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Introduction
Mouse embryonic stem (ES) cells derived from the inner cell 

mass of blastocyst embryos have the ability to self-renew and are 

pluripotent. ES cell pluripotency is maintained via the LIF-gp130-

STAT3, bone morphogenetic protein (BMP)–Smad-Id, and proba-

bly Wnt and mTOR signaling cascades (Smith et al., 1988; 

Williams et al., 1988; Niwa et al., 1998; Matsuda et al., 1999; 

Ying et al., 2003; Gangloff et al., 2004; Murakami et al., 2004; 

Sato et al., 2004). Intracellular regulators of ES cell self-renewal 

include Oct4, Sox2, Nanog, and the recently implicated tran-

scription factors Sall4, Esrrb, Tbx3, and Tcl1 (Yuan et al., 

1995; Nichols et al., 1998; Niwa et al., 2002; Chambers et al., 

2003; Mitsui et al., 2003; Ivanova et al., 2006; Zhang et al., 2006).

Using chromatin immunoprecipitation on chip analyses to 

map Oct4, Sox2, and Nanog target genes, a large group of genes 

was identifi ed that is coregulated by these factors in different com-

binations, although the majority of genes was cooccupied by Oct4, 

Sox2, and Nanog (Boyer et al., 2005; Loh et al., 2006). Interest-

ingly, many of these target genes are not expressed in ES cells.

Recent reports showed that in ES cells, many differentia-

tion genes are silenced by Polycomb group (PcG) complexes, 

indicating that the epigenetic regulation of gene expression is 

essential for maintaining ES cell pluripotency (Azuara et al., 

2006; Bernstein et al., 2006; Boyer et al., 2006; Bracken et al., 

2006; Lee et al., 2006; Loh et al., 2006). Interestingly, many 

of the repressed Nanog, Oct4, and Sox2 target genes were co-

occupied by PcG complexes, suggesting that ES cells are poised 

to enter differentiation programs but are held in check by PcG-

mediated chromatin modifi cations. The suggestion that epigen-

etic regulation is an important instrument to control ES cell 

pluripotency versus their capacity to differentiate is further sup-

ported by the fi ndings that the PcG protein Suz12 is required for 

ES cell differentiation (Pasini et al., 2007) and that a functional 

NuRD (nucleosome remodeling and disruption) complex, which 

is involved in nucleosome remodeling, is required for the lin-

eage commitment of ES cells (Kaji et al., 2006).
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 E
mbryonic stem (ES) cells are able to grow indefi -

nitely (self-renewal) and have the potential to differ-

entiate into all adult cell types (pluripotency). The 

regulatory network that controls pluripotency is well char-

acterized, whereas the molecular basis for the transition 

from self-renewal to the differentiation of ES cells is much 

less understood, although dynamic epigenetic gene si-

lencing and chromatin compaction are clearly implicated. 

In this study, we report that UTF1 (undifferentiated embry-

onic cell transcription factor 1) is involved in ES cell differ-

entiation. Knockdown of UTF1 in ES and carcinoma cells 

resulted in a substantial delay or block in differentiation. 

Further analysis using fl uorescence recovery after photo-

bleaching assays, subnuclear fractionations, and reporter 

assays revealed that UTF1 is a stably chromatin-associated 

transcriptional repressor protein with a dynamic behavior 

similar to core histones. An N-terminal Myb/SANT domain 

and a C-terminal domain containing a putative leucine zip-

per are required for these properties of UTF1. These data 

demonstrate that UTF1 is a strongly chromatin-associated 

protein involved in the initiation of ES cell differentiation.
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Apart from Oct4, Sox2, and Nanog, other genes are also 

highly and almost exclusively expressed during early embryo-

genesis (Mitsui et al., 2003; Ivanova et al., 2006). One of these 

genes, the UTF1 (undifferentiated embryonic cell transcription 
factor 1) gene, is specifi cally expressed in the inner cell mass 

and primitive ectoderm and is down-regulated at early primitive 

streak stages (Okuda et al., 1998). Expression is maintained in 

the primordial germ cells in developing embryos and in the go-

nads in adult animals (Chuva de Sousa Lopes et al., 2005). 

Promoter analysis indicated that the murine UTF1 gene is tran-

scriptionally regulated by Oct4 and Sox2 (Nishimoto et al., 

1999). The UTF1 protein was shown to repress transcription 

(Fukushima et al., 1999), to activate reporter genes in an ATF2-

dependent manner, and to interact with the basal transcription 

factor TFIID (Fukushima et al., 1998; Okuda et al., 1998). A 

recent study suggested a role for UTF1 in the proliferation 

rate and teratoma-forming capacity of ES cells (Nishimoto 

et al., 2005).

The purpose of this study was to determine the require-

ment of UTF1 for ES cell self-renewal and/or differentiation 

and to gain insight into its mechanistic properties. Using knock-

down (KD) strategies, we determined that UTF1 is involved in 

ES cell differentiation. UTF1 KD perturbed ES and embryonic 

carcinoma (EC) cell differentiation, whereas their ability to 

self-renew was unaffected. UTF1 displays transcriptional re-

pressor activity, and a combination of localization experiments, 

FRAP protocols, and subcellular fractionation assays indicated 

that UTF1 is stably chromatin associated with dynamics and 

biochemical properties similar to core histones.

Results
UTF1 is required for EC cell differentiation
To study the potential role of mouse UTF1 (mUTF1; hereafter 

UTF1) in ES and EC cell differentiation, we stably expressed 

UTF1 and Renilla luciferase (hereafter Renilla) siRNAs in 

P19CL6 EC cells. UTF1 expression levels were substantially 

decreased in all clones tested (Fig. 1 A), whereas expression 

levels of the pluripotency marker Oct4 were not affected (Fig. 

1 B). Next, DMSO-induced differentiation of wild-type (wt), 

Renilla, and UTF1 KD cells was analyzed (Fig. 1 B). wt and 

Renilla KD cells differentiated normally, which was refl ected by a 

drastic reduction in Oct4 levels around day 4, decreased UTF1 

levels between days 4 and 6, and detectable GATA4 (not deter-

mined for Renilla) and Troma1 expression by day 8. Actin was 

used as a protein loading control. In UTF1 KD lines, the differ-

entiation-induced down-regulation of Oct4 was either delayed 

(#1) or minor (#2), and both GATA4 and Troma1 were not de-

tected. Residual UTF1 protein levels were not further down-

regulated, most likely as a consequence of high Oct4 levels, a 

transcriptional activator of the UTF1 gene.

As UTF1 was previously reported to be involved in ES cell 

proliferation (Nishimoto et al., 2005), we determined the dou-

bling times of wt, Renilla KD, and UTF1 KD EC cells. UTF1 

KD cells showed a 24% and 17% increase in doubling time 

(8.9 ± 0.3 h) compared with wt EC (7.2 ± 0.1 h) and Renilla KD 

(7.6 ± 0.3 h) cells, respectively. Next, the differentiation of wt 

and UTF1 KD EC cells was performed with different cell num-

bers to rule out potential cell density effects on differentiation 

(0.5 and 2 times the number of cells: 1.8 × 105 and 7.3 × 105 

cells, respectively). Irrespective of the initial number of cells, the 

differentiation of UTF1 KD cells was always delayed or blocked, 

whereas wt cells differentiated normally (unpublished data). 

Summarizing, these data indicate that in EC cells, UTF1 KD 

results in an abrogated differentiation capacity and persistent Oct4 

expression under differentiation-inducing conditions.

UTF1 is involved in ES cell differentiation
To extend these fi ndings to a nontransformed mouse cell line, 

we tested the effect of UTF1 KD on IB10 ES cell differentia-

tion. Renilla KD clones expressed normal levels of UTF1 and 

Oct4, whereas in UTF1 KD cell lines, UTF1 levels were re-

duced, but Oct4 expression was not affected (Fig. 1 C). In addi-

tion, UTF1 and Renilla KD ES cells are positive for AP, confi rming 

their ES cell phenotype (Fig. 1 D). To determine whether UTF1 

down-regulation also affected the differentiation potential of 

these cells, embryoid bodies (EBs) were generated. Where wt 

and Renilla KD cells formed normal EBs with high effi ciency, 

UTF1 KD–derived EBs were irregularly shaped, much smaller 

in size, formed with low effi ciency, and compaction was not 

observed (Fig. 1 E).

In agreement with observations by Nishimoto et al. (2005), 

UTF1 KD affected (although less dramatically) the doubling 

time of ES cells: UTF1 KD ES cells have a doubling time of 

11.8 ± 0.7 h compared with 9.6 ± 0.7 h and 10.2 ± 0.1 h for wt 

(23% increase) and Renilla (16% increase) ES cells, respec-

tively. Because UTF1 KD abrogated the ability of EC cells to 

differentiate, we tested whether EBs from UTF1 KD ES cells 

Figure 1. UTF1 is involved in the differentiation of EC and ES cells. (A) UTF1 expression in P19CL6 EC cells (wt), 14-d DMSO-differentiated EC cells 
(wt d14), and four independent UTF1 EC KD clones (UTF1 #1–#4). The asterisk indicates a shorter variant of mUTF1 (aa 43–339) generated by transcription 
from an alternative start site (Nishimoto et al., 2001). (B) DMSO-induced differentiation of wt, Renilla luciferase KD (Renilla), and UTF1 KD (UTF1 #1 and 
#2) EC cells. Cell lysates were analyzed with antibodies against Oct4, UTF1, GATA4, and Troma1. Actin staining was performed as a loading control. 
(C) Western analysis of wt, Renilla luciferase KD (Renilla #1 and #2), and UTF1 KD (UTF1 #1 and #2) IB10 ES cells. Cell lysates were analyzed with antibodies 
against UTF1 and Oct4. Actin levels were determined to correct for gel loading. (D) Brightfi eld images of wt, Renilla luciferase KD (Renilla #1), and UTF1 
KD (UTF1 #1) ES cells stained for AP activity. (E) Phase-contrast images of EBs from wt, Renilla luciferase KD (Renilla #1), and UTF1 KD (UTF1 #1 and #2) 
ES cells after 3, 5, and 7 d. (F) Phase-contrast and brightfi eld images of day 8 EBs from wt, Renilla luciferase KD (Renilla #1), and UTF1 KD (UTF1 #2) ES 
cells stained for AP activity. (G) Expression levels of markers for ES cells (UTF1, Oct4, REX1, and Nanog), ectoderm (FGF5 and GAP43), mesoderm 
(Brachyury and BMP5), and endoderm (GATA4 and GATA6) were measured by semiquantitative RT-PCR in undifferentiated ES cells and EBs cultured for 
3, 5, and 10 d. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was used as a control. In the −RT lanes, reverse transcriptase was omitted 
from the reverse transcriptase reactions to control for genomic DNA contamination and amplifi ed using glyceraldehyde-3-phosphate dehydrogenase prim-
ers. A representative experiment is depicted. The asterisk indicates that the 5- and 10-d GAP43 RT-PCR products were not loaded in adjacent lanes. Bars, 
250 μm.
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also failed to differentiate. AP staining showed that day 8 wt 

and Renilla EBs are largely AP negative, whereas UTF1 KD 

EBs still displayed substantial AP activity, suggesting that 

UTF1 is involved in ES cell differentiation (Fig. 1 F). To further 

validate this observation, the expression pattern of several germ 

layer–specifi c marker genes during EB development was deter-

mined by RT-PCR (Fig. 1 G). Both wt and Renilla ES cells 

show a clear up-regulation of various lineage markers. At days 

3–5, Brachyury (early mesoderm) was detected, and at day 10, 

BMP5 (dorsal mesoderm) was detected. Endoderm markers 

GATA4 and GATA6 were detected at day 10, and ectoderm 

markers GAP43 and FGF5 were both detected at days 3–10. In 

contrast, both UTF1 KD cell lines showed either an absence 

(GATA6), minor (GATA4 and BMP5), or delayed (Brachyury) 

expression of these markers. However, ectoderm markers FGF5 

and GAP43 were detected from day 3. Pluripotency markers 

like Oct4, REX1, and Nanog were detected at all time points in 

the various EBs, most likely as a result of the incomplete differ-

entiation of a subset of cells.

The increased doubling time of UTF1 KD ES cells could 

(partially) be responsible for the observed differentiation de-

fect. However, already after 48 h, when differences in dou-

bling times have not yet resulted in substantial differences in 

cell numbers, we observed that UTF1 KD cells often failed 

to form aggregates (unpublished data). This strongly suggests 

that the observed effects on EB formation and differentiation 

cannot solely be explained by the increased doubling time of 

UTF1 KD cells. Collectively, these data show that UTF1 KD 

in ES cells results in perturbed EB formation and a severely 

reduced differentiation potential in the endodermal and meso-

dermal lineages.

UTF1 is a chromatin-associated 
transcriptional repressor
To understand the mechanistic properties of UTF1 that underlie 

its involvement in EC and ES cell differentiation, a series of 

experiments were performed to molecularly characterize the 

protein. First, we determined the subcellular localization of UTF1 

Figure 2. Characterization of localization, 
fractionation, and reporter activity of UTF1. 
(A) Immunofl uorescence analysis of endogenous 
UTF1 in EC cells using an antibody directed 
against UTF1. (B) Subnuclear fractionation of 
EC cells: F, free-diffusing protein fraction; D, 
DNaseI fraction; AS, ammonium sulfate frac-
tion; HS, high salt fraction; M, nuclear matrix 
fraction. Fractions were immunostained with 
antibodies recognizing UTF1, Oct4, HDAC1, 
and histone H2A. (C and D) Reporter analysis 
of HepG2 cells transfected with the SBE(inv)5 
reporter, (BRE)2 reporter, Smad 3/4, Smad 
1/4, and UTF1 as indicated. In all transfec-
tions, a LacZ expression plasmid, pDM2-LacZ, 
was included as an internal standard, and 
relative luciferase units (rlu) are depicted as 
the mean with SD (error bars). In all samples, 
equal amounts of expression plasmids were 
present by the addition of empty pcDNA3 
plasmid when required. (E) Mapping the UTF1 
repressor domains. A schematic representa-
tion of GAL4-UTF1 constructs used in this ex-
periment; the Myb/SANT domain and CD2 
are represented by black boxes and gray 
boxes, respectively. Different GAL4-UTF1 con-
structs and a constitutive active TK-luciferase 
reporter containing fi ve GAL4-binding sites 
(UAS-TK-Luc) were transfected into HepG2 cells. 
The inhibitory effect of UTF1 on reporter activ-
ity is depicted as fold repression compared 
with GAL4 alone. In all transfections, a LacZ 
expression plasmid, pDM2-LacZ, was included 
as an internal standard, and normalized lucif-
erase activity is depicted as the mean with SD. 
Bar, 15 μm.
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in EC cells (Fig. 2 A). UTF1 was clearly localized to the nucleus 

and excluded from the nucleoli. In addition, we found UTF1 to 

localize to the chromosomes at different stages during cell divi-

sion. To further characterize this potential interaction between 

UTF1 and the DNA/chromatin, we performed subnuclear frac-

tionations of EC cells separating free-diffusing proteins (cyto-

solic and nuclear), weak/strong DNA-associated proteins, and 

nuclear matrix (associated) proteins. UTF1 is observed exclu-

sively in the ammonium sulfate fraction known to contain strongly 

DNA-associated proteins, like core histone H2A (Fig. 2 B). 

In contrast, Oct4 primarily localized to the free-diffusing frac-

tion and, to some extent, to the nuclear matrix fraction, indi-

cating that Oct4 and UTF1 have distinct chromatin-binding 

characteristics. To compare the observed behavior of UTF1 to that 

of chromatin-modifying proteins, we determined the fractions 

containing histone deacetylase 1 (HDAC1; Fig. 2 B). Unlike 

UTF1, HDAC1 is found in the fractions containing free-diffusing 

and weak DNA-associated proteins. Collectively, these data 

suggest that UTF1 is a protein with a high affi nity for chromatin, 

similar to that of core histones and different from chromatin-

modifying proteins like HDAC1.

As a chromatin-associated protein, UTF1 is likely to be 

involved in gene expression regulation. To determine the effect 

of UTF1 on promoter activity, reporter assays were performed 

using constructs containing multiple copies of either the Smad-

binding element (SBE) or BMP-responsive element (BRE). 

These reporters were used because we previously identifi ed 

UTF1 as an SBE-interacting protein in a yeast 1 hybrid screen. 

However, more detailed analysis showed that UTF1 is not spe-

cifi cally involved in Smad signaling. The reporters are activated 

Figure 3. Cellular localization and subnuclear fractionation of GFP-UTF1 in EC and ES cells. (A) Western blot analysis of wild type (wt) EC cells and a clone 
stably expressing GFP-UTF1 (#1) using an antibody directed against UTF1. (B) Subnuclear fractionation of EC and ES cells, both expressing GFP-UTF1. 
Immunoblot analysis was performed with an antibody directed against UTF1 and the HA tag of the fusion protein. F, free-diffusing protein fraction; D, DNaseI 
fraction; AS, ammonium sulfate fraction; HS, high salt fraction; M, nuclear matrix fraction. (C) Confocal and transmission image of living EC cells express-
ing GFP-UTF1. Nucleoli are indicated by arrows. (D) Time-lapse imaging of a GFP-UTF1–expressing EC cell going through mitosis. (E) Confocal images of 
a mitotic GFP-UTF1–expressing cell treated with Hoechst. (F) Confocal and transmission images of GFP-UTF1–expressing ES cells grown on an STO cell 
feeder layer. The arrow indicates a nucleolus, and the arrowhead points to mitoticchromosomes. (G) Transmission image of AP staining of GFP-UTF1 ES 
cells. The underlying STO feeder cells are negative for AP activity. Bars, 15 μm.
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by the cotransfection of either Smad3 and 4 (SBE) or Smad1 

and 4 (BRE; Fig. 2, C and D). Cotransfection of UTF1 reduced 

the activity of Smad-stimulated SBE and BRE reporters by 

approximately twofold and fourfold, respectively. These data 

indicate that UTF1 is a transcriptional repressor.

Mapping of UTF1 repressor domains
UTF1 contains two conserved domains (CDs): CD1 (aa 55–

124), which shares high homology with Myb/SANT DNA-

binding domains, and CD2 (aa 271–334), which contains a 

putative leucine zipper. To identify its repressor domains, the 

effect of a series of GAL4-UTF1 (deletion) constructs was 

tested on a thymidine kinase (TK) luciferase reporter containing 

fi ve copies of the GAL4 target sequence (UAS-TK-Luc; Fig. 

2 E). As expected, UTF1 repressed UAS-TK-Luc reporter activ-

ity (eightfold reduction compared with GAL4). Deletion of the 

very C-terminal 39 aa resulted in an almost 2.8-fold reduction 

in repressor activity. Further C-terminal deletions only margin-

ally affected repressor activity, but when the Myb/SANT do-

main (aa 55–124) was deleted, an additional drop in repressor 

activity compared with the 1–167 and 1–134 constructs was ob-

served. The fi nding that both the C terminus and Myb/SANT 

domain are involved in transcriptional repression was confi rmed 

using a series of progressive N-terminal deletions. Deletion of 

aa 1–65 resulted in a 3.1-fold reduction of repressor activity 

(compare 1–339 with 66–339), and further N-terminal deletions 

did not affect UTF1 repressor activity except for the deletion 

construct (297–339) that misses part of the CD2 domain, which 

completely lacked repressor activity. To address the importance 

of the Myb/SANT domain, we generated a mutant lacking this 

region, which reduced repressor activity by 1.7-fold, indicating 

that it is important for transcriptional repression by UTF1. In 

addition, the Myb/SANT domain alone (33–134) also displayed 

considerable repressor activity (3.9-fold repression). Collec-

tively, these experiments indicate that both the Myb/SANT do-

main and the extreme C terminus of UTF1 are important for 

transcriptional repression by UTF1.

Live cell distribution of UTF1
To study its localization in living cells, UTF1 was fused to 

enhanced GFP (eGFP), creating eGFP-HA-UTF1 (hereafter 

GFP-UTF1), and was stably expressed in EC cells. To prevent 

localization artifacts, we used a clone that underexpressed GFP-

UTF1 compared with the endogenous protein (Fig. 3 A). Sub-

nuclear fractionation showed that GFP-UTF1, like endogenous 

UTF1, is almost exclusively found in the strongly DNA-associated 

fraction (Fig. 3 B). Reporter (UAS-TK-Luc) assays in HepG2 

cells showed that GFP-UTF1 acted as a transcriptional repres-

sor as well (see Fig. 5 A). These data indicate that fusing GFP 

to the N terminus of UTF1 does not interfere with the function 

of the protein.

Confocal microscopy of living cells showed that GFP-

UTF1 localized to the nucleus with an inhomogeneous distribu-

tion in a similar fashion as the endogenous protein (Figs. 2 A 

and 3 C). GFP-UTF1 is excluded from the nucleoli (Fig. 3 C, 

arrows). The punctate localization is more intense around the 

nucleoli and in the nuclear periphery. Time-lapse imaging of a 

cell counterstained with Hoechst showed the chromosomal lo-

calization of GFP-UTF1 during metaphase, anaphase, and telo-

phase (Fig. 3, D and E).

Figure 4. Strip-FRAP analysis of GFP, GFP-UTF1, 
H2B-GFP, and Oct4-GFP. (A) FRAP analysis of EC cells 
expressing GFP (green line) or GFP-UTF1 (blue line). 
The graph shows the relative fl uorescent recovery di-
rectly after bleaching. The prebleach level is normal-
ized to 1. GFP displays a quick fl uorescent recovery in 
the bleached region, whereas GFP-UTF1 shows only 
little recovery directly after photobleaching. (B) FRAP 
analysis of ES cells expressing GFP (green line) or 
GFP-UTF1 (blue line). GFP shows a quick recovery 
after bleaching, whereas GFP-UTF1 displays only a 
marginal recovery. (C) FRAP experiment of EC cells 
expressing either GFP-UTF1 (blue line) or histone H2B-
GFP (red line). GFP-UTF1 and H2B-GFP both show 
only a small recovery directly after photobleaching. 
(D) FRAP experiment of EC cells expressing GFP (green 
line), GFP-UTF1 (blue line), or Oct4-GFP (red line). 
Oct4-GFP shows a quick recovery after fl uorescence, 
although slower than GFP.
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In ES cells, a similar GFP-UTF1 distribution was observed: 

localized to the nucleus, excluded from the nucleoli (Fig. 3 C, 

arrows), and chromosome associated during mitosis (Fig. 3 F, 

 arrowhead). GFP-UTF1 ES cells were AP positive (Fig. 3 G) 

and expressed Oct4 (not depicted). Fractionation of GFP-UTF1 

ES cells showed that both endogenous UTF1 (αmUTF1) and 

GFP-UTF1 (αHA) localized to the fraction containing strongly 

DNA-associated proteins (Fig. 3 B).

Mobility of UTF1 in living cells
To study the observation that UTF1 is a stably chromatin-asso-

ciated protein in a more physiological context, we analyzed the 

dynamic properties of UTF1 in living cells using a FRAP proto-

col. In EC cells, GFP-UTF1 molecules were bleached in a small 

strip spanning the nucleus, and subsequent fl uorescent recovery 

in the strip was measured at 20-ms intervals (Hoogstraten et al., 

2002; van den Boom et al., 2004). The mean fl uorescence inten-

sity in the strip of several cells was plotted against time relative 

to the prebleach level. GFP-expressing cells showed a fast re-

covery of fl uorescence in the strip (Fig. 4 A, green line), indicat-

ing a highly mobile protein. Fluorescence in the strip did not 

recover to prebleach levels as a result of the permanent bleach-

ing of a fraction of the molecules. In contrast to GFP, GFP-

UTF1 (Fig. 4 A, blue line) showed only little recovery after 

bleaching, indicating that the vast majority is long-term immo-

bilized, at least for the duration of the FRAP experiments. 

Because mobility measurements of GFP and GFP-UTF1 in ES 

cells produced identical results (Fig. 4 B, green line and blue 

line, respectively), EC cells were used for all subsequent mobil-

ity measurements.

In terms of localization (Figs. 2 A and 3 C) and subnuclear 

fractionation behavior (Fig. 2 B), UTF1 greatly resembles core 

histones (Kanda et al., 1998). To further substantiate this obser-

vation, the mobilities of UTF1 and core histone H2B (Kimura 

and Cook, 2001) were compared (Fig. 4 C). FRAP curves for 

GFP-UTF1 (Fig. 4 C, blue line) and H2B-GFP (Fig. 4 C, red 

line) were virtually identical, indicating the similar molecular 

kinetics of these proteins. Computer simulations of the FRAP 

procedure were used to fi t the experimental data, yielding dif-

fusion constants, immobile fractions, and residence times of 

all proteins tested (Table I and Fig. S1, available at http://www

.jcb.org/cgi/content/full/jcb.200702058/DC1). Both the popu-

lation of GFP-UTF1 and H2B-GFP molecules displayed an im-

mobile fraction of �90% (Table I and Fig. S1, A and B). The 

duration of immobilization was much longer than the 20-s time 

scale of our experiments and, therefore, could only be deter-

mined with limited accuracy. For both GFP-UTF1 and H2B-

GFP, a residence time in the order of minutes to hours was 

determined, which is in agreement with the fi ndings of Kimura 

and Cook (2001).

Subsequently, we compared the dynamic behavior of 

GFP-UTF1 and Oct4-GFP (Fig. 4 D). In contrast to GFP-UTF1 

(Fig. 4 D, blue line), Oct4-GFP (Fig. 4 D, red line) is largely 

mobile. Note that Oct4-GFP fl uorescence recovery is much 

slower than that of GFP (Fig. 4 D, green line). Computer sim-

ulations indicated that 10% of the Oct4-GFP molecules are 

 immobile with a residence time in the order of 0.1 s (Table I and 

Fig. S1 C). In addition, the diffusion rate of Oct4-GFP (3 μm2/s) 

suggested that the protein resides in a high molecular weight 

complex. The highly dynamic behavior of Oct4-GFP molecules 

is similar to what is found for several other DNA transacting 

factors like the transcription/repair factor TFIIH, the homo-

logous recombination protein Rad54, and TFIIB during inter-

phase (McNally et al., 2000; Phair and Misteli, 2000; Chen 

et al., 2002; Essers et al., 2002; Hoogstraten et al., 2002; Phair 

et al., 2004; van den Boom et al., 2004; Houtsmuller, 2005). 

These data indicate that the dynamic behavior of UTF1 is simi-

lar to that of core histones but not to that of transcription factors 

like Oct4.

Localization and mobility 
of GFP-UTF1 mutants
Using GAL4-UTF1 fusions, we identifi ed the putative Myb/

SANT domain and the C terminus of UTF1 as repressor do-

mains (Fig. 2 E). To investigate the requirement of these do-

mains in UTF1 localization and mobility, a series of GFP-UTF1 

mutants was generated. First, the repressor activity of wt and 

mutant GFP-UTF1 proteins was determined in reporter assays. 

Mutation of aa 63 (W→G) and 67 (E→K; GFP-UTF1 W63G 

E67K; Fig. 5 A), two amino acids highly conserved in Myb/

SANT domains, and/or deletion of the C-terminal 39 aa (GFP-

UTF1 W63G E67K 1–300; GFP-UTF1 1–300) resulted in a 

complete loss of UTF1 repressor activity (Fig. 5 A).

In terms of localization, GFP-UTF1 and GFP-UTF1 W63G 

E67K display a similar distribution. Deletion of the entire Myb/

SANT domain resulted in an almost completely cytoplasmic 

 localized fusion protein (unpublished data). GFP-UTF1 1–300 

also interacted with mitotic chromosomes, whereas during inter-

phase, the protein seemed to be more dispersed (Fig. 5 B). GFP-

UTF1 W63G E67K 1–300 showed a completely homo genous 

nuclear distribution in combination with nucleolar exclusion. 

Furthermore, association with mitotic chromosomes was never 

observed (Fig. 5 B). These data indicate that both the Myb/

SANT domain and C terminus of UTF1 are required for proper 

localization of the protein during interphase as well as mitosis.

To determine the role of the Myb/SANT domain and 

C terminus in UTF1 mobility, FRAP analyses were performed. 

GFP-UTF1 W63G E67K–expressing cells showed an increased 

recovery of fl uorescence in the strip (Fig. 5 C, red line) compared 

Table I. Diffusion constants, immobile fractions, and residence times 
of tested constructs derived from FRAP data fi tting

Protein Diffusion 
constant

Immobile 
fraction

Residence time

μm2/s % s

GFP 14 ± 1.8 0 0

Oct4-GFP 3 ± 1.30 10 ± 0.1 0.1 ± 0.2

H2B-GFP 1 ± 0.38 90 ± 0.01 1,024 ± 105

GFP-UTF1 0.6 ± 2.74 90 ± 0.02 512 ± 35

GFP-UTF1 W63G E67K 0.6 ± 0.5 60 ± 0.04 1,024 ± 95

GFP-UTF11-300 14 ± 2.74 85 ± 0.01 0.25 ± 0.04

GFP-UTF1 W63G 

 E67K 1–300

14 ± 2.40 25 ± 0.04 0.25 ± 0.03
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Figure 5. Analysis of subcellular localization and mobility of wt and mutated GFP-UTF1. (A) A schematic representation and repressor activity of 
various GFP-UTF1 mutants. The Myb/SANT domain (aa 55–124) and conserved domain 2 (CD2) are indicated by black boxes and gray boxes, respec-
tively. The W63G and E67K point mutations are indicated by asterisks. Repressor activity of the GFP-UTF1 fusion proteins was measured on a 
constitutively active UAS-TK-Luc reporter in transiently transfected HepG2 cells. Negative controls include pUC18 and a peGFP-C1 plasmid. Error bars 
represent SD. (B) Confocal images of living cells expressing GFP-UTF1 (1–339), GFP-UTF1 W63G E67K (W63G E67K), GFP-UTF1 1–300 (1–300), 
and GFP-UTF1 W63G E67K 1–300 (W63G E67K 1–300). (C) FRAP analysis of EC cells expressing either GFP (green line), GFP-UTF1 (1–339; blue 
line), or GFP-UTF1 W63G E67K (W63G E67K; red line). (D) FRAP experiment of EC cells expressing either GFP (green line), GFP-UTF1 (1–339; blue 
line), or GFP-UTF1 1–300 (1–300; red line). (E) FRAP experiment of EC cells expressing either GFP (green line), GFP-UTF1 (1–339; blue line), or GFP-
UTF1 W63G E67K 1–300 (W63G E67K 1–300; red line). (F) Subnuclear fractionations of stable cell lines expressing GFP-UTF1 (1–339), GFP-UTF1 
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with GFP-UTF1 (Fig. 5 C, blue line), indicating a reduced bind-

ing effi ciency. The rate of fl uorescence recovery after the initial 

infl ux resembled that of GFP-UTF1, implying that the residence 

time of individual molecules was not affected. Computer simu-

lations showed that the residence time of GFP-UTF1 W63G 

E67K molecules is similar to GFP-UTF1 molecules (in the 

order of minutes to hours) but that the mean immobile fraction 

was smaller (�60%; Table I and Fig. S1 D).

GFP-UTF1 1–300–expressing cells showed a complete 

recovery after bleaching (Fig. 5 D, red line), demonstrating that 

the C terminus is required for the long-term immobilization of 

GFP-UTF1. However, the initial fl uorescence recovery in the 

strip was substantially slower than that of GFP (Fig. 5 D), sug-

gesting that UTF1 resides in a high molecular weight complex 

and/or is still capable of transiently interacting with sites of 

affi nity. Simulations showed that 85% of the GFP-UTF1 1–300 

molecules are immobilized with a residence time in the order of 

0.25 s (Table I and Fig. S1 E). These data indicate that the C ter-

minus of UTF1 is required for the long-term stabilization of 

interactions with sites of affi nity, most likely chromatin.

Remarkably, GFP-UTF W63G E67K 1–300 showed a 

much faster recovery of fl uorescence than GFP-UTF1 1–300 

and an only slightly slower recovery than GFP (Fig. 5 E), indi-

cating that this mutant is freely mobile. This was further sup-

ported by computer simulations that predicted that 25% of the 

GFP-UTF1 W63G E67K 1–300 molecules was immobilized 

with a short residence time of 0.25 s (Table I and Fig. S1 F). The 

UTF1 mutants lacking their C-terminal 39 aa (GFP-UTF1 

1–300 and GFP-UTF1 W63G E67K 1–300) displayed a marked 

increase in their diffusion constants compared with GFP-UTF1 

and GFP-UTF1 W63G E67K (14 vs. 0.6 μm2/s; Table I). How-

ever, because the model used for fi tting the data only included 

one pair of binding constants (immobile fraction and residence 

time) and the stable binding of GFP-UTF1 and GFP-UTF1 

W63G E67K is dominant in the FRAP curve, the observed low 

mobility of 0.6 μm2/s is most likely the result of additional tran-

sient interactions similar to those of the C-terminal mutants.

To investigate whether the differential mobilities of the 

mutant proteins are refl ected by altered distribution over sub-

nuclear fractions, cell lines stably expressing mutant GFP-UTF1 

proteins were analyzed (Fig. 5 F). As shown before (Fig. 3 B), 

GFP-UTF1 localized to the strongly DNA-associated protein 

fraction. The majority of the GFP-UTF1 W63G E67K proteins 

was also strongly DNA associated but was detected in the free-

diffusing protein fraction as well, indicating the presence of an 

increased portion of mobile molecules, which is in agreement 

with the FRAP data. Both GFP-UTF1 1–300 and GFP-UTF1 

W63G E67K 1–300 were found in the free-diffusing protein 

fraction, indicating that both mutants are fully mobile. Note that 

GFP-UTF1 1–300 was still capable of binding to mitotic chro-

mosomes and had a punctate nuclear localization, suggesting 

that this protein is capable of transient interactions with sites of 

affi nity. Throughout these experiments, endogenous UTF1 was 

always detected in the fraction containing strong DNA-associated 

proteins (unpublished data).

Discussion
These results show that UTF1 is required for the proper dif-

ferentiation of EC and ES cells. KD of UTF1 expression in EC 

and ES cells resulted in blocked or delayed differentiation but 

did not affect the self-renewal capacity of these cells, indicat-

ing that UTF1 is not required for ES cell self-renewal. In ad-

dition, reporter assays, subnuclear fractionations, and FRAP 

analyses showed that UTF1 is a stably chromatin-associated 

transcriptional repressor with histone-like properties like long-

term DNA association and a majority of immobilized mole-

cules. The UTF1–chromatin interaction is dependent on two 

separate interaction domains: the Myb/SANT domain and the 

extreme C terminus. The concerted action of both interaction 

domains causes �90% of the molecules to bind to sites of 

affi nity for times similar to those of H2B (Table I; Kimura and 

Cook, 2001). Summarizing, these data indicate that UTF1 is 

strongly associated with chromatin in EC and ES cells and most 

likely also during the early stages of embryogenesis. UTF1 may 

establish a chromatin state that renders an ES cell susceptible 

to the activation of differentiation programs in response to 

appropriate stimuli. Despite being prone to differentiation, ES 

cells are kept in a self-renewing state by the combined action 

of self-renewal regulators like Nanog, Oct4, Sox2, and Sall4 

and the recently identifi ed Esrrb, Tbx3, and Tcl1 proteins that 

interfere with differentiation to epiblast-derived lineages (Yuan 

et al., 1995; Nichols et al., 1998; Chambers et al., 2003; Mitsui 

et al., 2003; Ivanova et al., 2006; Zhang et al., 2006). Although 

the expression patterns of UTF1 and these genes are identical 

(Mitsui et al., 2003; Ivanova et al., 2006), the function of UTF1 

seems opposite; where UTF1 is not required for ES cell self-

renewal, it is involved in ES cell differentiation. The fact that 

UTF1 expression is down-regulated during ES cell differentia-

tion is probably a consequence of the inactivation of the Oct4 

gene, a transcriptional activator of the UTF1 gene (Nishimoto 

et al., 1999).

Molecularly, UTF1 may be necessary for signaling to these 

self-renewal factors to allow differentiation to commence, ex-

plaining why UTF1 is dispensable for ES cell self-renewal and 

that its expression is down-regulated upon the initiation of differ-

entiation. More likely, in view of the histone-like properties 

of UTF1, its function could be the maintenance of a  specifi c epi-

genetic profi le required for differentiation either by attracting 

chromatin-modifying proteins or by chromatin compaction. 

This hypothesis is supported by the observation that UTF1 has 

transcriptional repressor activity, an observation also made by 

 Fukushima et al. (1999), who showed that UTF1 in the absence 

of ATF2 could repress the activity of various reporter genes.

W63G E67K (W63G E67K), GFP-UTF1 1–300 (1–300), and GFP-UTF1 W63G E67K 1–300 (W63G E67K 1–300). Blots were developed with an 
antibody against HA. F, free-diffusing protein fraction; D, DNaseI fraction; AS, ammonium sulfate fraction; HS, high salt fraction; M, nuclear matrix 
fraction. Bar, 15 μM.



JCB • VOLUME 178 • NUMBER 6 • 2007 922

 Recent reports have emphasized the role of the epigenetic 

regulation of gene expression in ES cell self-renewal and differ-

entiation (Azuara et al., 2006; Bernstein et al., 2006; Boyer 

et al., 2006; Bracken et al., 2006; Lee et al., 2006). The PcG 

proteins were found to silence a large set of developmental dif-

ferentiation genes in ES cells. Many of these PcG targets in ES 

cells are cooccupied by Oct4, Sox2, and Nanog (Boyer et al., 

2005; Loh et al., 2006), suggesting that to maintain the self-

renewing state of ES cells, stem cell self-renewal regulators 

may directly regulate the targeting and/or activity of chromatin 

remodeling complexes.

The phenotype of UTF1 KD ES cells is similar to that of 

ES cells lacking the PcG protein Suz12 (Pasini et al., 2007). 

Pasini et al. (2007) show that Suz12−/− ES cells fail to differen-

tiate, underlining the important role of PcG-mediated silencing 

in lineage specifi cation. Similarly, UTF1 may either directly or 

indirectly infl uence the epigenetic state of ES cells, thereby al-

lowing the initiation of lineage-specifi c differentiation. Down-

regulation of UTF1 may allow ES cells to establish a new, more 

somatic type of chromatin, which is analogous to observations 

made by Meshorer et al. (2006), who showed that architectural 

chromatin proteins bind loosely to chromatin in ES cells and 

become immobilized upon differentiation.

In this study, we show for the fi rst time that the ES cell 

protein UTF1 is a stably chromatin-associated protein that is in-

volved in initiation of the differentiation program of ES cells. 

We propose that with UTF1, we have identifi ed a principal com-

ponent of the complex regulatory gene network underlying ini-

tiation of the lineage-committed differentiation of ES cells.

Materials and methods
Constructs
The mUTF1 cDNA was provided by H. Stunnenberg (Nijmegen Centre 
for Molecular Life Sciences, Nijmegen, Netherlands). BamHI (5′) and 
EcoRI (3′) sites were added by PCR, and this fragment was BamHI–EcoRI 
ligated into pcDNA3-HA, resulting in pcDNA3-HA-mUTF1. For PCR, the 
primers mUTF1 forward (5′-A T A T G A T A T C G G A T C C A T G C T G C T T C G T C C C-
C G G A G -3′) and mUTF1 reverse (5′-A T A T G A A T T C T T A T T G G C G C A A G T C C-
C C A A G -3′) were used.

pSG424-UTF1 constructs. pSG424mUTF1 1–300 was generated by 
BamHI–SalI digestion of pcDNA3-HA-mUTF1 and ligation of the fragment 
into pSG424. pSGS424mUTF1 1–339 was generated by NheI–SacI diges-
tion of pcDNA3-HA-mUTF1 and ligating the fragment into pSG424mUTF1 
1–300 digested with NheI–SacI. pSG424-mUTF1 1–167 was cloned by 
SacII (T4 DNA polymerase) and SalI (Klenow) digestion of pSG424mUTF1 
and subsequent self-ligation. pSG424-mUTF1 1–134 was generated 
by BspEI–XbaI (Klenow) digestion of pSG424mUTF1 and self-ligation. 
pSG424-mUTF1 1–66 was cloned by the digestion of pSG424mUTF1 
with BsmBI–XbaI (Klenow) and self-ligation. pSG424-mUTF1 1–32 was 
generated by AspI–XbaI digestion (Klenow) of pSG424mUTF1 and self-
ligation. pSG424-mUTF1 1–18 was generated by NheI–SalI digestion 
(Klenow) of pSG424mUTF1 and self-ligation. pSG424mUTF1 33–339 was 
cloned by ligating the AspI (Klenow)–SacII fragment from pSG424mUTF1 
1–339 into pSG424mUTF1 1–339 digested with BamHI (Klenow)–SacII. 
pSG424mUTF1 66–339 was generated by ligation of a BamHI–SacII-
digested PCR fragment (forward: 5′-A T A T G G A T C C T T C G A G A G A C G G A G C-
T A C T T C -3′; reverse: 5′-A T A T G A A T T C T T A T T G G C G C A A G T C C C C A A G -3′) 
into pSG424mUTF 1–339 digested with BamHI–SacII. pSG424mUTF1 
210–339 was generated by digesting pSG424mUTF1 with BamHI–AspI 
(Klenow) and self-ligation. pSG424mUTF1 249–339 was cloned by 
BamHI–DraIII digestion (Klenow) of pSG424mUTF1 and self-ligation. 
pSG424mUTF1 297–339 was cloned by EcoRI digestion of a PCR fragment 
(forward: 5′-A T G A A T T C C A G C T G T C G A C C C T G A A C -3′; reverse: 5′-A T A-
T G A A T T C T T A T T G G C G C A A G T C C C C A A G -3′) and subsequent  ligation in 

pSG424 digested with EcoRI. To delete the Myb/SANT domain, a PCR frag-
ment (forward: 5′-A T A T G A T A T C A G A T C T A T G C T G C T T C T G C C C C G G A G -3′; 
reverse: 5′-A G G G T C C G G A C G G C T G G C C C T G G G A G T C T C G G A G C G C-
C G A G T C C G G G G A C A C -3′) was BglII–BspEI digested and BamHI–BspEI 
ligated into pcDNA3-HA-mUTF1. To generate pSG424mUTF1 1–55/125–
339, the NheI–SacII fragment was isolated from pcDNA3-HA-mUTF1 
1–55/125–339 and ligated into pSG424mUTF1 1–339 digested with 
NheI–SacII. pSG424mUTF1 33–134 was generated by BspE1–XbaI diges-
tion (Klenow) of pSG424mUTF 33–339 and subsequent self-ligation.

peGFP-UTF1 constructs. peGFP-HA-mUTF1 was generated by HindIII 
and EcoRI digestion of pcDNA3-HA-UTF1 and HindIII–EcoRI ligation into 
peGFP-C1 (CLONTECH Laboratories, Inc.). peGFP-HA-mUTF1 1–300 was 
cloned by SalI digestion of peGFP-HA-mUTF1 and ligating the resulting 
941-bp fragment into the peGFP-HA-mUTF1 backbone followed by orienta-
tion check. peGFP-HA-mUTF1 W63G E67K was generated by HindIII–
EcoRI digestion of pcDNA3-HA-mUTF1 W63G E67K and ligation into 
peGFP-C1 digested with HindIII–EcoRI. pcDNA3-HA-mUTF1 W63G E67K 
was generated by fusion PCR (forward: 5′-T A T A G G A T C C A T G C T G C T T C T-
G C C C C G G A -3′; reverse: 5′-G T C T T T C G G G C A C T C C C G G G C G -3′; and 
forward: 5′-G C C C G G G A G T T G C C C G A A A G A C G -3′; reverse: 5′-A T A T G-
A A T T C T T A T T G G C G C A A G T C C C C A A -3′) and cloned into pcDNA3-HA 
using BamHI and EcoRI. peGFP-HA-mUTF1 W63G E67K 1–300 was cloned 
by SalI digestion of peGFP-HA-mUTF1 W63G E67K and ligation of the 
941-bp fragment into the SalI-digested peGFP-HA-mUTF1 W63G E67K 
backbone followed by orientation check.

siRNA constructs. For stable UTF1 KD, a specifi c short hairpin repeat 
of a 19-nucleotide sequence directly downstream of the stop codon (A G C T-
T T G T T A T C A G T C C T C ) was cloned into pSuper (Brummelkamp et al., 2002) 
after digestion with BglII and HindIII. Similarly, a sequence targeting 
Renilla luciferase mRNA (A A A C A T G C A G A A A A T G C T G ) was cloned into 
pSuper. pBos-H2B-GFP was obtained from BD Biosciences.

Cell culture and transfections
P19CL6 EC cells (Habara-Ohkubo, 1996) were grown in α-MEM (Invi-
trogen) supplemented with antibiotics and 10% FBS (Hyclone) at 37°C 
and 5% CO2. HepG2 cells were maintained in DME with antibiotics 
and 10% FBS. For differentiation of P19CL6 cells, 365,000 cells were 
seeded in 6-cm ø plates in culture medium supplemented with 1% DMSO 
(Sigma- Aldrich). Embryonic day 14 ES cells (subclone IB10) were grown 
on gelatin-coated dishes in buffalo rat liver cell–conditioned medium 
supplemented with 1,000 U/ml leukemia inhibitory factor (Chemicon), 
nonessential amino acids, and 0.1 mM 2-mercaptoethanol. For confo-
cal laser-scanning imaging, IB10 cells were seeded on a layer of STO 
feeder cells on gelatinized glass coverslips. To generate stably transfected 
cell lines, 107 cells were electroporated with 13.5 μg plasmid DNA and 
1.5 μg pPGK-Hyg plasmid. Selection was performed using 200 μg/ml 
hygromycin, clones were picked, and cell lysates were analyzed. For 
analyses of AP activity, an AP detection kit (Chemicon) was used. To 
generate stably transfected P19CL6 cell lines, cells were transfected with 
FuGENE 6 (Roche) and selected with 600 μl/ml G418 or 600 μg/ml 
hygromycin, and clones were picked. For DNA staining, cells were cul-
tured for 2 h in the presence of 10 μg/ml Hoechst 33258. For transient 
transfections, 250,000 HepG2 cells were seeded per 3.5-cm ø well. 
Transfections were performed using calcium phosphate coprecipitation. 
After 48 h, cells were harvested (reporter lysis buffer; Promega), and lu-
ciferase activity was measured (LucLite; Packard). To normalize luciferase 
activities, a β-galactosidase expression plasmid (pDM2LacZ) was cotrans-
fected. β-Galactosidase activity was determined in 100 mM Na2HPO4/
NaH2PO4, 1 mM MgCl2, 100 mM 2-mercaptoethanol, and 0.67 mg/ml 
O-nitrophenylgalactopyranoside.

EB formation
For EB formation, ES cells were suspended from the lids of 10-cm ø dishes 
in 20-μl drops (5 × 104 cells/ml). After 48 h, EBs were transferred to bac-
terial grade Petri dishes. On day 7, EBs were transferred to gelatinized 
3.5-cm ø six-well plates. On days 3, 5, and 7, pictures were taken, and 
 total RNA was isolated on days 3, 5, and 10.

RNA isolation and RT-PCR analyses
Total RNA was extracted with TRIzol (Invitrogen), treated with DNaseI 
(Fermentas), and reverse transcribed (RevertAid M-MuLV Reverse Transcrip-
tase; Fermentas). Details of primer sets, cycle numbers, and annealing 
temperatures used in subsequent PCR reactions can be found in Table S1 
(available at http://www.jcb.org/cgi/content/full/jcb.200702058/DC1). 
PCR products were analyzed on 2% agarose gels.
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Western blot analysis and subnuclear fractionation
Cells were washed with cold PBS and incubated in lysis buffer (400 mM 
NaCl, 20 mM Tris-HCl, pH 7.8, 1% NP-40, 0.5% sodium deoxycholate, 
2 mM EDTA, 2 mM DTT, and protease inhibitors) for 30 min on ice. Next, cell 
lysates were collected by scraping, subsequently sonicated, and cleared 
by centrifugation at 4°C and 14,000 rpm for 10 min. For western analysis, 
the following primary antibodies were used: mUTF1 (rabbit polyclonal 
raised by Eurogentec), Oct-4 (H-134; Santa Cruz Biotechnology, Inc.), 
HDAC1 (H-51; Santa Cruz Biotechnology, Inc.), histone H2A (acidic patch; 
Upstate Biotechnology), GATA4 (C20; Santa Cruz Biotechnology, Inc.), 
actin (C4; MP Biomedicals), and HA (3F10; Roche). Secondary immuno-
detection was performed using donkey anti–rabbit IgG-HRP (GE Healthcare), 
rabbit anti–rat IgG-HRP (DakoCytomation), goat anti–mouse IgG-HRP (Santa 
Cruz Biotechnology, Inc.), and donkey anti–goat IgG-HRP (Santa Cruz Bio-
technology, Inc.). Subnuclear fractionation was performed as previously 
described (Citterio et al., 2004).

Microscopy and image analysis
For immunofl uorescence analysis, P19CL6 cells were cultured on poly-D-
lysine–coated glass coverslips and fi xed in 2% PFA in PBS for 10 min at 
RT. After fi xing, cells were permeabilized with 0.1% Triton X-100 in PBS. 
Endogenous UTF1 was detected using our UTF1 antibody followed by a 
goat anti–rabbit tetramethylrhodamine IgG (H+L)-conjugated secondary 
antibody (Invitrogen). Fluorescent images were made using a microscope 
(Axiophot; Carl Zeiss MicroImaging, Inc.) with a plan-NEOFLUAR 40× 
NA 0.70 lens. Confocal laser-scanning microscopy images of live cells 
were recorded with a microscope (LSM 510; Carl Zeiss MicroImaging, 
Inc.). GFP signal was detected using a 488-nm argon laser line and 
a bandpass 500–550-nm fi lter. Hoechst signal was monitored by excita-
tion with a Titanium Sapphire 810-nm dual-photon laser and a bandpass 
390–465-nm fi lter.

FRAP
For FRAP experiments, a confocal laser-scanning microscope (LSM 510; 
Carl Zeiss MicroImaging, Inc.) was used. To measure FRAP, a 10-μm-wide 
strip spanning the nucleus was bleached for 120 ms at the highest intensity 
of the 488-nm line of a 30-mW argon laser focused by a plan Apochromat 
63× NA 1.4 oil differential interference contrast lens (Carl Zeiss Micro-
Imaging, Inc.). Recovery of fl uorescence in the strip was monitored at 20-ms 
intervals at 0.5% of the laser intensity used for bleaching. For emission 
detection, a bandpass 500–550-nm fi lter was used.

Computer simulations
For analysis of FRAP data, FRAP curves were normalized to prebleach val-
ues, and the best fi tting curve (least squares) was picked from a large set 
of computer-simulated FRAP curves in which three parameters representing 
mobility properties were varied: diffusion rate (ranging from 0.04 to 25 
μm2/s), immobile fraction (0, 10, 20, 30, 40, and 50%), and time spent 
in the immobile state (2, 4, 8, 16, 32, 64, 128, and ∞ s). Monte Carlo 
computer simulations used to generate FRAP curves were based on a 
model of random diffusion in an ellipsoid volume representing the cell 
 nucleus and simple binding kinetics representing binding to immobile ele-
ments in the cell nucleus. Simulations were performed at unit time steps 
corresponding to the experimental sample rate of 21 ms.

Diffusion was simulated by each step, deriving novel positions 
M(x + dx, y + dy, and z + dz) for all mobile molecules M(x, y, and z), where 
dx = G(r1), dy = G(r2), dz = G(r3), ri is a random number (0 ≤ ri ≤ 1) 
chosen from a uniform distribution, and G(ri) is an inversed cumulative 
Gaussian distribution with μ = 0 and σ2 = 6Dt, where D is the diffusion 
coeffi cient and t is time measured in unit time steps.

Immobilization was based on simple binding kinetics described by 
kon/koff = Fimm/(1 − Fimm), where Fimm is the relative number of immobile 
molecules. The chance for each particle to become immobilized (represent-
ing chromatin binding) was defi ned as Pimmobilize = kon = koff Fimm/(1 − Fimm), 
where koff = 1/timm and timm is the mean time spent in immobile complexes 
measured in unit time steps; the chance to release was Pmobilize = koff = 1/timm. 
In simulations of two immobile fractions with different kinetics, two immobi-
lization/mobilization chances were evaluated for each unit time step.

The FRAP procedure was simulated on the basis of an experimen-
tally derived 3D laser intensity profi le, providing a chance based on 3D 
position for each molecule to get bleached or to be sent to a temporary 
dark state (blinking) during simulation of the bleach pulse. The profi le was 
derived from confocal images (z stacks) of chemically fi xed nuclei contain-
ing GFP that were exposed to a stationary laser beam at various intensities 
and varying exposure times.

For each set of parameters, a FRAP curve was generated based on 
106 molecules per nucleus (which yields similar results as averaging 10 
cells containing 105 molecules or 100 cells containing 104 molecules). This 
number was empirically determined to produce a curve with a limited fl uc-
tuation of fl uorescence (as a result of diffusion) after complete recovery.

Online supplemental material
Table S1 provides the primer sequences used for the PCR reactions dis-
played in Fig. 1 G and their product sizes, annealing temperatures, and 
number of PCR cycles. Fig. S1 shows experimental FRAP curves and 
 computer-simulated curves for the constructs GFP-UTF1, H2B-GFP, Oct4-GFP, 
GFP-UTF1 W63D E67K, GFP-UTF1 1–300, and GFP-UTF1 1–300 W63D 
E67K. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200702058/DC1.
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