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Abstract

How do functional brain networks emerge from the underlying wiring of the brain? We examine 

how resting-state functional activation patterns emerge from the underlying connectivity and 

length of white matter fibers that constitute its “structural connectome”. By introducing realistic 

signal transmission delays along fiber projections, we obtain a complex-valued graph Laplacian 

matrix that depends on two parameters: coupling strength and oscillation frequency. This complex 

Laplacian admits a complex-valued eigen-basis in the frequency domain that is highly tunable 

and capable of reproducing the spatial patterns of canonical functional networks without requiring 

any detailed neural activity modeling. Specific canonical functional networks can be predicted 

using linear superposition of small subsets of complex eigenmodes. Using a novel parameter 

inference procedure we show that the complex Laplacian outperforms the real-valued Laplacian in 

predicting functional networks. The complex Laplacian eigenmodes therefore constitute a tunable 

yet parsimonious substrate on which a rich repertoire of realistic functional patterns can emerge. 

Although brain activity is governed by highly complex nonlinear processes and dense connections, 

our work suggests that simple extensions of linear models to the complex domain effectively 

approximate rich macroscopic spatial patterns observable on BOLD fMRI.
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1. Introduction

The exploration of structure and function relationships is a fundamental scientific inquiry 

at all levels of biological organization, and the structure-function relationship of the brain 

is of immense interest in neuroscience. Attempts at mathematical formulations of neuronal 

activity began with describing currents traveling through a neuron’s membranes and being 

charged via ion channels (Hodgkin and Huxley, 1952). Recently, the focus of computational 

models have expanded from small populations of neurons to macroscale brain networks, 

which are now available via diffusion-weighted and functional magnetic resonance imaging 

(dMRI and fMRI) (Bullmore and Sporns, 2009). Using computational tractography on dMRI 

images, detailed whole brain white-matter tracts, and their connectivity can be obtained, 

to yield the brain’s structural connectivity (SC). Using correlated activation patterns over 

time in fMRI data reveals functional connectivity (FC) with high spatial resolution. Such 

high resolution images of the brain also allowed neuroscientists to label the brain according 

to anatomical or functional regions of interest (ROIs) (Craddock et al., 2012; Desikan et 

al., 2006). Subsequently, efforts in graph-theoretic modeling have emerged as an effective 

computational tool to study the brain’s SC-FC relationship based on the parcellated brains: 

ROIs become nodes and connectivity strengths become edges on the graph, while dynamical 

systems describing neuronal activity are played out on this graph structure (Bassett and 

Bullmore, 2009; Bullmore and Sporns, 2009; Cao et al., 2014).

Diverse graph based methods have been employed to relate the brain’s SC to FC. 

Particularly, perturbations and evolution of the structural and functional networks have 

been investigated using both graph theoretical statistics (Bassett and Bullmore, 2006; Brunel 

and Brunel, 2000; Brunel and Wang, 2001; Buckner, 2005; Chatterjee and Sinha, 2008; 

He et al., 2008; Suárez et al., 2020) as well as network controllability (Gu et al., 2015; 

Muldoon et al., 2016). Structurally informed models use graphical representations of the 

brain’s connections to couple anatomically connected neuronal assemblies (El Boustani and 

Destexhe, 2009; Wilson and Cowan, 1972), numerical simulations of such neural mass 

models (NMMs) provides an approximation of the brain’s local and global activities, and 

are able to achieve moderate correlation between simulated and empirical FC (Honey et al., 

2009; Jirsa and Haken, 1997; Nunez, 1974; Spiegler and Jirsa, 2013; Valdes et al., 1999). 

However, approximations through stochastic simulations are unable to provide a closed 

form solution and inherits interpretational challenges since dynamics is only obtained from 

iterative optimizations of high dimensional NMM parameters.

An emergent field of work have suggested low-dimensional processes involving diffusion 

or random walks on the structural graph as a simple means of simulating FC from SC. 

These simpler models are equally if not more successful at simulating fMRI FC patterns 

(Abdelnour et al., 2014; Atasoy et al., 2016) as well as MEG oscillatory patterns (Raj et al., 

2020; Tewarie et al., 2019) than conventional NMMs. Lastly, these simpler graph diffusion 
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models, which naturally employ the Laplacian of SC, have been generalized to yield spectral 

graph models whereby Laplacian eigen-spectra were sufficient to reproduce functional 

patterns of brain activity, using only a few eigenmodes (Abdelnour et al., 2018; Atasoy 

et al., 2016; Raj et al., 2020). Thus, a Laplacian matrix representation of a network can be 

used to find characteristic properties of the network (Stewart, 1999), and its eigenmodes (or 

spectral basis) are the ortho-normal basis that represent particular patterns on the network. 

Such spectral graph models are computationally attractive due to low-dimensionality and 

more interpretable analytical solutions.

The SC’s Laplacian eigenmodes are therefore emerging as the substrate on which functional 

patterns of the brain are thought to be established via almost any reasonable process of 

network transmission (Abdelnour et al., 2018; Atasoy et al., 2016; Robinson et al., 2016), 

and metrics quantifying structural eigenmode coupling strength to functional patterns were 

also recently introduced (Preti and Van De Ville, 2019). These works mainly focused on 

replicating canonical functional networks (CFNs), which are stable large scale circuits 

made up of functionally distinct ROIs distributed across the cortex that were extracted by 

clustering a large fMRI dataset (Yeo et al., 2011). In (Yeo et al., 2011) seven CFNs (these 

are spatial patterns, not to be confused for the entire network of graph of the connectome) 

were identified. Hence recent graph modeling work has attempted to address whether these 

canonical patterns can emerge by only looking at the structural connectivity information of 

the brain.

Although spectral graph models have been reasonably successful, they leave several 

important gaps. First, they accommodate only passive spread, hence are incapable of 

producing oscillating or traveling phenomena, which are critical properties of brain 

functional activity. Second, they do not incorporate path delays caused by finite axonal 

conductance speed of activity propagating through brain networks. Third, they are capable 

of reproducing only deterministic and steady-state features of empirical brain activity, 

giving a single predicted FC for a given SC. Hence these models cannot easily explain the 

substantial variability observed amongst individuals, as well as between different recording 

session of the same individual. This suggests that simplistic spectral graph models will need 

to be augmented with a set of richer time- or individual-varying features or parameters in 

order to make them more realistic. Unfortunately, this is a goal that is at variance with the 

key attraction of these methods - their parsimony and low-dimensionality.

In this study we propose a novel spectral graph approach that is able to produce a far 

richer range of functional activity and dynamics without compromising on the simplicity 

and parsimony of the spectral graph model. We hypothesise that the introduction of realistic 

path delays and axonal conductance speeds can allow graph spectra to display the kinds 

of pattern-richness observed in real data. Hence we utilize both the SC connectivity 

strength matrix as measured by white-matter fiber tract density, as well as the distance 

matrix as measured by the average white-matter fiber tract distance between pairs of 

ROIs. We show that the additional distance information allows for examining of network 

dynamics in the complex domain in terms of a novel complex-valued Laplacian. This 

approach involves only global model parameters, which between them accommodate 

a rich diversity of spatiotemporal patterns that are capable of closely reproducing the 
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diversity of spatial patterning seen across a large number of healthy subjects. Through this 

minimalist complex diffusion model, the characteristic patterns of signal spread described 

by corresponding complex-valued eigen-spectra can be tuned to exhibit activation patterns 

resembling human CFNs. We show that the complex approach significantly and consistently 

exceeds the performance of existing works relating real-valued SC Laplacian’s eigen-spectra 

to measured FC (Abdelnour et al., 2018; Atasoy et al., 2016; Honey et al., 2009; Preti and 

Van De Ville, 2019). The introduction of the complex-valued Laplacian and accompanying 

complex graph diffusion may be an important contribution to the emerging literature on 

graph models of brain activity, and furthers our understanding of the structure-function 

relationship in the human brain.

We begin with a general theory of complex graph diffusion incorporating path delays, 

leading to the emergence of the complex-valued Laplacian. Then we present detailed 

statistical analysis showing the ability of complex eigenmodes to be tuned by model 

parameters and reproducing CFNs. We present comparison with the current approach of 

using real-valued eigenmodes, followed by a detailed Discussion.

2. Theory

Notation

In our notation, vectors and matrices are represented in bold, and scalars by normal font. 

We denote frequency of a signal, in Hertz (Hz), by symbol f, and the corresponding angular 

frequency as ω = 2πf. The structural connectivity matrix is denoted by C = cl,m, consisting 

of connection strength cl,m between any two pairs of brain regions l and m.

2.1. Network diffusion of brain activity

For an undirected, weighted graph representation of the structural network cl,m, we model 

the average neuronal activation rate for the lth region as xl(t) :

dxl(t)
dt = − β(xl(t) − α ∑

l ≠ m

m
cl, mxm(t − τl, m

v )) + pl(t) (1)

where we have a mean firing rate equation at the mth region controlled by an inverse of 

the common characteristic time constant β, and input signals from the lth regions connected 

to region m are scaled by the connection strengths from cm,l and delayed by t − τm, l
v . The 

term τm, l
v  is the delay in seconds obtained from the distance adjacency matrix defined by 

τm, l
v =

Dm, l
v , with ν representing the conductance speed in the brain’s SC network. The 

global coupling parameter α acts as a controller of weights given to long-range white-matter 

connections.

The delays between connected brain regions turn into phase shifts in the frequency 

profiles of the oscillating signals. Thus we obtain the following Fourier transforms from 

(1): 
dxl(t)

dt jωXl(ω), x(t − τm, l
v ) e−jωτm, l

v Xm(ω), and the oscillatory frequency ω = 2πf. 

Applying the listed Fourier transforms to (1) we can obtain the following:
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jωXl(ω) = − β Xl(ω) − α ∑
m ≠ l

cm, lXm(ω)exp − jωτm, l
v + pl(ω) (2)

We then define a complex connectivity matrix as a function of angular frequency ω 
as C∗(ω) = cm, l exp − jωτm, l

v . Therefore, a structural connectivity matrix whose nodes are 

normalized by degm = ∑lcml at frequency ω can be expressed as:

C(ω) = diag( 1
deg)C∗(ω) (3)

Replacing the connectivity term in (2) with (3) and adjusting all vector notations into matrix 

notation, we derive the following equations for network level activity in the frequency 

domain:

jωX(ω) = − β(X(ω) − αX(ω)C(ω)) + P(ω) (4)

X(ω)(jωI + β(I − αC(ω))) = P(ω) (5)

2.2. Complex Laplacian matrix

Our goal is to examine the characteristic patterns of diffusion revealed by the structural 

network’s normalized Laplacian matrix. Here, we make use of (3) to introduce a complex 

Laplacian matrix that absorbs the network properties of both the structural connectivity 

matrix as well as the distance adjacency matrix. By substituting the complex Laplacian 

matrix and rebalancing (5), we obtain a closed-form solution for X̄(ω):

X(ω) = (jωI + βℒ(α, k))−1P(ω) (6)

In this closed-form solution, we defined a complex Laplacian matrix ℒ as a function 

of global coupling strength α and wave number k, which facilitates the dynamics and 

frequency profiles observed on the brain’s connectome. Since frequency ω and transmission 

speed ν always occur as a ratio, we define the wave number k = ω
v  The wave number 

represents the spatial frequency of any propagating wave, describing the amount of 

oscillations per unit distance traveled (French, 1971). Then the complex Laplacian matrix ℒ
has the form:

ℒ(α, k) = I − αC∗(k) (7)

where I is the identity matrix and C* (k) is the complex connectivity matrix as defined 

above. While (3) indicates that the propagating signals in the network is governed by ℒ, the 

complex Laplacian of the network describes the characteristic patterns of signal spread in a 

network, and we can obtain these spatial patterns via the decomposition:
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ℒ(α, k) = ∑
n = 1

N
un(α, k)λn(α, k)unH(α, k) (8)

where λn(α, k) are the eigenvalues of the complex Laplacian matrix and un(α, k)’s are the 

complex eigenmodes of the complex Laplacian matrix. Here, the entries of the complex 

Laplace eigenmodes represent the relative amount of activation in each parcellated brain 

region as controlled by global coupling and wave number parameters. For an overview of the 

complex Laplacian eigeenmode implementation please refer to Fig. 1.

3. Results

3.1. Structural connectivity based functional activation patterns

We use the HCP template connectome to demonstrate the wide range of spatial activity 

patterns achievable by the eigenmodes of the complex Laplacian matrix. The top row of Fig. 

2 shows three exemplary real-valued structural eigenmodes (α = 1) without frequency and 

transmission speed tuning. Consistent with previous works, we see the Laplace eigenmodes 

of the human structural connectome display a wide range of cortical activity patterns 

(Abdelnour et al., 2018; Atasoy et al., 2016). As a comparison, we show in the next row 

complex Laplace eigenmodes with low wave number (k = 0.1), representing a network 

with extremely high transmission speed or near zero delay. In such a low delay network, 

the complex Laplace eigenmdoes closely resemble the spatial patterns seen in real-valued 

Laplace eigenmodes where delays are not a factor in the network. We also show two 

additional examples of complex Laplace eigenmodes with higher wave number values, 

emphasizing the impact of transmission speed and delays in the structural network of the 

brain. The combination of coupling strength and wave number global parameters enables a 

richer diversity of spatial cortical patterns, with left and right hemisphere specific activations 

around the dorsal-caudal brain regions. Despite the increase in model complexity, our 

approach allows a feature-rich graph theoretics approach to directly infer resting state 

functional brain patterns from the structural graph of the brain.

3.2. Eigenmodes of the complex Laplacian resemble CFN activation patterns

We re-assigned the voxel-wise parcellations of the seven CFNs from Yeo et al. (2011) 

to brain regions from the Desikan–Killiany atlas (Fig. 3A, left column), this re-sampling 

of the parcellations allow spatial pattern comparisons of equal dimensions against our 

structural connectomes and Laplace eigenmodes. The middle column of Fig. 3A shows best 

matching complex Laplace eigenmodes after optimization of the global parameters with 

the HCP template connectome to each CFN. In addition to displaying the best-performing 

eigenmode in each case, we further ranked the eigenmodes according to their spatial 

correlation values and displayed the best weighted linear combination of the top 10 

complex Laplace eigenmodes on the right column of Fig. 3A, the corresponding scatter 

plots showing linear regression fits with 95% confidence intervals are shown in Fig. 3B. 

Spatial similarity metrics such as Dice score and Jaccard index were also explored, but 

such metrics require comparison between binary partitions on images, and are extremely 

sensitive to the thresholding scheme used for binarizing data. Nonetheless, we found model 
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parameters optimized by the Dice coefficient display similar results as spatial correlation 

metrics (Figure S3). The spatial correlation values of the best performing eigenmode, and 

details of cumulative combinations of eigenmodes are reported below and in Fig. 6. We 

observe that CFN patterns emerge when parameters, optimized for each network, are applied 

to the complex Laplacian. Only a few structural eigenmodes are required to capture a 

specific functional network.

3.3. Parameter tuning of complex Laplacian eigenmodes

To examine the sensitivity of our eigenmodes to our complex Laplacian parameters, we 

first computed spatial correlation values for the all eigenmodes for each CFN across the 

entire parameter range. Fig. 4 (top) shows the effect of fixing k and varying α, while 

bottom row shows the effect of varying k at a fixed α. At a glance, almost all eigenmodes 

are capable of resembling any given CFN with the proper choice of tuning parameters, 

and it is evident that we need to tune both the global coupling strength and wave number 

for a dominant eigenmode matching a specific CFN to emerge. For any given CFN, we 

find parameter regimes that recruit multiple eigenmodes while others recruit a single one. 

This is especially true of the wave number parameter and not so for coupling strength. 

Furthermore, the best achievable spatial correlation stay consistent as we tweak the global 

coupling strength, whereas wave number tuning causes shifts in spatial similarity value and 

eigenmode occupation. And finally, the limbic network has the lowest spatial match and the 

least a mount of shift in spatial correlation values.

To further examine the tunable parameter’s effects on the leading (best performing) 

eigenmodes, we show a heat map of the spatial correlation achieved by the dominant 

eigenmode as we shifted parameter values in Supplementary Figure 1. As expected, 

global coupling parameter had no effect on dominant eigenmode’s fit while the wave 

number did. Subsequently, we split the wave number parameter into its two components: 

transmission velocity and oscillating frequency of signals in the network, showing that 

those two components equally affect spatial patterns emerging from the complex Laplacian 

eigenmodes (Supp. Figure 1 bottom row). The spatial correlation patterns of each functional 

network also implies that there are potentially functional network specific eigenmodes 

obtainable from the structural complex Laplacian, which will be explored further in the 

subsequent group level analysis.

On the group level, we found parameter sets that provided the most spatially similar 

complex Laplace eigenmode for each canonical functional network. The rank of the most 

spatially similar eigenmodes are summarized in violin plots in Fig. 5. With the exception 

of the default mode network, whose best structural match spans across the range of all 

eigenmodes, all other canonical functional networks exhibit selectivity towards a specific 

subset of ranked eigenmodes. The limbic and visual networks, which contains dense 

connections in the anterior and ventral regions of the brain, prefer to occupy eigenmodes 

at both low and high ends of the eigen spectrum. On the other hand, the dorsal and ventral 

attention networks mainly occupy the middle of the eigen-spectrum. The specific occupancy 

patterns shown here implies there may be a hierarchy to the functional and structural 
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organization of the brain, and the functioning brain minimizes the recruitment of unrelated 

structural connections when engaged in conscious brain activity.

3.4. Complex Laplacian eigenmodes outperform real Laplacian eigenmodes

We created 1000 random realizations of connectivity matrices and their corresponding 

distance adjacency matrices that share the same sparsity, mean, and standard deviation 

values as the HCP template connectome values. Comparisons between eigenmodes of the 

HCP template connectome and randomly generated connectomes are displayed in Fig. 6. 

The Laplace eigenmodes of the brain’s white matter network can be seen as individual 

subsets of cortical activation patterns that make up the brain’s functional activity. Therefore, 

spatial match between cumulative combinations of eigenmodes to each canonical functional 

network were computed in addition to just the leading eigenmode.

Overall, the HCP complex Laplacian’s best-performing eigenmodes achieved higher spatial 

correlation and lower residuals than other variants of Laplace eigenmodes in 6 out of 

the 7 CFNs (left-most point on each curve). As more individual eigenmodes are linearly 

combined, all variants show a steady improvement in spatial similarity, with the fully 

random variant using the most number of eigenmodes to achieve a high spatial match, 

suggesting the fully random eigenmodes are the least informative. On the other hand, 

the complex eigenmodes from randomized distance Laplacians (magenta) consistently 

performs better than fully random complex eigenmodes (green) but lacks the structural 

distance information to compete with complex Laplace eigenmodes constructed with HCP 

template connectivity and distance adjacency matrix. The spatial similarity reported in Fig. 

6 is Pearson’s correlation due to its smoothness, we show the same quantification with 

Spearman’s correlation in Supplementary Fig. 2, which is more appropriate for discrete 

samples, but its more volatile due to its nonlinear ordering of samples.

Spatial similarities from random variants of complex Laplace eigenmodes were normalized 

into a Z-score distribution for construction of 95% confidence intervals and comparisons 

against HCP connectome variants. Comparing only the leading eigenmodes without 

cumulative combinations, Complex Laplacian eigenmodes significantly outperforms random 

connectivity eigenmodes for all functional network comparisons (P < 0.05), but only 

significantly outperforms the randomized distance eigenmodes for the limbic, visual, 

frontoparietal, and dorsal attention networks. On the other hand, the real-valued Laplace 

eigenmodes does not significantly outperform eigenmodes from fully random connectivity 

profiles for all functional networks. The P-values for both Pearson’s and Spearman’s metrics 

are shown in Supplementary Tables S1 and S2.

3.5. Group level eigenmode analysis

Fig. 7 shows a violin plot of the best spatial correlation achieved by each subject’s 

complex Laplacian in orange, real Laplacian in blue, and random distance adjacency 

matrix paired with the HCP connectome in magenta. Consistent with our HCP template 

connectome analysis, the complex Laplacian eigenmodes outperforms both the real 

Laplacian eigenmodes and randomized distance complex Laplacian eigenmodes. Our 

complex Laplacian framework includes the additional distance and delay information in 
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the brain networks compared to conventional real Laplacian eigenmodes, therefore we 

generated complex Laplacien eigenmodes from HCP structural connectivity paired with 

random distance adjacency matrices, which as a comparative degree of freedom. Paired 

T-tests were performed for all CFNs, the complex Laplacian eigenmodes outperformed real 

Laplcian eigenmodes at the group level for all networks except the limbic network (P = 

0.64). On the other hand, significantly higher spatial similarity was achieved by complex 

Laplacian eigenmodes for all networks except the dorsal attention network (P = 0.12) when 

comparing against the random distance group results.

4. Discussion

In this study we have proposed a complex graph Laplacian framework that demonstrates 

an ability to capture functional connectivity patterns, while maintaining parsimony and 

low-dimensionality of spectral graph models. The model involves only two global and 

biophysically meaningful parameters, one controlling the speed of activity propagation, and 

the other controlling coupling strength between remote populations of neurons connected 

via axonal projections. The complex Laplacian eigenmodes that emerge from our model 

are intrinsic properties of the brain’s anatomy, which can potentially become a powerful 

tool in the study of brain networks. However, it is not at all clear if the well-characterized 

properties of a real valued Laplacian matrix (Belkin and Niyogi, 2003) in the literature can 

easily translate to its complex counterpart. Questions about the theory and salient properties 

of the complex Laplacian are important and novel, however, existing literature in this area is 

limited to exploratory stages, such as the recently published pre-print article on Laplacians 

and their properties in complex value weighted graphs (Dong and Qiu, 2015). In the current 

manuscript, we showcased application of the complex Laplacian in brain modeling. We 

presented detailed statistical analysis of the resulting complex-value Laplacian eigenmodes, 

focusing on their ability to predict the spatial patterns observed on seven CFNs that are 

well established in functional neuroimaging. The implications of our main contributions are 

discussed below, with additional context and relevance to current literature.

4.1. A simple yet feature-rich graph theoretic approach

We derived a simple model of network diffusion of activity which takes into account the 

path delays introduced by realistic axonal conductance speeds and fiber lengths, and showed 

that at the first order the behavior of the model can be captured within a complex Laplacian, 

on which a complex-valued graph diffusion process is enacted. Using this definition of the 

complex Laplacian we demonstrated that its eigenmodes constitute a sparse basis that is 

capable of reproducing the characteristic spatial patterns of empirical resting state functional 

activity given by the 7 CFNs.

4.2. Higher predictive power than existing graph models

We showed that the complex Laplacian outperforms the existing models that use the 

eigenmodes of real-valued Laplacian. These results are far better than can be expected 

by chance, as indicated by the significance values of our results with respect to large 

simulations with Laplacians calculated from random connectomes. Thus, future graph 

models can benefit from the enhanced predictive power of the proposed complex Laplacian 
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approach, which in the cases we have tested highly significantly improves performance(see 

Fig. 5). Our work can therefore find direct applicability in many clinical and neuroscientific 

contexts where predicting functional patterns from structure is important (Fornito et al., 

2015; Jiang, 2013), particularly in cases of epilepsy (Coan et al., 2014), stroke (Kuceyeski et 

al., 2016; Rehme and Grefkes, 2013), and neurodegeneration (Zimmermann et al., 2018).

4.3. Complex eigenmodes accommodate a diversity of spatial patterns

One of the most intriguing aspects of our study is the demonstration that almost all 

(complex) eigenmodes are capable of resembling any given CFN, with the proper choice 

of tuning parameters. As observed from Fig. 4, certain parameter regimes recruit multiple 

eigenmodes while others recruit a single one; however with the right selection of the two 

model parameters, it is possible to “steer” the eigenmodes in such a manner that a small 

number of them can reproduce any CFN. This not only denotes the strength of our approach, 

we believe it points to an essential characteristic of real brain activity, which is thought to 

accommodate a large repertoire of microstates and their concomitant spatial patterns. This 

rich repertoire was shown above to be capable of being engaged by our parsimonious graph 

model, which may point to the possibility that complex behavior may be achievable by 

simple and parsimonious mechanisms, and may not require the kinds of high-dimensional 

and non-linear oscillatory models that have held sway in the field of neural modeling (Honey 

et al., 2009; Jirsa and Haken, 1997). Our work also supports the idea that macroscopic 

neurophysiological data on a graph can be sufficiently modeled with linear metrics, and 

nonlinear methods may not be required for problem of such scale (Hartman et al., 2011; 

Hlinka et al., 2011).

4.4. Rich repertoire is tunable with two biophysical parameters

In our model, the brain can access any configuration of spatial patterns seen in real 

resting state functional networks by tuning only two of its global and biophysically 

meaningful parameters: coupling strength and wave number. Our current work indicates 

that physical distances and the transmission rate of oscillatory activity in combination with 

coupling strength is sufficient in generating various canonical functional brain patterns. This 

demonstration in an analytical model, that a rich repertoire of states is accessible to the brain 

by tuning biophysical processes, has not previously been reported to our knowledge. The 

present computational study is not intended to explore the neural mechanisms that might 

control these parameters. Nevertheless, modern neuroscience provides several potential 

mechanisms.

Coupling strength α is a direct scaling of white-matter excitatory long range connections 

between neural populations in the brain. Phase and amplitude coupling of oscillatory 

processes in the brain is evidently important for the formation of coherent wide-band 

frequency profiles of brain recordings and processing of information (Deco et al., 2009; 

Fries, 2005; Ghosh et al., 2008a; Schnitzler and Gross, 2005; Varela et al., 2001). 

Parameterization of coupling strength between distant brain regions via the connectome 

is ubiquitous in connectivity based models of BOLD fMRI (Abdelnour et al., 2014; Deco et 

al., 2009; Honey et al., 2009; 2007) and electroencephalography activity (David and Friston, 

2003; Ghosh et al., 2008; Spiegler and Jirsa, 2013). Furthermore, pathological FC patterns 
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as a result of disconnections in the brain can be reproduced with decrease in coupling 

strength (Cabral et al., 2012; Jirsa et al., 2010).

The other key tunable parameter in our model, wave number k, is the ratio between the 

oscillatory frequency and transmission velocity of a propagating signal, describing the 

amount of oscillations per unit distance traveled by any signal spreading throughout the 

brain’s structural network. While transmission speed of signals between brain regions is 

often overlooked in brain modeling efforts, its importance is emphasized by the biology of 

the central nervous system. Neuronal spike arrival timing at the cellular level and coherent 

oscillatory activity at the network level are carefully managed by synaptic strengths as well 

as axonal myelination, respectively (Arancibia-Cárcamo et al., 2017; Fields, 2015). Further, 

wave number can be controlled not just by conductance speed, but also by the operative 

frequency of oscillations ω. From the deep literature on wide-band frequency response 

of brain recordings, it is already known that different functional networks of resting state 

BOLD data are preferentially encapsulated by different higher-frequency bands via phase- 

and amplitude-coupling (Deco et al., 2009; Ghosh et al., 2008a). Hence it is plausible that 

wave number tuning may be achieved biologically via either dynamic conductance speed or 

dynamic control of frequency bands.

4.5. Relationship to existing studies

Recent graph models involving eigen spectra of the adjacency or Laplacian matrices of 

the structural connectome have greatly contributed to our understanding of how the brain’s 

structural wiring gives rise to its functional patterns of activity. Although these models have 

very attractive features of parsimony and low-dimensionality, they suffer from being feature 

poor and an inability to make stronger predictions about functional networks.

Such models mapping between structural and functional patterns of the human brain have 

typically assumed that SC and FC are not independent entities, and that relationship between 

the two cannot simply be explained by a direct mapping (Honey et al., 2009). In addition 

to connection strength between regions, metrics such as anatomical distances (Alexander­

Bloch et al., 2013-01), shortest path lengths (Goñi et al., 2014), diffusion properties 

(Abdelnour et al., 2018; Kuceyeski et al., 2016), and structural graph degree (Stam et al., 

2016) were also found to contribute to the brain’s observed functional patterns. Higher-order 

walks on graphs have also been quite successful; typically these methods involve a series 

expansion of the graph adjacency or Laplacian matrices (Becker et al., 2018; Meier et al., 

2016). The diffusion and series expansion methods are themselves closely related (Robinson 

et al., 2016), and almost all harmonic-based approaches may be interpreted as special cases 

of each other, as demonstrated elegantly in recent studies (Deslauriers-Gauthier et al., 2020; 

Tewarie et al., 2020). The wealth of studies elucidating how the observed function originate 

from the underlying structural network provided a strong motivation for our approach, which 

extracts functional patterns from the informative complex graph Laplacian that incorporates 

both the connection strengths as well as the anatomical distances of the structural network.

In contrast to spectral graph models, inferring functional connectivity from biophysiological 

models of neuronal populations have been a specialty of dynamic causal models (DCMs). 

Such generative models have emerged as powerful tools mainly to infer effective 
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(directional) connectivity for smaller networks (Daunizeau et al., 2009; Park et al., 2018; 

Pinotsis et al., 2017; Razi et al., 2015; Stephan et al., 2008), or dynamic functional 

connectivity (Preti et al., 2017; Van de Steen et al., 2019). While the goal of DCMs is 

similar to our proposed model that makes model inferences about FC, the two frameworks 

are different in terms of approach and dimensionality. DCMs examine the second order 

covariances of brain activity, and it is only recent works with spectral and regression DCM 

models have expanded the model coverage to the whole-brain scale and the potential to 

incorporate SC data (Frässle et al., 2018; 2017; Razi et al., 2017). However, these models 

rely on formulation of local neural masses to derive dynamical behavior, which are then 

used to generate effective or dynamic connectivity through simulations. By avoiding large­

scale simulations of neuronal activity, in our proposed framework we not only allowed 

canonical functional patterns to emerge directly from a complex Laplacian matrix, we have 

also created a model with only two global parameters. Most DCM models have many 

more degrees of freedom compared to our work because of their parameterization for 

different interactions within and between brain regions. In contrast to some of more recent 

spectral DCM parameterizations, additionally, our global parameters reflecting the brain’s 

anatomical connection density and distances traveled between connections continue to have 

clear biophysical interpretability.

Frequency-band specific magnetoencephalography (MEG) resting-state networks have been 

successfully modeled with a combination of delayed NMMs and eigenmodes of the 

structural network (Tewarie et al., 2019), suggesting delayed interactions in a brain’s 

network give rise to functional patterns constrained by structural eigenmodes. In our recent 

work, we expanded upon eigenmdoes of SC matrices by integrating time delays in the 

brain with SC to create a complex Laplacian matrix in the Fourier domain (Raj et al., 

2020). Using the eigen-spectra of the complex Laplacian matrix, we found specific subsets 

of complex eigenmodes that contributed to specific cortical alpha and beta wave patterns. 

The findings in the current article expands upon these time-delayed eigenmodes to find 

subsets of eigenmodes predictive of canonical functional networks derived from resting state 

fMRI. Our theorized framework provides two global parameters that act on the structural 

connectome and its corresponding distance adjacency matrix to control coupling strength 

and delays in the network. These findings supports other works suggesting there is a 

possible organizational hierarchy, or gradients of topographical organization that spatially 

constraints cortical function (Buckner and Margulies, 2019; Huntenburg et al., 2018; 

Margulies et al., 2016; Sepulcre et al., 2012; Vázquez-Rodríguez et al., 2019). Margulies et 

al. proposed that so-called “principal gradients”, which may be interpreted as the Laplacian 

eigenmodes of the FC matrix, serve as the core organizing axis of cerebral cortex, spanning 

from unimodal sensorimotor to integrative transmodal areas (Margulies et al., 2016). The 

complex eigenmodes proposed here may therefore be considered as the structural analog of 

Margulies’ principal gradients. Similarly, we found that the unimodal sensorimotor networks 

at one end of the principal gradient, which accounts for the most variance in connectivity, 

achieved the highest spatial correlations. On the other hand, transmodal networks on the 

opposite end of the axis, needed much more cumulatively combined structural eigenmodes 

to achieve high spatial similarity.
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Atasoy et al. previously modeled the same resting-state canonical functional networks 

used here with real-valued Laplacian eigenmodes as structural substrates on which a 

mean field neural model dictated cortical dynamics (Atasoy et al., 2016). While the 

model dimensionalities between the two studies are vastly different, we show that in the 

absence of a neural dynamical system, the addition of time lag in the network allowed 

canonical functional networks to emerge from just structural substrates. Furthermore, we 

believe incorporating time lags in our structural connectivity of the brain to create complex 

Laplacian matrices is an informative but unexplored alternative to regular Laplacian 

normalizations of brain networks. Particularly, the complex connectivity matrix in Fourier 

domain allows exploration of oscillatory frequency and phase shifts between brain regions 

as a property of the network, potentially presenting an opportunity in utilizing complex 

structural eigenmodes to integrate SC for explaining imaginary coherence patterns in MEG 

and EEG.

4.6. Limitations

The current results are limited by data resolution. Tractograms obtained from diffusion 

weighted images are approximations of the brain’s axonal white-matter connections. We 

recognize that tractography, paired with anatomical parcellation of brain regions, does fail 

to appreciate the finer structures in the brain, especially the more refined connections 

and nuclei in the brain stem as well as close neighbor connections. Despite the coarse 

parcellation and rough approximations of white matter architecture, our proposed approach 

utilizes a spatial embedding of the brain’s connectomics information and is extendable to 

finer parcellations.

Our theorized model relies on an averaged approximation of fiber distances between ROIs, 

and we assumed a global parameter to account for conductance speed in the brain. In reality, 

the amount of myelination and synaptic strength varies greatly in the brain. However, our 

approximations were enough in recapitulating canonical functional networks in the human 

brain, while benefiting from a low dimensional and interpretable model. It is also worth 

nothing that the canonical functional networks used in this work were obtained from data­

driven clustering of fMRI activity, and is far from a comprehensive representation of the 

brain’s functional patterns. While our work can be extended to finer functional parcellations, 

we sought to avoid overlap between canonical functional networks by using the 7 networks 

parcellation. For example, the dorsal and ventral attention networks are found to overlap 

with the salience network (Seeley et al., 2007), and task activated fMRI patterns revealed 

regions that are positively and negatively associated with attention and default networks 

(Fox et al., 2005).

5. Conclusions

In conclusion, we show that the spatial embedding of the brain’s connections in a structural 

connectome is a rich substrate, on which we can derive intrinsic functional patterns of 

the brain with a simple network diffusion approach. We show that Laplace eigenbasis in 

the complex frequency domain outperforms conventional eigenbasis of the graph Laplacian 

in capturing spatial patterns of canonical functional networks. We recognize the complex 
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nonlinear activities and dense connections present in the brain, but our work suggests that 

we can continue to extend simpler linear modeling approaches to approximate what we 

observe with macroscopic imaging techniques such as BOLD fMRI and diffusion weighted 

imaging.

6. Methods

6.1. Structural connectivity network computation

We constructed structural connectivity networks according to the Desikan–Killiany atlas 

where the brain images were parcellated into 68 cortical regions and 18 subcortical regions 

as available in the FreeSurfer software (Desikan et al., 2006; Fischl et al., 2002). We first 

obtained openly available diffusion MRI data from the MGH-USC Human Connectome 

Project to create an average template connectome (McNab et al., 2013). Additionally, we 

obtained individual structural connectivity networks from 36 subjects’ diffusion MRI data. 

Specifically, Bedpostx was used to determine the orientation of brain fibers in conjunction 

with FLIRT, as implemented in the FSL software (Jenkinson et al., 2012). Tractography was 

performed using probtrackx2 to determine the elements of the adjacency matrix. We initiated 

4000 streamlines from each seed voxel corresponding to a cortical or subcortical gray matter 

structure and tracked how many of these streamlines reached a target gray matter structure. 

The weighted connection between the two structures cl,m was defined as the number of 

streamlines initiated by voxels in region l that reach any voxel within region m, normalized 

by the sum of the source and target region volumes. This normalization prevents large brain 

regions from having extremely high connectivity due to having initiated or received many 

streamline seeds. Afterwards, connection strengths are averaged between both directions 

(clm and cm,l) to form undirected edges. Additionally, to determine the geographic location 

of an edge, the top 95% of non-zero voxels by streamline count were computed for both 

edge directions, the consensus edge was defined as the union between both post-threshold 

sets.

6.2. Canonical functional networks

We chose the 7 CFN parcellations mapped by Yeo et al. (2011) as the functional spatial 

patterns most frequently visited by the human brain. The brain parcellations were created 

from fMRI recordings of 1000 young, healthy English speaking adults at rest with eyes 

open. A clustering algorithm was used to parcellate and identify consistently coupled voxels 

within the brain volume. The results revealed a coarse parcellation of seven networks: ΨCFN 

= {limbic, default, visual, frontoparietal, somatomotor, ventral attention, dorsal attention}.

The CFN parcellation was co-registered to brain regions of interest in the gyral based 

Desikan–Killany atlas (Desikan et al., 2006) to match the dimensionality of our complex 

Laplacian structural eigenmodes. Then spatial activation maps of each canonical network 

was produced by normalizing the number of voxels per brain region belonging to a specific 

CFN by the total number of voxels in the brain region of interest (Fig. 1). Both the 

functional networks and the Desikan–Killiany atlas are openly available for download from 

Freesurfer (Fischl, 2012) (http://surfer.nmr.mgh.harvard.edu/).
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6.3. Global parameter optimization for individual structural eigenmodes

To ensure that we obtained a globally optimal set of parameters α, k that provided a complex 

Laplacian eigenmode un which is the most similar to the spatial pattern of each of the seven 

ΨCFN, we performed an optimization of the cost function: f(α, k, n) = 1 − corr(ΨCFN, 

un(á, k)) to determine the optimal eigenmode, coupling, and wavenumber for each canonical 

functional network. We used the “basin-hopping” global optimization technique on this cost 

function, a robust technique for non-convex cost functions (Wales and Doye, 1997). This 

algorithm is able to escape from local minima in the parameter space by accepting and 

“hopping” to new parameters even if they increase the cost function. The algorithm will 

accept iterations that decrease the cost function evaluation with a probability of 1, but only 

accept iterations that do not decrease cost function with a probability of exp(Δ(f)/T) , where 

Δ(f) is the change in the cost function across successive iterations, and T is a constantly 

decreasing “temperature” term. Larger T indicates that the algorithm is more willing to 

accept jumps in cost function evaluation. We initiated the optimization procedure from ten 

different initial parameter values and selected the best result out of all initialization runs.

6.4. Similarity analysis between canonical functional networks and cumulative linear 
combination of structural eigenmodes

Here, we examine whether structural eigenmodes can form a linear basis for activation 

patterns for canonical functional networks and examine if a cumulative combination of 

structural eigenmodes improves the spatial similarity with CFN’s when compared to 

individual structural eigenmodes. For each CFN, we first ordered the eigenmodes based on 

their individual similarity after global parameter optimization using procedures described 

in the previous section. For each CFN, we then computed similarity of the optimal 

linear weighting of sorted individual structural eigenmodes ul, with ΨCFN by cumulatively 

adding structural eigenmodes ordered by their similarity. We minimized the L2 – norm of 

ΨCFN − ∑l = 1
N ul(α, k)wl, to obtain the optimal weights wl and a quantification of spatial 

patterns obtained by the best cumulative set of eigenmodes.

Spatial similarity of cumulative eigenmodes with CFNs were then computed using both 

Pearson’s (Fig. 6) and Spearman’s correlations (Figure S2). While Spearman’s correlation 

was appropriate for non-continuous correlative comparisons, its non-linearity due to sorting 

of values was evident in volatile changes of spatial similarity, and Pearson’s correlation 

provided more stable results.

We repeated the above analysis for both the conventional real-valued Laplacian without 

frequency and transmission speed tuning, as well as complex Laplacians obtained from 

randomized connectivity matrices. For random connectivity matrices, we constructed 1000 

realizations of random connectivity and distance matrices to allow us to compare and 

quantify the performance of the brain’s structural eigenmodes against eigenmodes of 

randomized graphs. The random matrices were constructed with the same sparsity as the 

HCP template connectome, and the elements of the random matrices were assigned by 

randomly sampling from a distribution that’s representative of the mean and variance of the 

HCP template connectome and distance matrices.

Xie et al. Page 15

Neuroimage. Author manuscript; available in PMC 2021 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The analysis overview. Structural connectivity matrix (C) and distance adjacency matrix (D) 

were extracted from diffusion MRI derived tractograms, to construct the complex Laplacian 

of the brain’s structural network. An eigen decomposition on the network’s complex 

Laplacian (ℒ) was performed obtain complex structural eigenmodes of the brain (U). 

The spatial similarities were computed between the structural eigenmodes and canonical 

functional networks in fMRI. Here, as an example, we show brain rendering of the leading 

eigenmode from the HCP template structural connectome (right column, top) and the 

canonical visual functional network (right column, bottom).
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Fig. 2. 
Complex Laplacian eigenmode for different parameter choices. Three representative 

eigenmodes decomposed from the complex Laplacian with different tuning parameters 

and three representative eigenmodes decomposed from the real-valued Laplacian without 

transmission speed and distance delay properties are shown. The top row shows brain 

renderings of the real Laplacian eigenmodes with coupling strength α = 1. Complex 

Laplacian eigenmodes with high transmission speed approaches extremely small wave 

number or delays in the network (α = 1, k = 0 . 1), closely resembles the real Laplacian 

eigenmodes (second row). Complex Laplacian eigenmodes with higher wave numbers with 

parameters (α = 1, k = 30) and (α = 5, k = 30) are respectively shown in the third and 

fourth rows, demonstrating that parameter choice control the spatial distribution of structural 

eigenmodes.
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Fig. 3. 
Canonical functional networks reproduced by structural eigenmodes. A) Brain renderings of 

the seven canonical functional networks are shown in the left column. Individual structural 

eigenmodes with the highest spatial correlation to each functional network, after parameter 

optimization, are shown in the middle column. After ranking all structural eigenmodes by 

highest spatial correlation, a linear combination of the top ten best performing eigenmodes 

are shown in the right column. Parameter values producing the best spatial matches to each 

canonical functional network are listed in the right column and applies to all eigenmodes. 

B) Top 10 best fitted structural eigenmodes and canonical functional network comparisons 

shown in scatter plots with linear regression line and 95% confidence interval.
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Fig. 4. 
Structural eigenmode spatial similarity to canonical functional networks depends on model 

parameters. Colors display the spatial correlation values (Spearman’s) of all complex 

Laplacian eigenmodes across all parameter values with each canonical functional network. 

Shifts in coupling strength (α, top, with wave number held constant at k = 10) does not 

cause a change in peak spatial correlation, but only in the ordering of the eigenmodes. In 

contrast, however, shifts in wave number (k, bottom), with coupling strength held constant 

at α = 1, leads to changes in eigenmode spatial patterns and spatial correlation to canonical 

functional networks.
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Fig. 5. 
Canonical functional networks have complex Laplacian eigenmode specificity. Each dot 

on the violin plot corresponds to the best performing eigenmode number. Showing that 

across all subjects (n = 36) , canonical functional networks occupies specific structural 

eigenmodes as the dominant structural basis. Default mode network is the exception as the 

best performing eigenmode spans across all eigenmodes. On the other hand, the rest of the 

canonical functional networks cluster to specific eigenmode numbers.
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Fig. 6. 
Structural eigenmodes of the HCP template complex Laplacian predict canonical functional 

networks better than structural eigenmodes of the real Laplacian. For each canonical 

functional network, we quantified its spatial similarity against linear combinations of 

structural eigenmodes obtained from various types of Laplacians. The spatial similarities 

quantified by linear least squares residuals are shown on top, and Pearson’s correlations 

are shown on the bottom. Overall, accumulation of structural eigenmodes improves the 

spatial similarity between functional networks and structural eigenmodes. The complex HCP 

eigenmodes (orange) and real-valued HCP eigenmodes (blue) both outperform eigenmodes 

decomposed from random connectomes and random distance matrices (green). However, 

only the complex HCP eigenmodes outperform complex eigenmodes decomposed from the 

HCP template connectome paired with random distance matrices (magenta).
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Fig. 7. 
Complex Laplacian outperforms real Laplacian in recapitulating canonical functional 

networks with individual structural connectomes. Violin plot showing that on a group level 

(each dot correspond to one subject, n = 36), the best performing structural eigenmodes of 

the complex Laplacian (orange) outperforms the corresponding structural eigenmode from 

the real Laplacian (blue) and random distance complex Laplacian (magenta). Paired T-test 

results of complex Laplacian against either real Laplacian or random distance complex 

Laplacian shows the complex Laplacians eigenmodes achieving significantly higher spatial 

similarity on the group level (P-values shown as *< 0.5 - **< 0.01).
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