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Background
Brain glioma is the most common malignant tumor caused by the cancerization of glial 
cells in the brain and spinal cord. It has the characteristics of high incidence, high recur-
rence, high mortality and low cure rate. The purpose of brain tumor segmentation is to 
separate the tumor tissue from the healthy brain tissue such as white matter, gray matter 

Abstract 

Background:  Brain tumor segmentation is a challenging problem in medical image 
processing and analysis. It is a very time-consuming and error-prone task. In order 
to reduce the burden on physicians and improve the segmentation accuracy, the 
computer-aided detection (CAD) systems need to be developed. Due to the powerful 
feature learning ability of the deep learning technology, many deep learning-based 
methods have been applied to the brain tumor segmentation CAD systems and 
achieved satisfactory accuracy. However, deep learning neural networks have high 
computational complexity, and the brain tumor segmentation process consumes 
significant time. Therefore, in order to achieve the high segmentation accuracy of brain 
tumors and obtain the segmentation results efficiently, it is very demanding to speed 
up the segmentation process of brain tumors.

Results:  Compared with traditional computing platforms, the proposed FPGA accel-
erator has greatly improved the speed and the power consumption. Based on the 
BraTS19 and BraTS20 dataset, our FPGA-based brain tumor segmentation accelerator 
is 5.21 and 44.47 times faster than the TITAN V GPU and the Xeon CPU. In addition, by 
comparing energy efficiency, our design can achieve 11.22 and 82.33 times energy 
efficiency than GPU and CPU, respectively.

Conclusion:  We quantize and retrain the neural network for brain tumor segmenta-
tion and merge batch normalization layers to reduce the parameter size and computa-
tional complexity. The FPGA-based brain tumor segmentation accelerator is designed 
to map the quantized neural network model. The accelerator can increase the seg-
mentation speed and reduce the power consumption on the basis of ensuring high 
accuracy which provides a new direction for the automatic segmentation and remote 
diagnosis of brain tumors.
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and cerebrospinal fluid [1]. It plays an important role in the diagnosis and treatment of 
the brain glioma.

The glioma image segmentation is helpful for surgical planning and can improve the 
survival rate. Currently, most of the segmentation of brain tumor images is performed 
by physicians. In clinical practice, due to the increasing number of brain tumor images, 
manual segmentation of different areas of brain tumors becomes an error-prone and 
time-consuming task for physicians. In addition, physicians’ cognitions may have dif-
ferent influences on the formulation of subsequent treatment plans and operations. 
Therefore, automated methods are needed for high accuracy brain tumor location and 
segmentation.

In the past, CPU was used to complete computations in CAD systems. Due to the 
unsatisfactory speed of processing data by the CPU, many GPU acceleration methods 
have been gradually studied [2, 3]. For some machine learning algorithms in bioinfor-
matics, FPGA acceleration has also become a new direction [4, 5].

Related work

Automated brain tumor segmentation has attracted widespread attention in the research 
community and has been continuously studied. Before 2010, most researchers used 
standard image processing methods, such as threshold-based method [6] and region-
based method [7]. Suzuki et al. used an iterative thresholding algorithm for segmenta-
tion [6], but when the image contrast is low, it becomes difficult to select the threshold. 
In 2005, it was proved that region growth is an effective brain tumor segmentation 
method. Compared with other non-region-based methods, the amount of computation 
is less, especially for homogeneous tissues and regions [7]. Although they are simple to 
implement and have small amount of computation, the segmentation accuracy does not 
meet the practical expectation. Hence it is mostly used for two-dimensional segmenta-
tion only [8]. Subsequently, machine learning [9] has been gradually applied to medi-
cal image analysis. Many researchers have proposed brain tumor segmentation based on 
classification or clustering methods [10–12]. Fletcher-Heath et al. used an unsupervised 
fuzzy clustering algorithm, which combines domain knowledge and image processing 
technology to achieve tumor segmentation [10]. Zhou et al. proposed a method based 
on one-class support vector machine(SVM) to extract brain tumors from Magnetic 
Resonance Imaging(MRI) [11]. Subbanna et  al. presented a fully automated hierarchi-
cal probabilistic framework for segmenting brain tumor based on multiwindow Gabor 
filters and an adapted Markov Random Field (MRF) framework [12]. Compared with 
conventional segmentation methods, these methods can improve accuracy. However, 
methods with higher accuracy are still needed in clinical practice.

In the past ten years, with the huge increase in computing power, deep learning meth-
ods have continued to advance. Deep neural networks can thoroughly learn hierarchi-
cal features from input images instead of pre-defined manual features. There are many 
well-known deep learning networks, such as Convolutional Neural Networks(CNNs) 
and Recurrent Neural Networks(RNNs), which are gradually applied in various tasks of 
medical image analysis, such as breast image analysis [13] and chest X-ray image analysis 
[14]. At the same time, the segmentation of brain tumors based on deep learning net-
works have also aroused the interest of researchers.
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In 2014, D. Zikic et  al. studied the possibility of directly applying CNNs to brain 
tumor segmentation, which achieved higher segmentation accuracy than traditional 
machine learning methods [15]. In 2016, Brosch et  al. proposed a segmentation 
method based on a deep 3D convolutional encoder network, which composes of two 
interrelated paths, namely a convolution path and a deconvolution path. Each image 
contains a repetitive structure with corresponding changes. Therefore, only a few 
images are needed to train a network [16]. In 2017, a multi-path CNN network for 
brain tumor segmentation was proposed as an extension of single-path feedforward 
CNN [17]. Multi-path CNN can extract different features from different modalities. 
In 2019 and 2020, Muhammad Sharif and Javaria Amin et al. proposed several brain 
tumor segmentation algorithms [18–21] to further improve the segmentation accu-
racy and reduce the processing time. Our design is based on the 3D U-Net network 
proposed in [22], which extends the U-Net network [23] and replaces all 2D opera-
tions with 3D operations. It is a multi-path CNN network which can achieve great 
accuracy in the segmentation task.

Challenge

Although significant progress has been made in the brain tumor segmentation, there 
are still problems and challenges to be solved. Firstly, brain gliomas are mutations 
of glial cells. Due to the wide spatial distribution of glial cells, gliomas can appear 
anywhere in the brain. Moreover, the shapes and sizes of brain tumors in different 
patients have great uncertainty, which means before segmentation process, almost 
no prior information can be provided to describe the shape and size of a tumor. 
Location uncertainty and morphological uncertainty have brought great challenges 
to accurately locate brain tumors. Secondly, MRI which provides the tissue details 
can be imaged in multiple directions. The 3D imaging method is more conducive to 
the detection of brain tumors, so we mainly focus on MRI to segment brain tumors. 
However, the MRI computation in the automated process is complicated, which usu-
ally requires more time for image analysis. There is demanding performance require-
ment for the segmentation processing platform.

It can be concluded that deep learning methods can achieve high accuracy in the 
brain tumor segmentation task. However, the brain tumor segmentation process may 
consume significant time and computing resources. Therefore, speeding up the CNN-
based 3D brain tumor segmentation is the key to high accuracy brain tumor detec-
tion and obtaining detection results efficiently. In order to speed up the segmentation 
process, GPU is currently used for brain tumor segmentation, but it can be further 
improved in terms of speed and power consumption.

CNN realizes brain tumor segmentation in two processes: training and inference. 
Training is an iterative process to train the parameters. During the training process, 
the output of the model is compared with the expected result to update the param-
eters to minimize the difference. This process is repeated until the output results 
converge to a value that reduces the gap to an acceptable range. Training is a typical 
offline operation which can be done in advance. The inference process is real-time, so 
our work is focused on accelerating the inference process.
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Neural network for brain tumor segmentation

Figure 1 illustrates the 3D U-Net structure which includes 3D convolutional layers, 3D 
deconvolutional layers, pooling layers, activation layers, and batch normalization(BN) 
layers. The numbers on the blue boxs are the numbers of channels, and the numbers 
below are the resolutions. Similar to U-Net, 3D U-Net consists of an analysis path on the 
left and a synthesis path on the right. The analysis path on the left includes 3D convo-
lutional layers, BN layers and rectified linear unit (ReLU) layers. The maximum pooling 
layers are used to reduce the sizes of the feature maps. The synthesis path on the right 
includes 3D convolutional layers, 3D deconvolutional layers, BN and ReLU layers. Dif-
ferent from the analysis path on the left, the synthesis path expands the sizes of feature 
maps through the deconvolutional layers.

The 3D U-Net can provides the depth information of 3D medical images, witch has 
higher segmentation accuracy compared with 2D CNN segmentation networks. At the 
same time, it also brings large amount of computations and parameters. Therefore, it is 
necessary to speed up the processing of CNN-based brain tumor to realize rapid and 
high-accuracy brain tumor segmentation.

Method
We have designed an FPGA-based brain tumor segmentation inference accelerator 
which speeds up the segmentation process. It can be shown that our FPGA-based design 
outperforms traditional computing technologies such as CPU and GPU implementa-
tions. In this section, we firstly describe the hardware and software platforms, and the 
dataset. Then the quantization process for brain tumor segmentation neural network 
and the hardware acceleration architecture are presented.

Hardware and software platforms

Hardware: The neural network hardware accelerator for brain tumor segmentation 
is based on Xilinx’s Alveo U280 accelerator card, which has 1304k LUTs, 2607k regis-
ters and 9024 DSP slices. The hardware platform of our accelerator is shown in Fig. 2. 
The NVIDIA TITAN V GPU and the Intel Xeon CPU E5-2620 V4 CPU are used for 
comparison.

Fig. 1  The 3D U-Net structure
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Software Xilinx Vivado integrated environment and Synopsys VCS simulator are 
used for hardware design and simulation. GPU reference designs based on single-
precision floating point are compiled by CUDA 10.1 with PyTorch of python 3.8.3 
and cuDNN 7.6.3 library.

Dataset

The BraTS19 and BraTS20 dataset [24–26] are used to test the performance of brain 
tumor segmentation with four modalities for each case. A single modality of brain 
tumor may lead to inaccurate segmentation because it does not provide detailed 
information. Multi-modality images can complement each other effectively, which 
can improve the segmentation accuracy. Figure 3 shows one exemplar with four MRI 
modalities, flair, t1, t2 and t1ce. Each represents a unique MRI modality. The image 
on the right is the segmentation result in Fig. 3.

Fig. 2  Hardware platform for brain tumor segmentation where the red is a Xilinx Alveo U280 accelerator card

Fig. 3  Input images with four MRI modalities and the corresponding segmentation output
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Segmentation neural network quantization

In order to reduce the computational burden and implement the network in the FPGA 
hardware, it is necessary to quantize the model. The quantization process of 3D U-Net 
includes the following three steps [27]: merging BN layers, quantizing network param-
eters, and quantizing network activity data. The above three steps are detailed as follows.

Merging the BN layers

The BN layers in 3D U-Net can improve the training quality, but is not required for the 
inference. Before quantization, the BN layer can be merged into the previous convolu-
tional layer to simplify the network structure and reduce the amount of network compu-
tations and the number of parameters. Equations 1 and 2 describe the merging process 
of the convolutional layer and the BN layer. In Eq. 1, X and Y represent the input and 
output of the convolutional layer, and W and B are the weight and bias of the convolu-
tional kernel. In Eq. 2, µ , σ , γ , β , and ǫ represent input average, input standard deviation, 
scale factor, offset, and a decimal to prevent the denominator from zero, respectively.

By combining Eqs. 1 and 2 , the parameters after merging the BN layer can be obtained 
as shown in Eqs. 3, 4. Equation 5 describes the output of the merged layer.

During the merging process, the 3D U-Net structure is traversed to find adjacent con-
volutional layers and BN layers. The merged weights and bias are obtained according 
to Eqs. 3 and 4 . Then the original convolutional layer and BN layer are replaced by the 
merged convolutional layer. The core computation equation of the deconvolutional layer 
is the same as that of the convolutional layer, so the above merging method is also effec-
tive for BN layers and deconvolutional layers.

Quantizing network parameters

After merging the BN layers, the network parameters are quantified. The network 
parameters adopt dynamic fixed-point linear quantization, and the quantization results 
are 8-bit signed fixed-point numbers. For a weight tensor W, such as the weight of a cer-
tain convolutional layer, we firstly determine its maximum and minimum values, then 
calculate scaling factors and map all the values of this tensor to the representation range 

(1)Y =W · X + B

(2)
x̂i =(xi − µ)/

√

σ 2 + ǫ,

yi =γ x̂i + β

(3)Wmerged =W · γ√
σ 2 + ǫ

(4)Bmerged =(B− µ) · γ√
σ 2 + ǫ

(5)Y =Wmerged · X + Bmerged
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of an 8-bit signed fixed-point number, that is −  128 to 127. In order to facilitate the 
FPGA to perform scaling operations, the scaling factors are constrained to be power of 
2, so that the scaling operations can be achieved through the shift operations. The calcu-
lation of the bit number of the shift operations bs is shown in Eq. 6 where the bit width 
bw is 8, |W| is the absolute value of W, ceil and max are the round-up and the maximum 
functions respectively.

In the quantization process of 3D U-Net, the weight and bias scale factors of each 3D 
convolutional or deconvolutional layer are calculated separately.

Quantizing network activity data

Network activity data are the input and output of each layer. It also uses dynamic fixed-
point linear quantization, and the quantization results are signed 8-bit fixed-point 
numbers. A small amount of calibration data are used to run the network, and then the 
maximum and minimum values of the input and output of each layer are determined, 
finally the bit number of the shift operations of the input and output of each layer are 
calculated according to Eq. 6.

The process of the dynamic fixed-point linear quantization is as follows. Firstly, due to 
the fine granularity of the TensorFlow network model description, quantization is not 
convenient. The network model is rewritten by PyTorch. Secondly, the convolutional/
deconvolutional layers are replaced with the corresponding merged layers. Thirdly, the 
network is set to training mode to use two patient data as the calibration input to run the 
network. This step can calculate the maximum absolute value of the input and output 
of each quantization layer. Finally, the quantization function of each quantization layer 
is run to perform quantized computation of network parameters and network activity 
data. The quantified network structure and network parameters are generated.

The quantization layer is implemented by the quantization decorator class INQ, which 
adds other operations to the forward propagation function of the quantization convolu-
tional and deconvolutional layers. The maximum absolute value of the input and output 
data in the training mode is calculated. In the evaluation mode, the input and output 
data are dynamically fixed-point linear quantization to simulate the FPGA behavior of 
running the quantization network. The quantization decorator class also defines a quan-
tized member function to calculate the bit numbers of the shift operations in the param-
eters and activity data, as well as the quantized parameters.

We train the 3D U-Net with the Adam optimizer and Cross-Entropy loss, the learning 
rate of 0.001, the batch size of 2 and the training epoch of 30. Table 1 depicts the learn-
ing hyper parameters for the segmentation model. Then the original and quantized net-
work are tested on BraTS19 and BraTS20. The evaluation mode is set to use the test data 

(6)bs = bw − 1− ceil(log2(max(|W |)))

Table 1  The learning hyper parameters for the segmentation model

Optimizer Epoch Batch size Learning rate

Adam 30 2 0.01
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as input to run the network forward, and calculate the pixel accuracy score (ACC) and 
dice similarity coefficient score (DSC). Compared with the network before the quantiza-
tion, the loss is almost negligible. After quantization, the activity data and parameters 
are 8-bit signed fixed-point numbers, which can reduce storage resources and imple-
ment in the PFGA hardware efficiently.

Accelerator architecture and design implementation

Figure  4 is an overview of the proposed accelerator. A total of 8 parts are included, 
which are Instruction Controller, Bias Memory, Parameter Memory, Input Data Mem-
ory, Intermediate & Output Data Memory, Input Interface, Output Interface, and Pro-
cessing Element (PE) Array. After the Instruction Controller receives the configuration 
command, it stores the command in the configuration register, and the PE Array auto-
matically reads data from the Bias Memory, Parameter Memory and Input Data Mem-
ory according to the configuration information, then writes the computation results in 
the ready storage area in Intermediate & Output Data Memory.

Due to the large difference in the number of input and output channels in each layer 
of the 3D U-Net, the fixed input and output channel architecture leads to the reduction 
of computing resources utilization. In order to solve this problem, there are three com-
puting modes in the configurable PE architecture. These modes are 4-32, 32-32, 32-64. 
When the input channel of the first layer is small, we configure PE as the 4-32 mode, 
which computes 4 pixels on the feature map of 4 input channels and 32 output channels. 
For some convolutional layers and deconvolutional layers with 32 input channels and 
32 output channels, we configure PE as the 32-32 mode to compute two pixels of the 
feature map at a time. There is also the 32-64 mode, which is used in the layer where the 
input channel are 32 and the output channel are 64. One pixel of the feature map is com-
puted at a time. Three configurable modes allow our FPGA accelerator to make better 
use of computing resources and minimize the proportion of idle multipliers.

Fig. 4  Brain tumor segmentation accelerator architecture based on FPGA



Page 9 of 15Xiong et al. BMC Bioinformatics          (2021) 22:421 	

Control mechanism

The execution of each instruction of the MIPS CPU is divided into 5 stages: instruction 
fetch (IF), instruction decode (ID), execute (EX), memory access (MEM), and register 
write back (WB). Usually these 5 stages are made into one 5-stage pipeline, and the exe-
cution of each stage of the pipeline is fixed at 1 clock cycle, so that the pipeline improves 
the processing speed. Our accelerator learns from the CPU’s approach and divides the 
execution of each instruction into 4 stages: configuration (CF), load data (LD), execution 
(EX), and write back (WB). Because the numbers of cycles consumed by these 4 stages 
are different and not fixed, it cannot form a pipeline like the MIPS CPU. The double-
buffering strategy is adopt, which can make the stages with the longest cycles to cover 
up the time of other stages. Figure 5a, b are diagrams of the execution stages without 
and under the double-buffering strategy. This is the case where the execution time of the 
EX stage is longer than the other 3 stages. Under the double-buffering strategy, it can 
be seen that when multiple such instructions are executed, the EX stage will mask most 
of the running time of CF, LD, and WB, reducing the overall computation time signifi-
cantly. Similarly, if LD becomes the longest time for each stage, the LD stage can cover 
most of the running time of CF, EX and WB.

Partition and scheduling

The current convolutional neural network accelerators can be divided into two catego-
ries. One type is multi-layer computation, that is, after completing a block of a layer, 
the result of this block is obtained and then the next layer is performed. The results of 
this layer are not written to the off-chip memory. The other is to compute layer by layer 
which means calculating the next layer after completing one layer. The results are not 
written to the off-chip memory. Since the amount of 3D U-Net parameters is tens or 
even hundreds of times higher than that of a 2D network. The first approach would have 
too many on-chip parameters. As a result, the second method of layer-by-layer com-
putation is chosen. As we know, FPGA computing and storage resources are limited, 

Fig. 5  a The execution of each stage without the double-buffering strategy, b the execution of each stage 
under the double-buffering strategy
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one layer of 3D U-Net must be devided into several blocks. Different partition results 
will have different effects on the execution efficiency of the CNN model on FPGA. Con-
straints are set according to chip resources and other conditions to obtain partition 
result. According to the partition result, address allocation is performed on the input 
feature map of the first layer and the static data such as the weights and bias data of each 
layer.

After obtaining the partition result and the data addresses respectively, we start 
to schedule the execution stages. The goal of scheduling is to try to conceal the load 
data time or the computation time of the computation block to improve the efficiency 
of the execution pipeline. Firstly, we use the layer as a unit to generate a sequence of 
computation blocks according to the partition result. In this step, the computation pro-
cess of each layer is divided into several computation blocks in a certain order. Secondly, 
according to the instruction set configuration rules of the chip and the label informa-
tion of each computation block, we generate the instructions of the binary computation 
block sequence. Finally, the binary instructions are stored in the external memory for the 
instruction acquisition module of the design to obtain the relevant instructions.

Implementation and optimization of 3D convolution

In order to implement 3D convolution more conveniently, we convert 3D to 2D to speed 
up the computation process. For example, as shown in Fig. 6, for a 3× 3× 3 convolu-
tional kernel, the depth direction is divided into three different 3× 3 convolutional 
kernels, and the final result is obtained through the accumulation of the intermediate 
results of the 3 different blocks. In this way, the 3D convolution is realized through the 
2D hardware architecture without affecting the computation result.

In the process of generating a sequence of computation blocks, the specific optimiza-
tions on certain layers are performed to improve efficiency. For example, due to the zero-
filling operation in the deconvolutional layer, there are many zeros in the output feature 
map of the deconvolutional layer in 3D U-Net. In the next layer of the deconvolutional 
layer, the computation block whose input feature map are all zeros can be skipped to 
improve computation efficiency and reduce power consumption.

Result
Performance The BraTS19 and BraTS20 datasets are used to train the network and 
test. In BraTS19, we use 240(HGG/LGG) cases for training and 100 cases for testing. 
In BraTS20, 260(HGG/LGG) cases are for training and 109 cases are for testing. The 
DSC, execution time, and energy consumption of our method are shown in Table 2. In 

Fig. 6  3D convolutional kernel translates into 2D convolutional kernel
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BraTS19 and BraTS20, our FPGA method achieves 0.871 DSC and 0.882 DSC. The aver-
age execution time is 0.15s and the FPGA energy consumptions is 45W.

Table 3 is comparison provided with the recent method which also test on the BraTS 
dataset. It demonstrates that the suggested method provided accurate and efficient seg-
mentation results. Moreover, our FPGA approach also reduces power consumption by 
more than half compared to CPU or GPU solutions.

The performance and energy efficiency of FPGA, CPU and GPU designs are also com-
pared. The execution time of testing a single image is accidental because it is too short 
and often not accurate enough. Therefore, the number of test images per second are 
measured by testing 200 MRIs segmentation tasks in BraTS19 and BraTS20 datasets to 
obtain the average. Performance is measured by the number of frames per second (FPS) 
of images processed, and energy efficiency refers to the ratio of performance and power 
(FPS/MW) in the computation process. Figure 7 shows the comparison of performance 
and energy efficiency among FPGA, CPU and GPU implementations. It can be seen that 
the performance of FPGA is 5.21 times higher than CPU and 44.47 times faster than 
GPU, and the energy efficiency ratio is 11.22 times of GPU and 82.33 times of CPU. Both 
processing speed and energy efficiency have been greatly improved.

Resource usage Our design is tested on the U280 card. The FPGA resource utilization 
is listed in Table  4. It can be seen that our FPGA design uses storage and computing 
resources reasonably. Figure  8 is the floorplan of the FPGA-based design after place-
ment and routing. There are 6 computation cores inside the FPGA chip. Each of them is 
marked in a different color.

Table 2  Performance of proposed method

Dataset Method DSC Execution time Energy 
Consumption

BraTS19 GPU method before quantization 0.873 0.78 s 96 W

GPU method after quantization 0.871 0.64 s 72 W

FPGA method 0.871 0.15 s 45 W

BraTS20 GPU method before quantization 0.885 0.78 s 97 W

GPU method after quantization 0.882 0.65 s 74 W

FPGA method 0.882 0.15 s 45 W

Table 3  Proposed method comparison

Method Year Dice (DSC) Average 
execution 
time

[28] 2018 0.84 2–4 min

[29] 2018 0.95 5.50 s

[30] 2019 0.85 15.25 s

[21] 2020 0.89 0.71 s

Our FPGA method – 0.88 0.15 s
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Discussion and future work
With the development of living environment and medical conditions, health care 
has become more concerned. As an important means of diagnosis and treatment by 
physicians, medical images have become popularized. Brain tumor segmentation as 
an significant part of medical image processing has also attracted the attention of 
researchers. The brain tumor segmentation algorithm based on deep learning has 
the characteristics of high accuracy and automatic learning, which breaks through 
the limitations of traditional brain image segmentation algorithm and becomes a hot 
research topic in the field of brain image segmentation in recent years. In order to 
improve the performance of deep neural network, researchers have made efforts on 
GPU platform due to the problems of large computation and complex storage in deep 
neural network model. GPU acceleration can accomplish the task, but the speed can 
still be improved. The neural network model for brain tumor segmentation can be 

Fig. 7  Performance and energy efficiency comparison among CPU, GPU, and FPGA

Table 4  Resource utilization after FPGA placement and routing

Resource Utilization Available Utilization %

LUT 819956 1303680 62.90

FF 1365308 2607360 52.36

BRAM 1504 2016 74.60

URAM 648 960 67.50

DSP 5760 9024 63.83
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simplified in a hardware-friendly way without affecting the accuracy of the model. 
As a result, FPGA design can achieve higher speed and energy efficiency than CPU 
and GPU.

Although brain tumor segmentation tasks are accelerated, there are still some 
challenges for future work. During the study, we find that the medical images of 
brain tumor segmentation had a relatively large sparsity, with an average sparsity of 
70% . If the sparse characteristic of input image can be used in algorithm or hardware 
implementation to save the time of invalid computation, better performance will be 
achieved.

Conclusion
Brain tumor is one of the most common cancers which has the characteristics of high 
morbidity, high recurrence, and high mortality. Brain tumor segmentation is a very 
effective method to identify potentially cancerous tissue. However, this increases the 
burden on physicians, and the physicians’ status and experiences greatly affect the 
analysis results. Therefore, many CAD systems have been developed. In these systems, 

Fig. 8  FPGA floorplan after placement and routing
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the first step of high-precision brain tumor segmentation is crucial for the subsequent 
treatment process. We propose and implement an FPGA-based brain tumor segmen-
tation inference accelerator, which can speed up segmentation and reduce power con-
sumption. Based on BraTS19 and BraTS20, the performance and power consumption 
of our FPGA accelerator are better than traditional computing technology. The aver-
age speed is 5.21 times and 44.47 times higher than that of CPU and GPU. In addi-
tion, the energy efficiency is 11.22 times and 82.33 times higher than that of CPU 
and GPU. The design of FPGA acceleration hardware provides a new direction for the 
improvement of automated brain tumor segmentation.
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