P � 2.9 � 10�3). We also
performed an enrichment analysis using TIGRFAM “function” categories and discovered
that genes encoding TonB dependent receptors were enriched for greater expression
in the sputum, including siderophore receptors (P � 1.2 � 10�3) (consistent with an
increased expression of genes involved in synthesis and regulation of the siderophores
pyoverdine and pyochelin), as well as heme/hemoglobin/transferrin/lactoferrin recep-
tors (P � 4.2 � 10�3).

In addition to differences in metabolic activity between the sputum samples and
MOPS-succinate samples, the DNA-damage stress response regulator lexA and genes
encoding reactive oxygen species-scavenging enzymes (ahpB, ahpC, ahpF, katB, sodM,
and ohr) were expressed at substantially higher levels in the sputum samples. Consis-
tent with previous work (3), genes for choline and L-carnitine degradation to the
osmoprotectant glycine betaine (opuCD, betA, betB, and cdhC) were highly expressed in
sputum, as well as the transcriptional repressor betI, but gbt, which is required to use
choline and glycine betaine as a carbon source, was expressed less in sputum than in
MOPS-succinate. This result may indicate that glycine betaine is primarily used as an
osmoprotectant rather than for carbon and nitrogen acquisition (3).

Framework to evaluate infection models. While differential expression analysis
was useful in understanding basic differences in gene expression between CF sputum
and specific laboratory conditions such as MOPS-succinate, our goal was to develop an
explicit framework to evaluate how well different aspects of any experimental model
system mimic the “target” system (P. aeruginosa in human CF sputum in this case). An
ideal evaluation framework should have the following characteristics: (i) it should
provide a simple biological interpretation that allows for a straightforward comparison
of models, (ii) it should be able to determine both the genome-wide accuracy of the
experimental model and the model’s accuracy for any functional category of interest,
and (iii) it should not be inherently dependent on the number of available samples (as
with differential expression analysis, where additional samples lead to increased sta-
tistical power and thus more genes being called as differentially expressed).

We propose a framework based on the number of standard deviations in normalized
expression for each gene the model is from the mean expression among target
transcriptomes. In the first step, we calculate the mean and standard deviation of
normalized read counts for each gene among target transcriptomes. Then, for each
model system, we average the expression levels of each gene among the replicates and
calculate a z-score, which is the number of standard deviations in expression that the
model is above the mean observed among the target transcriptomes. We use the
absolute value of each gene’s z-score as an indication of how similarly the gene is
expressed between the model and target. From this perspective, one can ask for any
model system, what fraction of a study organism’s genes are within two standard
deviations (for example) of the mean expression in the target transcriptomes or,
similarly, one can ask how many standard deviations from the target transcriptome
mean are required in order to include 95% (for example) of the organism’s genes. These
perspectives are complementary; however, in practice we find the former to be more
intuitive and here define an “accuracy score” based on it. A model’s accuracy score (AS)
is the fraction of the organism’s genes that are within a specified number of standard
deviations from the target. For example, if a model has an AS2 of 80%, then the
expression of 80% of the model’s genes fall within two standard deviations of the
means of the gene among the target transcriptomes. An AS2 of 90% would indicate a
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more accurate model because 90% of the model’s genes are expressed at levels within
two standard deviations of the target’s means.

We first used this framework to provide a genome-wide evaluation of the accuracy
of P. aeruginosa strain PAO1 grown planktonically in MOPS-succinate as a model for CF
lung infection. Again, we began with MOPS-succinate since it provides a well-defined
growth condition for our initial comparisons. Figure 2A shows the percentage of genes
whose average normalized expression among replicates is within each standard devi-
ation cutoff of interest. The AS2 of PAO1 in MOPS-succinate is approximately 82%
(meaning 82% of the PAO1 genome has expression in MOPS-succinate that is within
two standard deviations of the expression in the sputum samples). As a control, we also
calculated the performance of resampled human CF sputum P. aeruginosa transcrip-
tomes by randomly choosing pairs of the 20 CF sputum transcriptomes, averaging the
normalized expression for each gene and then calculating the standard deviations from
the mean expression in these genes calculated using all clinical sputum samples except
the chosen two being treated as the “model.” We repeated this process 100 times to
obtain a mean value and a 95% confidence interval (Fig. 2A). The average AS2 for these
resampled human CF sputum transcriptomes was 97%, indicating that randomly
chosen human CF sputum transcriptomes performed significantly better than the
MOPS-succinate transcriptomes (P � 1.6 � 10�5 [t test]).

This approach can be applied to any functional category, pathway, or individual
gene of interest. To obtain functional resolution of the accuracy assessment, we used
the TIGRFAM functional gene annotation database, wherein annotated genes are
assigned to have at least one “main role,” “sub role,” and “function,” forming a hierarchy
of increasing specificity. We first focused on the accuracy of metabolic genes in PAO1
growing in MOPS-succinate (Fig. 2B). This analysis demonstrates that MOPS-succinate
mimics P. aeruginosa gene expression in sputum for some metabolic functions such as
“biosynthesis of cofactors, prosthetic groups, and carriers,” with an AS2 of approxi-
mately 89%, whereas others such as amino acid biosynthesis (AS2 � 71%) are poorly
mimicked. The latter aligns well with our differential expression and enrichment
analysis above, which indicated that several amino acid biosynthetic pathways were
differentially regulated between CF sputum and MOPS-succinate.

We then took a more expansive view, calculating the model performance for the
genes within every TIGRFAM category (Fig. 2C). We added an additional, overarching
level to the standard TIGRFAM hierarchy called “meta roles,” as previously described
(26). By calculating these values for different levels of the TIGRFAM hierarchy, we could
determine whether categories were influenced by a minority of subcategories or
whether genes across these categories scored similarly. For instance, we identified
amino acid biosynthesis as a poor performing category (AS2 � 71%), and Fig. 2C shows
that the sub roles “pyruvate family” (AS2 � 55%) and “histidine family” (AS2 � 50%)
reduce the overall “amino acid biosynthesis” score substantially, whereas the “aromatic
amino acid family” performs better (AS2 � 80%). Similarly, though the “protein syn-
thesis” category scores poorly overall (AS2 � 58%), this poor performance is predom-
inantly restricted to genes involved in the synthesis and modification of ribosomal
proteins.

Accuracy of several models used to study P. aeruginosa lung infection. We then
applied this framework to several additional experimental models: lysogeny broth (LB),
a mouse pneumonia model (13), synthetic sputum medium (SCFM2) (4), and the in vitro
CFTR ΔF508 CFBE41o– mutant polarized airway epithelial cell model (27). In order to
reduce the impact of strain differences on the results and assess how well a common
laboratory strain captures P. aeruginosa physiology in the CF lung, we only compared
data from laboratory systems inoculated with the reference strain PAO1. It has previ-
ously been shown that PAO1 strains can differ both genotypically and phenotypically
(28, 29); although the MOPS-succinate (4), SCFM2, airway epithelial cell model, and LB
(30) experiments used PAO1-UW (31, 32), the mouse experiments used a PAO1 strain
from the Vasil lab (13). Replicates for all models clustered closely according to the
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z-score across the P. aeruginosa genome, indicating that these models have high
reproducibility (Fig. S3).

We began by comparing the genome-wide accuracy for all five experimental models
(Fig. 3). The two models that were explicitly designed to mimic CF lung infection,
SCFM2 and the CF airway epithelial cell model, had the highest raw AS2 values (86 and

FIG 2 Genome-wide accuracy metric for strain PAO1 grown planktonically in MOPS-succinate. (A)
Percentages of PAO1 genes (x axis) within different numbers of standard deviations of the mean
expression in human CF sputum (y axis). For each gene, the mean and standard deviation of normalized
read counts among the sputum samples were calculated. The mean expression for each gene in
MOPS-succinate was then determined, and a z-score (the number of standard deviations each gene is
from the mean expression in CF sputum) was calculated. For reference, we performed the same
procedure on 100 randomly resampled pairs of human CF sputum samples to provide a robust
assessment of the variance in these samples (sputum resampled). The mean and 95% confidence interval
for each of these resampled values for each gene are shown. Any genes with values over 10 standard
deviations from the sputum mean are not shown. (B) An accuracy metric was calculated for PAO1 grown
in MOPS-succinate for all TIGRFAM “metabolism” meta roles. (C) AS2 for each TIGRFAM meta role, main
role, and sub role category for PAO1 grown in MOPS-succinate. The color in the middle represents the
AS2 for all PAO1 genes (those with or without TIGRFAM designations). The next level out from the middle
of the circle contains “meta roles,” the next contains “main roles,” and the outermost layer contains “sub
roles.” The area of each category is proportional to the number of genes in that category.
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84%, respectively) (Fig. 3B). These models were followed by MOPS-succinate (82%),
then the mouse pneumonia model (81%), and finally LB (80%) (Fig. 3B). However, only
SCFM2 showed statistically significant improvement over other models: LB (P � 0.015),
the mouse pneumonia model (P � 0.018), and MOPS-succinate (P � 0.073) (pairwise t
test using a Bonferroni adjustment for multiple tests). All models performed worse than
the resampled human CF sputum (Fig. 3A), indicating that there is still room for
improvement for every model. The z-scores for all genes across all models tested is
available in Data Set S2.

Because SCFM2 was specifically designed to mimic the metabolism of P. aeruginosa
growth in CF sputum, we focused on the accuracy of metabolic genes in PAO1 growing
in SCFM2 (Fig. 4A). We also evaluated the other explicit CF model, the CF airway
epithelial cell model, wherein the bacteria acquire nutrients partially from the airway
epithelial cells (Fig. 4B). The metabolic categories that SCFM2 captured best were
“purines, pyrimidines, nucleosides, and nucleotides,” which the CF airway epithelial cell
model captures considerably worse. On the other hand, SCFM2 performed worst at
mimicking fatty acid and phospholipid metabolism, a category for which the CF airway
epithelial cell model performed markedly better. As before, we then expanded our view
to all TIGRFAM categories by calculating the AS2 of genes within every TIGRFAM
category (Fig. 4C and D). Though SCFM2 captures “transport and binding proteins”
well overall (AS2 � 82%), some subcategories, such as “porins” are poorly mimicked
(AS2 � 62%) (Fig. 4C). Porins were captured better in the CF airway epithelial cell
model (AS2 � 70%), but genes involved in “synthesis and modification of ribosomal

FIG 3 Genome-wide accuracy metric for PAO1 grown in five model systems. The model systems include an acute
mouse pneumonia model, planktonic growth in MOPS-succinate, SCFM2 with no shaking, planktonic growth in LB,
and growth in a CF airway epithelial cell model. (A) Percentage of PAO1 genes (x axis) within different numbers of
standard deviations of the mean expression in human CF sputum (y axis) for each model, calculated as described
in Fig. 2A. For reference, we performed the same procedure on 100 randomly resampled pairs of human CF sputum
samples to provide a robust assessment of the variance in these samples (sputum resampled). The mean and 95%
confidence interval of these resampled values for each gene is shown. Any genes with values over 12 standard
deviations from the sputum mean are not shown. (B) Table containing the accuracy scores (AS2) and number P.
aeruginosa genes in each model not within two standard deviations of the mean in CF sputum (genes missed). The
genes are divided into “all genes,” “known,” and “unknown.” “Unknown” refers to genes that have a TIGRFAM “main
role” with either no category designation, have a “main role” annotated as “unknown function,” or are not
annotated in the TIGRFAM database. We calculated pairwise t tests between sample types using genome-wide AS2

scores for individual replicates in each sample type, with a Bonferroni adjustment for multiple tests. The most
significant comparisons between model types were for SCFM2 compared to LB (P � 0.015), the mouse pneumonia
model (P � 0.018), and MOPS-succinate (P � 0.073). All other model pairs had adjusted P values of �0.2.
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proteins” performed worse than in SCFM2 (AS2 of 58% versus 83%). To ensure that our
analysis was not biased by sequencing depth, we repeated the basic analysis with all
samples resampled down to 100,000 reads, which did not qualitatively affect our results
(Fig. S4).

Improvements in accuracy by combining models. Figure 3 shows that, as ex-
pected, no tested model perfectly mimics the gene expression of P. aeruginosa CF
sputum infections. An obvious question is whether each model misses the same genes,
or whether each model has different limitations. This is a critical question since it will
determine whether a CF infection researcher can study nearly any gene of interest by
selecting the appropriate PAO1 model. To answer this question, we assessed the
number of genes in each model not within two standard deviations of the mean in CF
sputum, individually and in each possible combination (Fig. 5). In combination, the
SCFM2 and acute mouse model outperforms all other pairs of models; only 358 genes
are not mimicked by either the SCFM2 or the acute mouse model (compared to LB and
the acute mouse model for instance which failed to capture 692 genes). There were 211
genes that were missed by every model we studied. These “elusive genes” include
several genes whose expression is known to change via mutation that are common in
P. aeruginosa lung-adapted strains, including genes involved in alginate production,
pilus biosynthesis, and multidrug efflux.

Since it is unsurprising that some of these genes are poorly captured by the strain
PAO1 which lacks these common CF lung mutations, we next tested whether a CF

FIG 4 Accuracy metric for TIGRFAM subcategories for P. aeruginosa PAO1 in SCFM2 and the CF airway epithelial cell infection model. (A
and B) Percentages of P. aeruginosa PAO1 genes within each TIGRFAM metabolism “sub role” whose mean expression in SCFM2 (A) and
CF airway epithelial cell infection model (B) transcriptomes fall within different numbers of standard deviations of the mean expression
in sputum samples (absolute value of z-score, calculated as described in Fig. 2A). (C and D) AS2 for each TIGRFAM meta role, main role,
and sub role category for SCFM2 (C) and the CF airway epithelial cell infection model (D). The color in the middle represents the AS2 for
all PAO1 genes (those with or without TIGRFAM designations). The next level out from the middle of the circle contains “meta roles,” the
next contains “main roles,” and the outermost layer contains “sub roles.” The area of each category is proportional to the number of genes
in that category.
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clinical strain, LESB58-SED21, which is well adapted to the CF lung, would perform
better than PAO1 when grown in SCFM2. Interestingly, expression of 51 of the elusive
211 genes, including genes involved in the processes mentioned above (alginate
production, pilus biosynthesis, and multidrug efflux), was within two standard devia-
tions from sputum transcriptome means when LESB58-SED21 was grown in SCFM2
(Data Set S2). Further, the LESB58-SED21-in-SCFM2 model captured more genes than all
models evaluated in Fig. 3 (AS2 � 89%, missing 579 genes shared with PAO1 [Data Set
S2]). This result indicates that a CF clinical strain mimics certain features of P. aeruginosa
CF lung infection better than PAO1, although it should be noted that PAO1 grown in
model systems mimics the CF sputum gene expression of the majority of P. aeruginosa
genes.

Technical considerations of the framework. A few details of our model evaluation
framework are worth further exploration. First, we have normalized the read counts
with the “variance stabilizing transformation” (VST) that is implemented in DESeq2, but
other normalization methods are commonly used. We repeated the analysis with two
other common normalizations, the “regularized log” (rlog) transformation also imple-
mented in DESEq2, as well as the “trimmed mean of M values” (TMM) method as
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implemented in edgeR (33) (Fig. S5). The results were similar in all approaches;
however, the standard deviations of sputum sample gene expression were greater
using the TMM method, and though the qualitative results were similar (e.g., the SCFM2
and the CF airway epithelial cell model performed best), there was also a greater
separation between the accuracy of sample types. We repeated the same process for
metabolic subcategories of the MOPS-succinate model shown in Fig. 2B. Again, the
qualitative results were similar for the three normalizations: “amino acid biosynthesis”
performed poorly, and “biosynthesis of cofactors, prosthetic groups, and carriers”
performed well (Fig. S5). As before, there was a greater spread among categories with
the TMM normalization than with the two DESeq2 normalizations. Thus, while the
normalization method influences model accuracy scores, the qualitative outcomes
were very similar.

A second interesting consideration is whether genes that fell within a chosen
standard deviation threshold actually had similar expression between the model and
the sputum samples or whether they fell within this margin due to high variance
among the sputum samples. To address this issue, we reanalyzed the data, restricting
analysis to genes with low noise (with a low coefficient of variation, or the standard
deviation divided by the mean, among the sputum samples). We found a small but
statistically significant negative correlation between the coefficient of variation of
expression for all genes among the clinical samples and number of standard deviations
they are from the mean (r � �0.05, P � 2.2 � 10�4). Consistent with this finding,
restricting the assessment to genes with low noise did decrease the genome-wide
accuracy scores across the models, but it had a negligible effect on the relative accuracy
scores of models compared to each other (Fig. S6). This result is likely because genes
with noisy expression among the sputum samples increase the accuracy scores similarly
for all models.

DISCUSSION

Despite microbiology’s heavy reliance on laboratory models, their accuracy has not
been systematically evaluated. As a result, models are typically selected based on a
researcher’s intuition, a laboratory’s expertise, or on limited experimental evidence,
rather than on a solid biological rationale. Taking advantage of recent innovations in
RNA-seq and sample preparation procedures that enable sequencing of human CF lung
infection samples (24), we have begun to address this gap by focusing on a set of
models used to study P. aeruginosa CF lung infections. By comparing 20 P. aeruginosa
transcriptomes from human CF sputum, collected from clinics in the United States and
Denmark and preserved immediately after expectoration, to several transcriptomes
from commonly used laboratory models, we found that all models differed from the CF
infections in important ways (Fig. 1). We propose a framework based on the deviation
in expression among P. aeruginosa genes between model systems and human CF
infection to provide an easily interpretable gauge of model performance (Fig. 2).
Different models excelled at mimicking distinct biological functions in CF sputum
(Fig. 3), and thus by combining the models we were able to accurately represent the
expression of over 96% of P. aeruginosa PAO1 genes (Fig. 4). However, there were 211
genes that could not be captured by laboratory models using PAO1, but many of these
genes could be captured when using a clinical strain.

Our initial survey of laboratory CF models already provides several useful insights.
Surprisingly, gene expression in all models, even those such as LB that were not
specifically designed to mimic P. aeruginosa CF infection, were similar overall to that in
the CF lung. Indeed, over 80% of genes expressed in all models were within two
standard deviations of the mean in CF sputum (Fig. 3B). These data support the notion
that growing the lab strain PAO1 planktonically in LB is a viable model system for
studying many aspects of CF lung infection and that many P. aeruginosa genes do not
vary significantly in expression regardless of the genotype and growth environment.
Also, somewhat surprisingly, the murine model performed no better than the in vitro
models we tested. Murine infection models have become the gold standard for
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laboratory models because they are thought to approximate the chemical and physical
environment of human infections, especially in terms of the host immune response
(34). However, overall P. aeruginosa CF physiology is better captured by SCFM2 than by
the murine lung infection model we tested (Fig. 3). Although it is clear that SCFM2
performs better overall than the mouse model by our accuracy score approach (Fig. 3B),
there are functional categories for which the mouse model outperforms SCFM2; for
instance, “porins” are more accurately represented in the mouse model than in SCFM2.
Thus, while assessing overall accuracy scores is important, it is critical to also assess
functional categories, pathways, and genes since it is likely that even the best overall
models will not be superior in all cases. It is also important to point out that the mouse
pneumonia model we evaluated here may be more accurate for non-CF pulmonary
infections because it is an acute, rather than chronic, infection model. This acute murine
model, when combined with the SCFM2 model, had expression within two standard
deviations of the clinical sample means for all but 358 P. aeruginosa PAO1 genes (Fig. 5),
better than any other model pairing.

Our work also identified 211 genes that were not expressed similarly to CF sputum
when P. aeruginosa PAO1 was grown in any of the tested models. The expression of
many of these “elusive genes” is known to change due to mutations accumulated
during chronic lung infection, including genes involved in twitching motility, alginate
production, and multidrug efflux. The fact that 51 of the 211 “elusive” genes (including
most genes in these categories) were captured using the CF clinical isolate LESB58-
SED21 grown in SCFM2 indicates that laboratory CF models may be improved for
specific functional categories merely by using clinical strains rather than standard
reference strains. It should be pointed out that LESB58-SED21 is a Liverpool epidemic
strain from the United Kingdom (35) and was not an infecting strain in the CF sputum
samples used in this study. Thus, it is not necessary to use a strain collected from the
same clinic as the sputum samples in order to mimic CF lung-adapted gene expression
profiles. Finally, while it is clear that using a clinical strain can be advantageous for
studying specific functions such as mucoidy, this again does not seem critical for many
aspects of P. aeruginosa physiology since the LESB58-SED21 strain in SCFM2 did only
somewhat better than PAO1 in SCFM2 (missing 579 versus 681 genes shared by the two
strains, P � 0.05 [t test]).

Our framework also provides strategies in addition to using CF-adapted strains for
improving model systems. For example, SCFM2 performed poorly in the “polyamine
biosynthesis” sub role, with some of the genes involved in biosynthesis of the poly-
amine spermidine expressed higher in SCFM2 than in CF sputum (speD and speE). Since
SCFM2 does not contain spermidine, one can hypothesize that the addition of sper-
midine to SCFM2 would result in reduced expression of genes in the “polyamine
biosynthesis” sub role, thus yielding a more accurate model. While this approach may
currently be most useful for genes that respond to known regulatory cues, such as
genes encoding well-understood biosynthetic and catabolic processes, we anticipate it
will be useful for genes of unknown function as additional transcriptomic data become
available to inform approaches such as gene interaction networks and functional
annotations.

Of course, as we and others have proposed (36–38), interactions between microbes
may also be an important modulator of P. aeruginosa gene expression in the CF lung.
Although there is no definitive evidence of microbial interactions in the human CF lung,
our approach will also be useful to determine whether the presence of commonly
cooccurring microbes can improve the accuracy of P. aeruginosa model systems. In
particular, we hypothesize that the addition of other microbes to our models will allow
many of the elusive genes to be better mimicked, ultimately providing evidence for
interactions in the CF lung. Finally, the addition of human cells such as neutrophils to
the in vitro model systems may provide a step forward in defining the signals and cues
that drive P. aeruginosa gene expression in the CF lung.

As more transcriptomes become available for each model, we will be able to assess
not only the mean accuracy score of any set of genes but also the distribution of these
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scores, as sometimes the mean will miss interesting features of transcriptome variation.
For simplicity, we have used the z-score of normalized counts, which is based on the
normal distribution, but other distributions are also viable. For instance, the
t-distribution is typically used in place of a normal distribution when the number of
samples is small; however, we used z-scores because the number of available CF
sputum sample transcriptomes is quickly growing, and we also wanted to avoid the
accuracy score explicitly depending on the number of available transcriptomes. An-
other distribution commonly used in gene expression analysis is the negative binomial
(39), but we felt the normal distribution was more appropriate as an initial framework.
Also, we have focused on genes whose expression in the models fall within two
standard deviations (AS2) of the mean in the clinical population primarily out of
convention, since two standard deviations for each gene encompasses expression in
�95% of the CF sputum samples. However, there may be instances in which it is
valuable to be more stringent. For example, if a gene or function is mimicked by a large
number of model systems, one could further explore the models using more stringent
criteria such as AS1.5 (although this would have a false-negative rate of approximately
13%). Ultimately, the ease with which our framework can be adapted provides re-
searchers with the ability to rapidly and quantitatively compare multiple models for any
trait of interest. Lastly, we expect that other approaches, including proteomics, metabo-
lomics, or microscopy, will eventually be integrated into a comprehensive model
evaluation approach.

Conclusions, caveats, and future directions. We have proposed a simple compu-
tational framework that can be used to aid experimentalists in selecting laboratory
infection models. For example, if one were studying bacterial metabolism in relation to
CF infection, SCFM2 is a better model than the airway epithelial cell model (Fig. 4A and
B). However, if one were specifically studying fatty acid and phospholipid metabolism,
then the epithelial cell model may be a better choice. Similarly, our results suggest that
using clinical isolates may be the only way to accurately reproduce the gene expression
profiles for some genes.

We focused on CF lung infection models because of the availability of clinical
samples and developed models; however, we did not conduct an exhaustive charac-
terization of CF infection models. Such an evaluation would require systematically
sweeping a range of important experimental variables, including the strain or host
genotype, coinoculated microbial community, the physiology of the bacteria before
inoculation, and the time point after inoculation that the sample is taken. Any of these
factors may impact bacterial physiology and behavior, and we consider each separate
perturbation to be a different experimental model. For instance, here, we focused on
in vitro samples collected during mid-logarithmic growth, but LB medium samples
taken at 7 h versus 10 h may have distinct gene expression signatures, and so we
consider these different models. It is also important to note that different laboratories
may conduct in vitro experiments slightly differently even when using the “same”
experimental system and protocol. Further, differences in library prep processes can
potentially impact accuracy score calculations and comparisons between models. Some
library prep kits are stranded, and others are nonstranded; in the present study, we
compared models without using strand information because not all samples were
prepped with stranded RNA-seq library prep kits. Lastly, downstream analysis, including
the software and normalization method used, may also impact the accuracy score of a
system. All of these issues must be controlled for before definitive conclusions can be
reached about the superiority of one model over another for a particular biological
question.

Since Robert Koch’s first use of guinea pigs as a model for TB infection, microbiology has
relied on a range of laboratory models (40). However, there is no system to comprehen-
sively evaluate a model’s accuracy. The framework we propose here is a step toward a
general model evaluation framework that is applicable to any microbial model and will only
become more powerful as functions for unknown genes are discovered. Our approach can
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also easily be extended in the future to community-wide functionality in polymicrobial
communities, rather than simply the functions of its individual members.

MATERIALS AND METHODS
Data. SRA accessions for the raw reads from all analyzed sequencing files are provided in Data Set

S1 in the supplemental material. Data that have not been published have been uploaded under
accession number PRJNA576508. Expectorated CF sputum samples for this study were collected in
RNAlater from Emory–Children’s Center for Cystic Fibrosis and Airways Disease Research by the Cystic
Fibrosis Biospecimen Laboratory as previously described by our group (24) with IRB approval (Georgia
Tech approval H18220).

RNA extraction and preparation of sequencing libraries for RNA-seq. In vitro and human samples
were prepared as previously described (24) with a few modifications for the human samples. For the
human sputum samples, expectorated sputum was collected from adult patients that were clinically
stable and immediately added to RNAlater and stored at 4°C overnight and then at – 80°C. Samples in
RNAlater were thawed on ice and centrifuged at 4°C for 30 min at 10,000 � g. RNAlater was removed
from the sample, and the sputum was transferred to bead-beating tubes containing a mixture of large
and small beads (2-mm zirconia and 0.1-mm zirconia/silica, respectively). In vitro cultures stored in
RNAlater were pelleted, resuspended in 1 ml of RNA-Bee (AMS Biotechnology), and transferred to
bead-beating tubes. Samples were resuspended in RNase and DNase-free TE buffer (Acros Organics) and
lysozyme (1 mg/ml, final concentration) and lysostaphin (0.17 mg/ml, final concentration) were added to
each sample. Samples were incubated at 37°C for 30 min to enzymatically lyse cells. RNA-Bee was added
to each sample, and samples were lysed mechanically by bead beating three times for 30 s, placing the
tubes on ice for �1 min between each homogenization. Portions (200 �l) of chloroform per 1 ml of
RNA-bee were added, and the tubes were shaken vigorously for 30 s and then incubated on ice for 5 min
or overnight to allow phases to partition. The samples were centrifuged at 12,000 � g for 15 min at 4°C
to separate the aqueous and organic phases. The aqueous phase from each tube was transferred to a
new microcentrifuge tube to which 0.5 ml isopropanol per 1 ml of RNA-Bee was added in addition to
20 �g of linear acrylamide, and the tubes were incubated at – 80°C overnight. Samples were thawed on
ice and centrifuged at 12,000 � g for 30 min at 4°C. Pellets were washed with 1 ml of 75% ethanol, air
dried for 5 min, and resuspended in 100 �l of RNase-free water. The RNA concentration for each sample
was determined with a NanoDrop spectrophotometer (Thermo Fisher Scientific). rRNA was depleted
using a RiboZero Gold bacteria kit (Illumina) for the in vitro samples and a RiboZero Gold epidemiology
kit (Illumina) for the human samples and purified by ethanol precipitation using linear acrylamide to help
precipitate the RNA. The depleted RNA was fragmented for 2 min with the NEBNext Magnesium RNA
fragmentation module kit and cDNA libraries were prepared using the NEBNext multiplex small RNA
library prep kit (New England Biolabs) according to the manufacturer’s instructions. Libraries were
sequenced at the Molecular Evolution Core at the Georgia Institute of Technology on an Illumina
NextSeq500 using 75-bp single-end runs.

Bioinformatic analyses. RNA-seq reads were trimmed using Cutadapt 1.13 (51), using a minimum
read length threshold of 25 bases. The non-P. aeruginosa “decoy” species were identified from previous
work using CLARK 1.2.3 with an abundance cutoff 2% in at least one human sample (see Data Set S1 in
the supplemental material) (24, 41). We built a metagenome using these species by downloading at least
one genome from each of the 53 species identified, in addition to S. epidermidis, from the National Center
for Biotechnology Information as previously described (24). We expect that these non-P. aeruginosa reads
map to the similar decoy species better than to P. aeruginosa. For all samples, reads were mapped to this
metagenome using Bowtie 2.2.6 with the default parameters for end-to-end alignment (42). We removed
the reads that mapped to non-P. aeruginosa species from our trimmed reads files using Seqtk (43) and
mapped the remaining reads to PAO1 (NC_002516.2, NCBI Assembly: GCF_000006765.1, gff-spec-v1.21).
Reads were counted for using Rsubread 1.26.1 using default options and an SAF input file composed of
all genes without decimal points in their locus tags (44). Because not all models had data with strand
information available, comparisons were conducted without strand specificity; however, this did not
qualitatively impact results compared to strand-specific analysis for differential expression and enrich-
ment analyses. For the PCA in Fig. 1, we used a subset of 2,606 genes such that each had least one read
mapping to it for all the samples (Data Set S2). For PCA and calculation of model accuracy, DESeq2’s
variance stabilizing transformation function was used (v1.20.0) (39). Differential expression between the
Denmark and U.S. clinics (Data Set S2) was also determined using DESeq2. All figures were created using
ggplot2 (45). The R package fgsea was used for enrichment analysis using the stats score –log(P value) �
sign(log2FC) and nperm � 1,000 (46). The sunburst plots in Fig. 2 and 4 were generated using R package
ggsunburst (47). The UpSet plot in Fig. 5 was prepared by altering the UpSetR R package (48).

Mammalian cell culture. Immortalized homozygous CFTR ΔF508 CFBE41o– human bronchial epi-
thelial cells (obtained from J. P. Clancy, Cincinnati Children’s Hospital) were maintained in a humidified
incubator at 37°C and 5% CO2 in minimal essential Eagle medium (MEM) containing phenol red (Gibco)
supplemented with 10% fetal bovine serum (Gemini Bio-Products), 0.5 �g/ml Plasmocin prophylactic
(InvivoGen), 2 mM L-glutamine, 5 U/ml penicillin, and 5 �g/ml streptomycin (Sigma) (19). CFBE41o–

human bronchial epithelial cells are not on the commonly misidentified list, and cells were tested
quarterly for mycoplasma using a Southern Biotech mycoplasma detection kit. CFBE41o– epithelial
cells were seeded at near confluence on transwell permeable-membrane supports (Costar). After
attachment and confluence, CFBE41o– epithelial cells were differentiated at air-liquid interface for
1 week (49).
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Infection of differentiated respiratory epithelium. For bacterial biofilm growth on biotic surfaces,
CFBE41o– human bronchial epithelial cells were inoculated in duplicate with P. aeruginosa that was
prewashed in MEM lacking phenol red supplemented with 2 mM L-glutamine at a multiplicity of infection
of approximately 25. A strain of P. aeruginosa PAO1 carrying a multiple copy plasmid that constitutively
expresses gfp (pSMC21) was used (19). After 1 h of attachment, nonattached bacteria were removed, and
the apical medium was adjusted to 0.4% L-arginine. After an additional 5 h, biofilms were processed for
RNA. P. aeruginosa strain PAO1 RNA was isolated from biofilms grown for 6 h on differentiated CFBE41o–

cells by phenol-chloroform extraction using RNA-Bee and 0.1-mm zirconia/silica beads in a BeadBeater
(BioSpec Products) (50). RNA was precipitated with isopropanol and linear acrylamide, and RNA pellets
were washed by ethanol precipitation (50). RNA was treated with Turbo DNase (Ambion) and purified by
an RNA Clean and Concentrator (Zymo Research). RNA concentration was measured by using a
NanoDrop apparatus. DNA removal was confirmed by 260/280 and 260/230 ratios and by PCR for the rplU
gene. RNA integrity was determined by agarose gel electrophoresis and visualization of 5S, 16S, 18S, 23S,
and 28S bands. RNA-seq library preparation and sequencing were performed by the Health Sciences
Sequencing Core at Children’s Hospital of Pittsburgh. RNA concentration and integrity was confirmed by
fluorometric quantification (Qubit) and Tapestation analysis (Agilent). RNA was rRNA depleted using
Ribo-Zero Epidemiology, and sequencing libraries were prepared using a Truseq stranded total RNA kit
(Illumina). Single-end sequencing was performed on a NextSeq 500. For CFBE41o– human bronchial
epithelial cell-P. aeruginosa biofilm coculture samples, approximately 75 million 75-bp reads were
obtained.
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