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Abstract: In cancer research, population-based survival analysis has played an important role. In this
article, we conduct survival analysis on patients with brain tumors using the SEER (Surveillance,
Epidemiology, and End Results) database from the NCI (National Cancer Institute). It has been
recognized that cancer survival models have spatial and temporal variations which are caused
by multiple factors, but such variations are usually not “abrupt” (that is, they should be smooth).
As such, spatially and temporally pooling all data and analyzing each spatial/temporal point separately
are either inappropriate or ineffective. In this article, we develop and implement a spatial- and
temporal-smoothing technique, which can effectively accommodate spatial/temporal variations and
realize information borrowing across spatial/temporal points. Simulation demonstrates effectiveness
of the proposed approach in improving estimation. Data on a total of 123,571 patients with brain
tumors diagnosed between 1911 and 2010 from 16 SEER sites is analyzed. Findings different from
separate estimation and simple pooling are made. Overall, this study may provide a practically
useful way for modeling the survival of brain tumor (and other cancers) using population data.
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1. Introduction

The analysis of overall survival, progression-free survival, time to metastasis, and other survival
outcomes has played an important role in cancer research. The survival models so generated can
describe disease paths and facilitate public health and clinical decision-making. Important risk factors
identified in such models can lead to a deeper understanding of disease biology and facilitate the
identification of high-risk sub-populations and intervention development. Survival modeling has
been conducted for most if not all cancer types [1–5], particularly including brain tumor [6,7] which is
analyzed in this study. Multiple sources of data have been used in cancer survival modeling. Compared
to hospital- and community-based data and data from some other sources, population data can be
advantageous by having a smaller possibility of selection bias and higher power, leading to more
definitive findings. It is also noted that population data are not problem-free. For example, they may
collect limited sets of variables and be less informative. The success of population data-based cancer
survival analysis has been well demonstrated [8,9], particularly including that for brain tumor [10].
In terms of statistical analysis techniques, as population data usually have “sample size >> number of
covariates”, “classic” survival analysis techniques are usually sufficient. Commonly adopted techniques
include the Kaplan–Meier curve, logrank statistic, Cox proportional hazards model, accelerated failure
time model, and others. For comprehensive reviews, we refer to Klein and Melvin (2006) [11].
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Population data are usually collected from multiple sites spanning over a period of time. In some
studies [12–14], pooling across multiple time points and/or spatial locations is straightforwardly
conducted. For example, in Gnerlich et al. (2007) [15], the analysis of metastatic breast cancer
survival is conducted by pooling data from 1988 to 2003 and nine SEER (Surveillance, Epidemiology,
and End Results) sites. The validity of such analysis demands homogeneity. In the literature,
the variations of important risk factors and magnitudes of their effects in cancer models have been
observed [16,17], which are caused by differences in population structure, exposure types/levels,
treatment, socio-economic status, cultural factors, and many other factors. As such, simply pooling
data across time points and/or locations may mask such important variations or even result in
misleading conclusions. To accommodate heterogeneity, analysis has also been conducted for different
time points and locations separately. For example, in Pienta, et al. (1995) [18], the analysis of prostate
cancer survival is conducted using SEER data limiting to Metropolitan Detroit. One limitation of this
approach is that for many cancer types, the sample size for a specific time period and location may
be limited, potentially leading to unreliable estimation. For example, in the SEER brain tumor data
(details described below), the sample size is only 90 for the 1991–2000 time period and Los Angeles.
Cancer is a “slow” disease. Under “ordinary” conditions, variations of the set of important risk factors
and their effects are not expected to be “abrupt”, i.e., they should have a certain smoothness property,
which potentially enables information borrowing from adjacent time periods and locations to improve
power and estimation.

The goal of this study is to conduct cancer survival analysis based on population data, which is a
“classic” yet still important problem. Of special interest in this article is the analysis of brain tumor
patient survival, which has important public health and clinical implications [19], using SEER data.
The key advancement is the development and adoption of a novel spatial- and temporal-smoothing
method. Specifically, the heterogeneity across spatial and temporal points is fully accounted for by with
location- and time-period-specific survival models. Significantly different from the separate analysis,
smoothing of the regression coefficients and models is conducted to enable information borrowing
across locations and time periods, which may potentially enhance the power and reliability of analysis.
It is noted that the analysis technique can also be applied to other types of cancer and databases other
than SEER. As such, this study also has independent methodological value.

2. Materials and Method

2.1. Materials

A brain tumor is an abnormal mass of tissue within the brain in which cells grow and multiply
uncontrollably. More than 150 different brain tumors have been documented, and the two main
groups are primary and metastatic. In this article, we focus on the analysis of primary brain tumors,
which are categorized as glial or non-glial, as well as benign or malignant [20]. The annual, global,
and age-standardized incidence of primary malignant brain tumors is about 3.9 per 100,000 for men
and 3.0 per 100,000 for women in 2012 [21]. Between 2002 and 2010, there were 183,740 newly
diagnosed cases of malignant brain and CNS tumors in the U.S. [22]. Also in the U.S., the five- and
ten-year survival rates are about 29.1% and 25.3% according to the American Cancer Society (ACS) [23].
Brain tumors have been a significant source of cancer-related morbidity and mortality in adolescents
and young adults in the U.S. and worldwide.

Data analyzed in this study are obtained from SEER, which is the most comprehensive cancer
registry in the U.S. SEER has 18 registries, with one for a different location. It covers approximately
27.8% of the U.S. population. From 1973 to 2015, the SEER registries evolved from nine to 18.
Specifically, the nine registries in 1973 are Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico,
San Francisco-Oakland, Seattle-Puget Sound, and Utah. The four registries formed in 1992 are San
Jose-Monterey, Los Angeles, Rural Georgia, and Alaska. In addition, the five registries formed in
2000 are California, Kentucky, Louisiana, New Jersey, and Greater Georgia. As in the literature [24],
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brain tumor records are selected using the ICD-O-3 (International Classification of Diseases for
Oncology, 3rd edition) codes and CS (Collaborative Stage) schema C71.0–C71.9. In analysis, registries
Rural Georgia and Alaska are removed as the sample sizes are too small to generate sensible estimates,
leading to a total of 16 registries. In addition, cases diagnosed before 1910 and after 2000 are also
removed from analysis because of concerns on sample size.

The following variables have been considered in the literature [25,26] and are included in analysis:
age at diagnosis, gender (female, male), marital status (singer, married, others), race (Hispanic white,
white, black, others), tumor behavior (benign, malignant, uncertain), tumor grade (others, grade I,
grade II, grade III, grade IV,), tumor size, and surgery (no, yes). For categorical variables, dummy
variables are created to represent different levels. For each categorical variable, the first category is
used as reference. The response variable is overall survival (measured in months) defined as the time
length from diagnosis to death. Censoring occurs if patients were alive at the date of last contact.
Overall, the analyzed data contains records on 123,571 patients. The year-specific analysis may be
challenged by very small sample sizes. To this end, we pool data over ten-year windows. Specifically,
the whole time span is divided into nine periods according to the time of diagnosis: 1911–1920,
1921–1930, 1931–1940, 1941–1950, 1951–1960, 1961–1970, 1971–1980, 1981–1990, and 1991–2000. It is
acknowledged that this pooling over time may mask certain temporal heterogeneity. However, this may
be inevitable and has also been conducted in the literature [14]. It is also noted the proposed analysis
can be conducted with other, especially smaller, time window sizes. In fact, with smoothing, it can
potentially be less sensitive to the choice of window size than separate estimation. The detailed sample
size breakdowns for the 16 registries and nine time periods are provided in Supplementary Table S1 in
the Supplementary Materials.

2.2. Methods

Assume that data have been collected from p locations and q time intervals (or points). For the
ith location and jth time interval, assume that data are available for ni, j independent samples. For
the kth sample, we observe (Yi, j,k, δi, j,k, Xi,j,k), where Yi, j,k is the observed time (minimum of the
event and censoring times), δi, j,k is the event indicator (= 1 if it is an event, and = 0 if censoring),
Xi,j,k = (xi, j,k,1, xi, j,k,2, . . . , xi, j,k,m)

T is the length-m vector of covariates, and the superscript “T” denotes
transpose. Without loss of generality, assume that for each location and time interval separately, data
have been sorted according to the observed times from the smallest to the largest.

For modeling survival, we adopt the Cox model, which is perhaps the most popular and has been
used in a large number of SEER and other population-based studies. For the ith location, jth time
interval, and kth subject, the hazard function is

hi, j,k(t) = h0(t)exp(Xi,j,k
Tβi,j), (1)

where h0 is the unknown baseline hazard function, and βi,j = (βi, j,1, . . . , βi, j,m)
T is the vector of unknown

regression coefficients. It is noted that to fully accommodate the temporal and spatial heterogeneity,
the regression coefficients and hence survival models are location- and time-interval-specific. Here the
same baseline hazard function is assumed. However, since the baseline hazard function does not show
up in estimation (details below), it can vary across time and location. For the ith location and jth time
interval, the partial likelihood function is

L(βi,j) =

ni, j∏
k=1

 exp(Xi,j,k
Tβi,j)∑

l∈R(ti, j,k)
exp(Xi,j,l

Tβi,j)

δi, j,k

, (2)
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where R(ti, j,k) is the set of indices at risk at time ti, j,k. The log-partial likelihood function is

LL(βi,j) =

ni, j∑
k=1

δi, j,k

Xi,j,k
Tβi,j − ln

 ∑
l∈R(ti, j,k)

exp(Xi,j,l
Tβi,j)


. (3)

Denote n as the total sample size and β as the vector composed of all βi,j’s.
We propose the spatial- and temporal-smoothed estimate

β̂ = argmaxβ


p∑

i=1

q∑
j=1

LL(βi,j) − p(β,λ1,λ2)

, (4)

where

p(β,λ1,λ2) =
1
2
λ1

p∑
i=1

q∑
j=2

∣∣∣∣∣∣βi,j − βi,j−1
∣∣∣∣∣∣2 + 1

2
λ2

q∑
j=1

p∑
i=1

p∑
r>i

ωi,r
∣∣∣∣∣∣βi,j − βr,j

∣∣∣∣∣∣2. (5)

Here λ1,λ2 > 0 are data-dependent tuning parameters and will be chosen using V-fold cross
validation. ωi,r is the weight corresponding to locations i and r and inversely related to the distance
between the two locations. In our numerical study, we set it as equal to 1/distance. For inference,
the nonparametric bootstrap technique [27] is adopted. Specifically, we sample data with replacement
for each time interval and location, and the bootstrap samples have the same sample sizes as the
original data. The proposed approach is applied to the bootstrapped data. This procedure is repeated
multiple times, and variances of the bootstrap estimates are computed.

Rationale: It is noted that to achieve objectives beyond standard survival analysis, more complex
techniques are inevitable. The Cox model is adopted, which can be replaced by other survival models,
and the proposed penalized estimation strategy will be directly applicable. The proposed estimation
falls into the penalized regularization paradigm, which has been extensively adopted. The key is to
achieve information borrowing across time intervals and locations through penalization/smoothing,
so as to obtain more accurate estimates for all time and locations. The proposed penalty has two
terms. By penalizing their differences, the first term encourages the regression coefficients (and models)
between adjacent time intervals to be similar (i.e., changes to be smoother), with the consideration
that for a specific location, cancer models do not evolve abruptly. This fused penalization [28] is
appropriate when the models can be arranged along a “line”. The second penalty term shares similar
spirit and smooths the regression coefficients (and models) between different locations, with the
consideration that cancer models for locations that are closer are more similar. As such, the weights
are chosen as inversely related to distances. Loosely speaking, this shares a similar spirit as the
Laplacian penalization [29]. In contrast to some fused and Laplacian penalization techniques [30],
l2 penalization is imposed as opposed to l1, as in this context sparsity is not of interest. In addition,
it can significantly simplify computation. The strategy of smoothing over multiple models has been
developed in published epidemiologic studies [31,32]. However, the existing studies are usually
limited to one dimension (temporal or spatial) and in different contexts. Two-dimensional smoothing
for population-based cancer survival analysis has been lacking.

Remarks: The proposed approach smooths over time and location. It puts no constraint on
the relative locations of the data collection sites and is applicable when there are two or more sites.
The current formulation is concerned with the SEER data and those alike, which have data from
consecutive time intervals. Consider the scenario with missing data, where data are available from time
intervals 1, 2, 3, 5, and 6 (that is, no data from time interval 4). In this case, there are two possibilities.
The first is to penalize the differences for time intervals 1 and 2, 2 and 3, and 5 and 6. The second is to
also penalize the differences for intervals 3 and 5, but imposing an additional weight to reflect that the
two models are “farther away”.
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2.2.1. Computation

As the overall objective function is continuously differentiable, the Newton–Raphson technique is
adopted for optimization. Denote LL(β) as the sum of LL(βi,j)’s, and LL′(β) and LL′′ (β) as the first

and second order derivatives of LL(β), respectively. Conduct Taylor expansion of LL(β) at β̃, and keep
the first and second order terms:

LL(β) ≈ LL(β̃) + (β− β̃)
T
· LL′(β̃) +

1
2
(β− β̃)

T
· LL′′ (β̃) · (β− β̃), (6)

where

LL′(β̃) =
p∑

i=1

q∑
j=1

ni, j∑
k=1

δi, j,k

Xi,j,k −

∑
l∈R(ti, j,k)

Xi,j,l·exp(Xi,j,l
Tβi,j)∑

l∈R(ti, j,k)
exp(Xi,j,l

Tβi,j)

 (7)

LL′′ (β̃) = −
p∑

i=1

q∑
j=1

ni, j∑
k=1

δi, j,k


∑

l∈R(ti, j,k)
Xi,j,l

2
·exp(Xi,j,l

Tβi,j)∑
l∈R(ti, j,k)

exp(Xi,j,l
Tβi,j)

−


∑

l∈R(ti, j,k)
Xi,j,l·exp(Xi,j,l

Tβi,j)∑
l∈R(ti, j,k)

exp(Xi,j,l
Tβi,j)


2 (8)

To improve the stability of computation and reduce cost, we replace LL′′ (β̃) by a diagonal matrix
W(β) whose diagonal elements are the same as LL′′ (β̃). This strategy has been adopted in the literature
when the number of parameters to be optimized is large. Overall, the Newton–Raphson-based
optimization proceeds as follows:

(1). Initialize β̃. A simple choice of the initial value is zero or the separate estimation (of each
location and time interval).

(2). Compute β̂ as the maximizer of

LL(β̃) + (β− β̃)
T
· LL′(β̃) + 1

2 (β− β̃)
T
·W(β̃) · (β− β̃) − p(β,λ1,λ2), (9)

using a Newton–Raphson-based technique (details below).
(3). Update β̃ = β̂.
(4). Iterate Steps 2–3 until convergence, which is concluded if the l2-norm of the difference between

two consecutive estimates is smaller than 10−3.
In principle, the “standard” Newton–Raphson can be directly applied to maximizing (1).

However, it will involve p ∗ q ∗ m parameters and inversion of a matrix of this size. We have
briefly experimented with this and observed unstable estimation. To tackle this problem, we propose
conducting a block-wise optimization in Step (2) of the above algorithm. Specifically, optimization is
conducted with respect to a length-m vector of regression coefficients for one time interval and location
at a time, holding the other regression coefficients at their current estimated values. This procedure is
cycled through all coefficient vectors and repeated multiple times until convergence.

More specifically, for a specific (i, j) dual, the first order derivative of (1) in Step (2) is computed as

LL′(β̃i, j) + W(β̃i, j)(βi, j − β̃i, j)

−

2λ1βi,j − λ1(βi,j−1 + βi,j+1) + λ2(βi,j

p∑
r,i

ωi,r −

p∑
r,i

ωi,r · βr,j)

. (10)

The block-wise solutions can be computed as:

• when 2 ≤ j ≤ (q− 1),

β̂i, j =
[
W(β̃i, j) − I

]−1
W(β̃i, j)β̃i, j − LL′(β̃i, j) − λ1(β̃i, j−1 + β̃i, j+1) − λ2

p∑
r,i

ωi,r · βr,j

, (11)
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where I is a m ∗m matrix, with diagonal elements equal to (2λ1 + λ2
∑p

r,i ωi,r), and off-diagonal
elements equal to 0;

• when j = 1,

β̂i, j =
[
W(β̃i, j) − I

]−1
W(β̃i, j)β̃i, j − LL′(β̃i, j) − λ1β̃i, j+1 − λ2

p∑
r,i

ωi,r · βr,j

, (12)

where I has diagonal elements (λ1 + λ2
∑p

r,i ωi,r) and off-diagonal elements 0;

• when j = q,

β̂i, j =
[
W(β̃i, j) − I

]−1
W(β̃i, j)β̃i, j − LL′(β̃i, j) − λ1β̃i, j−1 − λ2

p∑
r,i

ωi,r · βr,j

, (13)

where I has diagonal elements (λ1 + λ2
∑p

r,i ωi,r) and off-diagonal elements 0.

As the objective function is bounded above, and as its value increases in each iteration, the above
algorithm is guaranteed to converge. Convergence to the global maximizer can be achieved if all
individual models are identifiable. In all of our simulation and data analysis, convergence is achieved
within 20 iterations. With simple forms for update, the proposed approach is computationally
affordable. The analysis of one simulated dataset (details described in the Supplementary Materials)
can be achieved within three minutes on a regular laptop. To facilitate application beyond this study,
we have developed an R program and made it available at www.github.com/shuanggema. In the
Supplementary Materials, we provide detailed information and Figures S4–S7 on using the R program
for data analysis, which may facilitate broader use.

2.2.2. Simulation

We conduct extensive simulation to gain more insights into the proposed analysis and compare
with alternatives. Details are presented in Appendix ??. Results of simulation is presented in
Tables S7–S8. Visualization of simulation is presented in Figures S1–S3. The key finding is that
across the whole spectrum of simulation, the proposed estimation has smaller mean squared errors
and smaller variances than the alternative separate estimation, i.e., the overall estimation accuracy
is improved.

3. Results

Data is analyzed using the proposed approach as well as separate estimation (which conducts
the maximum likelihood estimation without penalization under the Cox model for each location and
time interval separately). In addition, we also conduct three pooled analysis, under which data from
all locations is pooled, data from all time intervals is pooled, and data from all locations and all time
intervals is pooled. Detailed estimation results, including the estimated regression coefficients and
their standard errors, are provided in Supplementary Tables S1–S6 in the Supplementary Materials.
Representative results are also presented graphically. Specifically, in Figure 1, we use covariate race
(white) as an example and present the estimates and their 95% confidence intervals for all time intervals
and locations using the proposed and separate estimations. In Figure 2, for a representative location
(San Francisco-Oakland), we present the estimates and 95% confidence intervals for all covariates as
a function of time using the proposed and separate estimations. In Figures 3 and 4, we present the
location- and time-pooled analysis results, respectively.

www.github.com/shuanggema
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Figure 1. Representative analysis results using the proposed and separate estimations: estimated 
coefficient (circle or triangle) and its 95% confidence interval (vertical bar) for race (White) at each 
time interval and location. 

Figure 1. Representative analysis results using the proposed and separate estimations: estimated
coefficient (circle or triangle) and its 95% confidence interval (vertical bar) for race (White) at each time
interval and location.
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Figure 2. Representative analysis results using the proposed (red) and separate (blue) estimations: 
estimated coefficient and 95% confidence interval (vertical bar) for each variable at each time interval 
and location = San Francisco-Oakland. 

 

Figure 3. Analysis results for each time interval and by pooling data from all locations: estimated 
coefficient and 95% confidence interval (vertical bar) for each variable. 

Figure 2. Representative analysis results using the proposed (red) and separate (blue) estimations:
estimated coefficient and 95% confidence interval (vertical bar) for each variable at each time interval
and location = San Francisco-Oakland.
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coefficient and 95% confidence interval (vertical bar) for race (White). 

Multiple findings are made. First, the separate estimation (Supplementary Table S3) shows 
considerable temporal and spatial variations in the estimated coefficients, suggesting the 
heterogeneity of data. As such, the three sets of pooled analysis may not be sensible. Specifically, 
averaging over time and/or location may mask important temporal and spatial variations. Consider 
for example marital status (married). The analysis by pooling data from all locations suggests that 
since the 1990s, it changes from having a negative correlation with survival to a positive correlation. 
However, more closely examining data suggests that this change occurs in Connecticut and San 
Francisco in the 1960s and 1980s, respectively. Another example is race (black). The analysis by 
pooling data from all time intervals suggests that it is negatively correlated with survival time in San 
Jose. However, a closer examination of data suggests that before the 1950s, it is positively correlated 
with survival time in San Jose. There are also other examples of a similar kind. As such, in what 
follows, we focus on the comparison between the proposed and separate estimations, both of which 
can sufficiently accommodate heterogeneity. 

As can be partly seen from Figure 1, the findings using the proposed approach are mostly 
qualitatively consistent with those using the separate estimation. Consider for example location = 
New Jersey, and examine results in Supplementary Tables S2 and S3. Under both approaches, with 
race (Hispanic white) as reference, race (white) has positive regression coefficients (suggesting a 
higher risk) until the 1950s, and then the regression coefficients become negative. Our brief literature 
search suggests that most results from the proposed analysis are consistent with published literature. 
For example, Villano et al. found that in non-Hodgkin’s lymphoma patients with central nervous 
system (CNS) tumors, age, sex, and race were all significantly associated with survival. More 
specifically, older age, male gender, and black race were associated with decreased survival time [33]. 
Bindal et al. analyzed data on patients treated with surgery as well as those with radiosurgery and 
concluded that patients undergone surgical treatments survived longer and had a better local control 
[34]. There are multiple similar published evidence that is consistent with our findings. 

The arguably most important finding, which is consistent with that made in simulation, is that 
the proposed estimates have much tighter confidence intervals, suggesting more accurate estimation. 
Again, this can be explained by the increased information borrowed from other time intervals and 
locations. For example, as shown in Figure 1 and Supplementary Table S3, under the separate 
estimation, the regression coefficient of race (white) in the 1910s in Iowa is 14.503 (sd = 1.196), drops 
to 0.749 (sd = 0.037) in the 1920s, rises to 11.509 (sd = 0.039) in the 1930s, and drops to -0.746 (sd = 
0.030) in the 1940s. Such abrupt changes over time do not seem to be sensible, and there is no literature 
supporting their validity. In comparison, in Supplementary Table S2 under the proposed estimation, 
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coefficient and 95% confidence interval (vertical bar) for race (White).

Multiple findings are made. First, the separate estimation (Supplementary Table S3) shows
considerable temporal and spatial variations in the estimated coefficients, suggesting the heterogeneity
of data. As such, the three sets of pooled analysis may not be sensible. Specifically, averaging over time
and/or location may mask important temporal and spatial variations. Consider for example marital
status (married). The analysis by pooling data from all locations suggests that since the 1990s, it changes
from having a negative correlation with survival to a positive correlation. However, more closely
examining data suggests that this change occurs in Connecticut and San Francisco in the 1960s and
1980s, respectively. Another example is race (black). The analysis by pooling data from all time intervals
suggests that it is negatively correlated with survival time in San Jose. However, a closer examination
of data suggests that before the 1950s, it is positively correlated with survival time in San Jose. There are
also other examples of a similar kind. As such, in what follows, we focus on the comparison between
the proposed and separate estimations, both of which can sufficiently accommodate heterogeneity.

As can be partly seen from Figure 1, the findings using the proposed approach are
mostly qualitatively consistent with those using the separate estimation. Consider for example
location = New Jersey, and examine results in Supplementary Tables S2 and S3. Under both approaches,
with race (Hispanic white) as reference, race (white) has positive regression coefficients (suggesting a
higher risk) until the 1950s, and then the regression coefficients become negative. Our brief literature
search suggests that most results from the proposed analysis are consistent with published literature.
For example, Villano et al. found that in non-Hodgkin’s lymphoma patients with central nervous system
(CNS) tumors, age, sex, and race were all significantly associated with survival. More specifically,
older age, male gender, and black race were associated with decreased survival time [33]. Bindal et al.
analyzed data on patients treated with surgery as well as those with radiosurgery and concluded that
patients undergone surgical treatments survived longer and had a better local control [34]. There are
multiple similar published evidence that is consistent with our findings.

The arguably most important finding, which is consistent with that made in simulation, is that the
proposed estimates have much tighter confidence intervals, suggesting more accurate estimation. Again,
this can be explained by the increased information borrowed from other time intervals and locations.
For example, as shown in Figure 1 and Supplementary Table S3, under the separate estimation, the
regression coefficient of race (white) in the 1910s in Iowa is 14.503 (sd = 1.196), drops to 0.749 (sd = 0.037)
in the 1920s, rises to 11.509 (sd = 0.039) in the 1930s, and drops to −0.746 (sd = 0.030) in the 1940s. Such
abrupt changes over time do not seem to be sensible, and there is no literature supporting their validity.
In comparison, in Supplementary Table S2 under the proposed estimation, the estimated coefficients
(sd) for the same four time periods are 0.048 (0.003), 0.057 (0.004), −0.021 (0.005), and −0.094 (0.004),
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respectively. For other variables, such improved estimation with tighter confidence intervals is also
observed. Tighter confidence intervals can lead to more significant findings. Supplementary Table S2
suggests that most of the results in Figure 1 under the proposed approach are significant expect for
time period 1961–1970 and San Francisco-Oakland, 1951–1970 and Seattle-Puget Sound, 1941–1960 and
Utah, 1911–1920 and Atlanta, Los Angles, and California, 1931–1940 and San Jose-Monterey, 1911–1920
and 1951–1960 and Kentucky, 1911–1930 and 1951–1960 and Louisiana, 1941–1950 and New Jersey,
and 1921–1930 and 1941–1950 and Great Georgia. In comparison, the separate estimation leads to
much fewer significant effects.

It is also observed that for some time intervals/locations, the proposed analysis leads to findings
different from the separate estimation. For example, for time period 1991–2000 and Connecticut and
1971–1990 and Detroit, the proposed analysis suggests that race (white) has a significant protective
effect, but it is a significant risk factor in the separate estimation. A “reversed” conflict exists between
time period 1931–1950 and Hawaii and time period 1911–1930 and Utah. As another example,
in Figure 2, for covariate race (black), the proposed and separate estimations lead to significantly
different estimates at multiple time points. The separate estimation results have a much higher level
of variation. As discussed above, cancer is a “slow” disease, and dramatic changes of risk factor
effects over time may not be expected. Published literature also has not suggested significant changes
in effects (for example, life style, environmental exposures) that may confound with race (black).
In addition, in Figure 2, for covariates such as marital status, gender, age, tumor size, and some others,
the proposed and separate estimations lead to highly similar results. With the higher stability built
in the proposed approach as well as observed in simulation, the estimates generated by the separate
estimation that have significant variations are again not expected to be sensible.

There are also findings made with the proposed analysis that have not been sufficiently examined in
the literature. For example, published studies suggest that significant racial differences exist in survival
(as well as other outcomes such as incidence) for patients with brain tumors. Specifically, five-year
survival and incidence are significantly higher in whites [33,35]. Our analysis suggests that race (white)
is negatively associated with survival until the 1960s, and then it becomes a positively associated factor.
Such a finding has not been well examined in the literature and may be explained by race-related
changes in treatment and income around the 1960s.

4. Discussion

Population-based survival analysis, for brain tumor as well as other cancer types, is of significant
importance. In this article, we have analyzed brain tumor overall survival using the SEER data.
As argued above and also in the literature, separate estimation may lead to insufficient power and
insensible estimates (for example, abrupt changes without any justification), and pooled estimation
may mask important temporal and spatial variations (which have been observed in our data analysis).
The proposed approach can directly overcome limitations of the existing methods, and findings mostly
consistent with but also different from the existing ones have been made. As established in the literature,
such findings can have important public health and medical implications. As it is not the focus of
this article, and as there have been multiple published studies on the overall survival of brain tumor
patients, interpretations of the findings are not extensively pursued. Like in published studies, there is
a lack of gold standard to validate the findings. The satisfactory results observed in simulation and
the fact that the data analysis results are “as expected” (in particular the tighter confidence intervals)
provide confidence to the findings. It is noted that the proposed approach is not limited to brain tumor
and SEER data. It will be well applicable to other cancers and other databases. In addition, it will also
be applicable when there exists only one dimension (spatial or temporal).

5. Conclusions

Survival analysis has essential importance for brain tumor and other cancers. This study has
developed a new analysis technique, which improves estimation accuracy by “borrowing information”
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spatially and temporally. The proposed method is built on the penalization technique and has a sound
statistical basis. Simulation and the analysis of SEER data demonstrate its satisfactory performance.
It is expected that it can also improve estimation for other cancers and databases and will have
broad applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/11/1732/s1.
Detailed simulation and estimation results and demonstration of data analysis using the R code referred to in the
main text are available in the document named “Supplementary Materials”. Figure S1: Simulation. Left panel:
true regression coefficients as a function of space coordinates (x and y) generated from a part of the 1/8-spherical
surface; Middle panel: true regression coefficients as a function of space coordinates (x and y) generated from a
part of the 1/2-spherical surface; Right panel: true regression coefficients as a function of time (black: wave-based;
red: monotonically increasing; and blue: concave); Figure S2: Simulation: Case 1, Scenarios 1–3 (left to right) with
n = 400. True and estimated coefficients and their point-wise 95% confidence intervals using the proposed and
separate estimations; Figure S3: Simulation: Case 1, Scenario 2 (left) and Case 2, Scenario 2 (right) with n = 400.
True and estimated coefficients and their point-wise 95% confidence intervals using the proposed and separate
estimations; Figure S4: Structure of the brain tumor brain dataset in R; Figure S5: Functions loaded in R; Figure S6:
Visualization of an example of marital status (married) at each time interval and location=San Francisco-Oakland;
Figure S7: Visualization of an example of marital status (married) for the time interval 1911–1920 and each location;
Table S1: Data analysis: sample size for each time interval and location; Table S2: Data analysis: estimated
coefficients and standard deviations using the proposed approach; Table S3: Data analysis: estimated coefficients
and standard deviations using the separate estimation; Table S4: Data analysis: estimated coefficients and standard
deviations by pooling all time intervals and locations; Table S5: Data analysis: estimated coefficients and standard
deviations by pooling all locations; Table S6: Data analysis: estimated coefficients and standard deviations by
pooling all time intervals; Table S7: Simulation I: mean squared errors (MSE) and variance (Var) of the proposed
and separate estimations; Table S8: Simulation II: mean squared errors (MSE) and variance (Var) of the proposed
and separate estimations.
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