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Motivation: Gene set enrichment analysis is a widely accepted expression analysis tool

which aims at detecting coordinated expression change within a pre-defined gene sets

rather than individual genes. The benefit of gene set analysis over individual differentially

expressed (DE) gene analysis includes more reproducible and interpretable results and

detecting small but consistent change among gene set which could not be detected

by DE gene analysis. There have been many successful gene set analysis applications

in human diseases. However, when the sample size of a disease study is small and no

other public data sets of the same disease are available, it will lead to lack of power to

detect pathways of importance to the disease.

Results: We have developed a novel joint gene set analysis statistical framework which

aims at improving the power of identifying enriched gene sets through integrating multiple

similar disease data sets. Through comprehensive simulation studies, we demonstrated

that our proposed frameworks obtained much better AUC scores than single data

set analysis and another meta-analysis method in identification of enriched pathways.

When applied to two real data sets, the proposed framework could retain the enriched

gene sets identified by single data set analysis and exclusively obtained up to 200%

more disease-related gene sets demonstrating the improved identification power through

information shared between similar diseases. We expect that the proposed framework

would enable researchers to better explore public data sets when the sample size of their

study is limited.

Keywords: public data integration, cross disease transcriptome, gene expression, gene set enrichment analysis,

mixture model, EM algorithm

BACKGROUND

High-throughput technology like microarray and next-generation sequencing (NGS) allows
researchers measure the expression levels of thousands of genes or microRNAs in one
sample simultaneously. These high-throughput genomic data have enabled researchers to better
identification of disease related genes and pathways (Gu et al., 2014, 2017; Zheng et al., 2015,
2016; Liu et al., 2016, 2017, 2018; Gong et al., 2018). Gene set enrichment analysis has become a
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widely accepted expression analysis tool whose purpose is to
identify coherent altered expression change within a predefined
gene set or a pathway rather than identifying individual
differentially expressed (DE) genes (Mootha et al., 2003; Kim
and Volsky, 2005; Subramanian et al., 2005; Nam and Kim,
2008). Compared with DE gene analysis, more reproducible
and interpretable results could be obtained through gene set
enrichment analysis. Gene set enrichment could also detect small
but consistent change which is ignored by DE gene analysis
(Luo et al., 2009). There are many successful applications of
gene set enrichment analysis approach in human disease-related
gene/pathway discovery. For example, Drier et al. (2013) showed
that enriched gene sets could serve as biomarkers in predicting
survival time in glioblastoma and colorectal cancer patients. Zhao
et al. combined gene set enrichment analysis information and
microRNA target gene sets to identify cancer-related microRNAs
(Zhao et al., 2014). Lee et al. utilized gene set enrichment
analysis based on mutation and transcriptional data to identify
driver mutation behind breast cancer metastasis (Lee et al.,
2016). Identifying the enriched gene set will provide crucial
information of molecular functions and mechanisms underlying
different diseases.

Many gene set enrichment analysis methods have been
developed to identify differentially expressed gene sets with
different assumptions and data types (Edgar et al., 2002; Kim
and Volsky, 2005; Subramanian et al., 2005; Dinu et al., 2007;
Freudenberg et al., 2010; Rahmatallah et al., 2015; Zhao and
Li, 2017). These methods focused on the analysis of one
single data set, thus cannot make full utilization of the rich
amount of public expression data. Further, with the cost of
microarray and next generation sequencing technique decreasing
and stabilization of the experiment protocol, there are now over
1,000,000 samples deposited in public databases such as Gene
Expression Ominus (GEO) (Subramanian et al., 2005), meta-
analysis is one way to improve the identification power by
integrating data sets of same conditions together (Qin et al.,
2016). Shen and Tseng (2010) and Chen M. et al. (2013) both
proposed meta gene set enrichment analysis frameworks to
integrate public data sets of same biological condition and
demonstrated improved identification power. However, these
meta-analysis frameworks simplify the model by assuming
a simple concordance model: a gene is either differentially
in all studies or non-differentially expressed in all studies.
This is a reasonable assumption when analyzing the dataset
of same biological condition but might be problematic in
conditions where there are not many public studies available for
this disease.

On the other hand, the joint analysis approach has proven
more effective in combiningmultiple different but similar sources
of data than meta-analysis approach. The joint analysis methods
developed in other fields of omics data analysis have proven
useful in increasing the identification power by borrowing
information from other similar diseases (Chen X. et al., 2013;
Chung et al., 2014; Wang et al., 2016; Lin et al., 2017). In our
previous study, we also demonstrated that our joint analysis
framework aiming at DE gene detection is more advantageous
than single data set analysis and meta-analysis in both simulation

studies and real data cases combining different similar disease
data sets (Qin and Lu, 2018).

In this study, we extended our previous joint gene analysis
framework to joint gene set analysis framework. Base on the
assumption that similar disease tends to share similar disease-
related genes and pathways (Carson et al., 2017; Qin and Lu,
2018), we developed two joint gene set analysis frameworks
aiming at improving identification power of enriched gene
sets by borrowing different levels of information from other
similar diseases. Compared with previous joint gene analysis
framework, we unified DE gene/pathway statistic modeling
through a two-component beta-uniform mixture model of p-
values and combined the model with normalized Kolmogorov-
Smirnov (KS) statistic for joint gene set enrichment analysis.
These novel frameworks were then compared with single data
set analysis as well as the MAPE framework proposed by Shen
and Tseng (2010) in simulation studies while Chen’s method
is not available from their website (Chen M. et al., 2013).
The simulation results demonstrated that our proposed joint
analysis framework outperformed all other methods in AUC
under different simulation scenarios. When applied to two real
data examples, the proposed joint analysis framework could
recover most of the enriched gene sets which is identified by
single data set analysis and further identified more pathways
with better biological interpretability than single data set analysis.
These results demonstrated the improved identification power
of enriched gene sets of the proposed joint gene set analysis
framework by borrowing information through similar diseases.

METHODS

EM Algorithm Implementation for Joint
Gene Set Analysis Framework
To perform joint gene set analysis, we need to first address the
issue of modeling DE gene/enriched pathway statistics in a single
data set. In this study, P-values derived from differential test
statistics (for example, two sample t-statistic or Kolmogorov–
Smirnov (KS) statistic designed for detecting enriched pathways)
in a single data set are modeled directly by a beta-uniform
two component mixture model as described in Pounds and
Morris (2003) where the p-values of non-DE genes/non-enriched
pathways are assumed to belong to uniform distribution and
p-values of DE genes/enriched pathways belong to a beta
distribution with scale parameter α and 1, i.e., f

(

p
∣

∣D = 1
)

=

αpα−1 ; f
(

p
∣

∣D = 0
)

= 1, where the categorical variable D
represents either DE/enriched or non-DE/non-enriched status of
a gene/pathway. The marginal density of p-value is thus written
as follows:

f
(

p
)

= Pr (D = 1) αpα−1 + (1− Pr (D = 1)) (1)

where Pr (D = 1) is the percentage of DE genes/enriched
pathways in a single data set and αǫ(0, 1) is the parameter of
the beta distribution. In the joint analysis framework setup,
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let pg =
{

pg1, . . . pgN
}

represent all computed p-values of g-
th gene/pathway across N diseases. The formula (1) could be
extended to N diseases:

f
(

pg
)

=
∑

Pr(D1...,DN )

Pr (D1 . . . ,DN)
∏

i=1..N

f
(

pgi
∣

∣Di

)

(2)

where Pr(D1 . . . ,DN) represents the global configuration of DE
gene/enriched pathway status across all diseases. In this model,
Pr(D1 . . . ,DN) and α = {α1,α2, . . . αN} need to be estimated
from the data. This is a typical mixture model problem, therefore
an EM algorithm is implemented to obtain the maximum
likelihood estimate of these parameters following the derivation
in previous literature (Pounds and Morris, 2003; Qin and Lu,
2018). The details are described as follows:

Given initial guess of Pr (0) (D1 . . . ,DN) = 1
2N

and α(0) =
{

α1
(0),α2

(0) . . . αN
(0)

}

where αi
(0) = 0.5, the EM algorithm

update at t-th step for α(t) and Pr(D1 . . . ,DN) is written
as follows:

E-Step
The posterior probability of g-th gene’s configuration status given
observed pg and α(t) is given by:

Pr
(

D1 . . . ,DN

∣

∣

∣
pg , α

(t)
)

=
f
(

pg
∣

∣D1 . . . ,DN ,α
(t)

)

(D1 . . . ,DN)

f
(

pg ,α(t)
) (3)

M-Step
Then the updated Pr(t+1)(D1 . . . ,DN) and α(t+1) is shown
as follows:

Pr (t+1) (D1 . . . ,DN) =

∑G
g=1 Pr

(

D1 . . . ,DN

∣

∣pg , α
(t)

)

G
(4)

αj
(t+1) =

∑G
g=1 Pr

(

D1 . . .Dj = 1,DN

∣

∣pg , α
(t)

)

∑G
g=1 Pr

(

D1 . . .Dj = 1,DN

∣

∣pg , α(t)
)

(−logpgj)
(5)

Normalized KS Statistic and
Corresponding p-value Calculation for
a Pathway
Normalized KS statistic defined in Mootha et al. (2003) is used to
detect significantly enriched pathways by measuring if the ranks
of genes along one pathway are more enriched on the top rank of
an ordered gene list than expected by chance while controlling
for pathway size. A normalized KS statistic for a pathway P
containing M members is computed as follows:

1. Order all G genes by their statistical significance.

2. CalculateRi = −

√

M
G−M if the gene i does not belong to

a pathway; CalculateRi =

√

G−M
G if the gene i belongs to

the pathway.
3. Run a running sum across all G genes and compute the

normalized KS statistic as:

nKSP = max
j=1 to G

j
∑

i=1

Ri (6)

To evaluate the significance of the observed normKS for a
pathway, a gene-based permutation test is used to calculate
the p-value.
The permutation test contains the following steps:

1. Random permutate the gene labels.
2. Compute the permutated normalized KS statistics for each

pathway and pool them together as nKSperm.
3. Repeat step 1 and 2 B times.
4. The p-value of a pathway P could be obtained by counting how

many permutated normalized KS statistics are larger than the
observed normalized KS statistic, i.e.,:

p (nKSP) =

∑

I
(

nKSP ≥ nKSperm
)

+ 1

B ∗ P + 1
(7)

where I(·) is the indicator function.

Gene-Level Joint Gene Set Enrichment
Analysis Framework (JointNormKS)
Based on the two-component mixture modeling of p-value
for a single data set defined before a gene-level joint gene
set enrichment framework is then developed which is based
on normalized KS statistic (JointNormKS). The outline of the
framework could be summarized as follows:

1. Compute and convert the differential statistics into p-value,
denote pgi as the p-value of gene g in data set i.

2. Joint analysis based on a two-component beta-uniform
mixture model is performed with these p-values and the
posterior probability of DE status for each gene g in disease
i is computed:

Pr
(

Di = 1
∣

∣pg1 , . . . , pgN
)

=
∑

Di=1 f (pg1 , pg2 . . . , pgN |D1 ,D2 , . . .Di = 1, . . .DN ) Pr(D1 ,D2 , . . .Di = 1, . . .DN )

f
(

pg1 , pg2 . . . , pgN
)

(8)

3. Compute normKS statistic and corresponding p-
value based on the ranking of posterior probability
Pr

(

Di = 1
∣

∣pg1, . . . , pgN
)

within each data set i.
4. After p-values of all pathways within each data set are

computed, use Benjamini-Hochberg (BH) procedure
(Benjamini and Hochberg, 1995) to compute FDR for each
pathway and order the pathways within each dataset by the
FDR respectively.

Pathway-Level Joint Pathway Enrichment
Analysis Framework (JointPathway)
In this section, JointPathway is proposed as another joint
gene set enrichment analysis framework which summarizes the
enrichment evidence on pathway-level first within each disease
data set and then performs joint analysis on pathway-level p-
value to identify potential enriched pathways. The assumption
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of the framework is based on that similar disease tends to
share similar shared dysregulated pathways. The outline of the
framework is summarized as follows:

1. Within each disease dataset, compute the normKS statistics
for each pathway and obtain their p-values based on the
permutation procedures denoted as pgi where g represents
g-th pathway and i represents i-th disease data set. The
implementation of the permutation procedures is described in
detail in JointNormKS section.

2. Perform joint analysis procedure based on pgi of all
pathways across all data sets. Estimate prior probability,
Pr(D1 . . . ,DN), and beta distribution parameter of each data
set, α = {α1,α2, . . . αN}, from pgi through EM algorithm as
described before.

3. Compute posterior probability Pr
(

Di = 1
∣

∣pg1, . . . , pgN
)

of
for each pathway g within each data set i as similarly
defined in Equation (8) in JointNormKS and rank the
pathways accordingly.

Meta-Analysis for Pathway Enrichment
Analysis (MAPE)
Meta-Analysis for Pathway Enrichment Analysis (MAPE) is
a series of meta-analysis frameworks proposed by Shen and
Tseng (2010), which is specifically designed for pathway/gene
set enrichment meta-analysis. It consists of three different
frameworks: MAPE_Gene, MAPE_Pathway, andMAPE_I. Here,
we briefly introduce the implementation of each framework.
MAPE_Gene could be summarized by the following steps:

1. Compute p-value of differential statistic for each gene.
2. Perform MaxP meta-analysis for all genes across all data sets.
3. Compute KS statistics for each pathway.
4. Determine the p-value and false discovery rate (FDR) for each

pathway through permutation test.

MAPE_Pathway could be summarized by the following steps:

1. Compute KS statistic and its p-value through permutation test
for all pathways within each data set.

2. Perform MaxP meta-analysis for all pathways across all
data sets.

3. Determine the p-value and FDR for each pathway through
permutation test.

MAPE_I is a hybridization of MAPE_Gene and MAPE_Pathway
frameworks which takes the minimum p-value of a pathway
obtained through MAPE_Gene and MAPE_Pathway as its
test statistic. The p-value and FDR of this statistic are then
determined through permutation test.

Simulation Study
To evaluate the effectiveness of the proposed joint gene set
analysis frameworks, we performed comprehensive simulation
studies. Assume that there is a total of 1,000 DE genes out of
10,000 genes. The expression value of each gene in a sample
within each data set is generated as described in our previous
study (Qin and Lu, 2018) with different means and variance
set for each gene. We further assume that the number of data

TABLE 1 | Simulation parameter setup under different scenarios.

P
P

P
P

P
P

Pathway

Gene
(0,0) (DE,0) (0,DE) (DE,DE)

(A) SCENARIO 1, ENRICHMENT STRENGTH = 20%

(0,0) 45 0 0 5

(EP,0) 40 0 5 5

(0,EP) 40 5 0 5

(EP,EP) 40 0 0 10

(B) SCENARIO 2, ENRICHMENT STRENGTH = 20%

(0,0) 45 0 0 5

(EP,0) 40 5 10 0

(0,EP) 40 10 5 0

(EP,EP) 40 0 0 10

(C) SCENARIO 1, ENRICHMENT STRENGTH = 30%

(0,0) 45 0 0 5

(EP,0) 35 0 5 10

(0,EP) 35 5 0 10

(EP,EP) 35 0 0 15

(D) SCENARIO 2, ENRICHMENT STRENGTH = 30%

(0,0) 45 0 0 5

(EP,0) 30 5 15 0

(0,EP) 30 15 5 0

(EP,EP) 20 15 15 0

EP: Enriched Pathway

sets to be jointly analyzed is fixed at N = 2 and the number
of shared DE genes between two data sets is fixed at 600, 700,
800, or 900, so the DE gene similarity between two data sets
are defined as the average shared percentage of DE genes i.e.,
1
2 (Pr (D2 = 1|D1 = 1) + Pr (D1 = 1|D2 = 1)) would be 60, 70,
80, and 90%. After the gene expression data are generated, we
further assume that there is a total of 1,000 pathways each of
which contains 50 genes and therefore we would expect to see 5
DE genes within each pathway and any pathway containing more
than 5 DE genes would be considered as an enriched pathway.
In this simulation study, we set the number of DE genes of an
enriched pathway at 10 and 15, respectively. Within each data
set, there is a total of 100 enriched pathways. Similar to DE gene
similarity definition, we define the shared number of enriched
pathways at 60, 70, 80, and 90 between two data sets and consider
it as enriched pathway similarity between two diseases. Each
pathway is formed by randomly sampling DE and non-DE gene
and could be represented by Table 1 where each row represents
the enrichment status of a pathway in two data sets and the
number in each cell represents how to sample genes from two
data sets. Finally, to systematically evaluate the performance of
different frameworks, Receiver Operation Curve (ROC) (Fawcett,
2006) is used. Each parameter setup is repeated 30 times and the
average Area Under Curve (AUC) is calculated and recorded for
each framework.

Gene Set Collection Database
The up-to-date C2 canonical pathway collection (Version 6.1) of
MsigDB (Subramanian et al., 2007) which contains 1,329 gene
sets is used in this study. Before the gene set enrichment analysis,
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any gene set which contains <15 genes, or more than 500 genes
is removed from further analysis.

Lung Adenocarcinoma and
Colorectal Adenocarcinoma
Adenocarcinomas are observed to share similar DE genes as
discovered in our previous study (Qin and Lu, 2018), we decide
to use lung adenocarcinoma (GEO accession no.: GSE32863)
and colorectal adenocarcinoma (GEO accession no.: GSE41258)
as one evaluation of our proposed joint gene set analysis
frameworks. After we combined multiple probe sets representing
same gene by taking the maximum expression value in each
sample, a total of 12,054 unique genes and 991 canonical
pathways are used in the analysis.

Alzheimer’s Disease (AD) and Huntington’s
Disease (HD)
AD and HD are known to share highly similar pathology
(Narayanan et al., 2014). In this study, GSE33000 which contains
both AD and HD postmortem samples are used to evaluate
the performance of joint gene set enrichment analysis. Multiple
probe sets representing same gene are combined by taking the
maximum expression value in each sample. A total of 21,576
genes and 1,071 pathways are used in the analysis.

RESULTS

Overview of Proposed Joint Gene Set
Enrichment Analysis Frameworks
Figure 1 outlines the flowchart of three joint gene set enrichment
frameworks proposed in this study. The details of the algorithm
implementation could be found in the Methods section. Here
we briefly discuss the difference between the two frameworks.
The joint gene set enrichment framework could be split into
gene-level (JointNormKS) and pathway-level (JointPathway). In
JointNormKS, the differential expression status of each gene
is first jointly analyzed across all similar disease data sets and
gene set enrichment analysis is then performed based on the
jointly analyzed results which incorporates information from
other similar diseases. In this framework, we would expect to
observe increased identification power of pathway enrichment
when a gene successfully borrows information from other genes.
In JointPathway, gene-level information is first summarized
based on pathway within each dataset and joint analysis is
then performed based on the pathway-level evidence. Under
this framework, we would expect to see increased identification
power when similar diseases share many enriched pathways
among each other.

Comparisons Among JointNormKS,
JointPathway, Single Data Set Analysis and
MAPE Methods in Simulated Data Sets
In this section, we evaluated the performance of the proposed
joint gene set enrichment analysis framework through simulation
study and compared their performance with single data set
analysis and published MAPE methods (Shen and Tseng, 2010).

The detailed implementation of the simulation study and
parameter setup could be found in Methods section and Table 1.
Briefly speaking, expression data sets of two similar diseases
are generated with different number of DE genes within a
pathway, DE gene similarity and enriched pathway similarity.
Furthermore, we consider two different DE gene configuration
scenario in the pathway. In the first scenario, the enriched
pathway in the target disease data set will contain fully overlapped
shared DE genes from the similar disease data set from which
information is borrowed. In the second scenario, the DE genes
in the enriched pathway of the target disease data set will not
overlap with any DE genes in the similar disease data set.
This is a reasonable assumption as similar situation has been
observed in other literature where one pathway is enriched in
both datasets but DE genes are different (Shen and Tseng, 2010).
The comparison results are summarized in Figure 2.

In Scenario 1, we assume that one enriched pathway is
composed of shared DE genes. In this scenario, we observe that
our proposed JointNormKS outperforms all other methods when
the enrichment strength is set to 20% DE genes in an enriched
pathway. We observe that JointNormKS is not sensitive to the
DE gene similarity, different DE gene similarity yields similar
significant AUC improvement over single data set analysis. On
the other hand, enriched pathway similarity shows a stronger
impact on the performance of JointNormKS: the AUC improves
when the enriched pathway similarity increases. JointPathway
in this scenario does not show difference with single data set
analysis when the enrichment strength is low mainly because
the p-value signals of enriched and non-enriched pathways are
not separable in this case. The information borrowing in the
joint analysis is thus not working for low-signal case. MAPE
methods do not work well in this case. MAPE_Gene shows worse
performance in all Enriched pathway parameter setup mainly
because when MAPE_Gene summarizes evidence at gene-level,
it takes the maximum p-value of a gene in both diseases which
will lead to failing to identify many disease-specific DE genes in
a pathway. MAPE_Pathway shows increased performance when
enriched pathway similarity increases. However, even when the
enriched pathway similarity is set to 90%, JointNormKS still
outperforms MAPE_Pathway because disease-specific pathway
will be regarded as false positive by MAPE_Pathway and
thus has a low rank. MAPE_I method combines best results
calculated from MAPE_Gene and MAPE_Pathway methods and
thus cannot demonstrate better performance than JointNormKS.
When the enrichment strength increases from 20% DE genes
to 30% DE genes, JointNomrKS still outperforms all other
methods. we also observe that JointPathway demonstrates
improved AUC over single data set analysis when the enrichment
strength increases because the signal of an enriched pathway
in a single data set could be distinguished from non-Enriched
pathway which enables the information sharing between two
similar diseases. MAPE_gene performs similar as before while
MAPE_pathway does not show improvement over single data
set analysis mainly because when the signal of a single data
set is strong enough, meta-analysis-based method would, on
the contrary, cause the decrease of the rank of disease-specific
Enriched pathway.
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FIGURE 1 | Overview of the proposed joint gene set enrichment frameworks.

FIGURE 2 | AUC comparison among different methods under different parameter setup.
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FIGURE 3 | Venn diagram of identified enriched pathways by JointNormKS and single data set analysis in lung and colorectal adenocarcinoma data sets. FDR cutoff

is set to 0.1.

In Scenario 2, we assume that enriched pathways are
composed of non-overlapping DE genes in two data sets.
JointNormKS still outperforms all othermethods in this scenario.
The AUC improvement is even larger than that in scenario 1.
As we further examine the result, we find that the reason that
JointNormKS could efficiently borrow shared enriched pathway
information is due to the combined use of normalized KS
statistic and joint analysis at gene level (see Conclusion and
Discussions for details). MAPE_Gene performs even worse in
this scenario because there is not shared DE genes within
a pathway. Meta-analysis by taking maximum p-value would
thus produce many false positives in DE gene detection. Other
methods based on pathway-level evidence summarization remain
same performance as in Scenario 1.

To sum up, the simulation test with different parameter setup
and two different scenarios demonstrates that JointNormKS
performs best among all other methods even when there are no
shared DE genes within an enriched pathway. We then decide to
use JointNormKSmethod in real data application in next section.

Comparison of JointNormKS With Single
Data Set Analysis in Real Data Application
Based on the simulation test results, we apply the JointNormKS
framework on two real data sets and compare their identified
enriched gene sets with those derived from single data
set analysis, respectively. We use lung and colorectal
adenocarcinoma as one example because adenocarcinoma
both develop from gland cells of different tissues and as shown
in our previous study, we observed that lung and colorectal
adenocarcinoma shared a significant higher percentage of DE
genes than other cancers (Qin and Lu, 2018). Alzheimer’s disease
and Huntington’s disease are selected as another example due to
their highly similar clinical phenotypes.

Real Data Application: Lung Adenocarcinoma and

Colorectal Adenocarcinoma
JointNormKS is first applied on adenocarcinoma data sets
and results are compared with those obtained through
single data set analysis with the use of NormKS statistic
by setting the FDR cutoff at 0.1. The comparison results
are summarized in Figure 3. In lung adenocarcinoma data

set, single data set analysis identified 19 pathways while
JointNormKS could identify all these pathways plus 12 more
enriched pathways. The common pathways identified by
both methods contain “KEGG_CELL_CYCLE” which is
the KEGG pathway documented in KEGG disease pathway
database about known pathways involved with non-small
cell lung cancer (pathways taken from hsa05223). The
p-value and FDR of this pathway is significantly improved
in JointNormKS (FDR∼0.005) compared with single data set
analysis (FDR∼0.012). We also examined other known pathways
involved with non-small-cell lung cancer recorded in KEGG and
found that most of these pathways have improved significance in
JointNormKS over single data set analysis (Additional File 1A).
Among other commonly identified pathways, many cancer
related pathways are identified including cell cycle related
pathways such as “REACTOME_DNA_REPLICATION” and
cancer signaling pathways such as “PID_E2F_PATHWAY”
(Nevins, 2001; Bracken et al., 2003; Tazawa et al., 2007),
“PID_AURORA_B_PATHWAY” all of which play an important
role in tumor progress (Chieffi et al., 2006; Girdler et al.,
2006; Qi et al., 2007). For exclusively identified pathways by
JointNormKS shown in Table 2, many of them are related to
lung cancer after an extensive literature search. For instance,
“PID_MYC_ACTIV_PATHWAY” is a classic cancer-related
pathway regulating cell proliferation process which is found
in many cancers (Zajac-Kaye, 2001; Bild et al., 2006; Chou
et al., 2010). “BIOCARTA_MCM_PATHWAY” which controls
initialization of DNA replication process was reported in several
lung cancer studies (Ho et al., 2007; Brambilla and Gazdar,
2009). Other pathways which is closely related to cancer progress
includes pathways of amino acid metabolism and DNA synthesis.
The full list of identified pathways in lung adenocarcinoma could
be found in Additional File 1B.

In colorectal adenocarcinoma data sets, single data set
analysis slightly identified more enriched pathways than
JointNormKS. One hundred and twenty six pathways
were identified by both methods. We observe that three
pathways are exclusively identified by JointNormKS while six
exclusively by single data set analysis. The biological process
represented by 126 commonly identified enriched pathways
are similar to what was observed in lung adenocarcinoma
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TABLE 2 | Pathways exclusively identified by JointNormKS in lung

adenocarcinoma data set.

Pathway Single

FDR

JointNormKS

FDR

KEGG_BASE_EXCISION_REPAIR 0.1011 0.0797

KEGG_BLADDER_CANCER 0.1144 0.0988

BIOCARTA_MCM_PATHWAY 0.1144 0.0999

BIOCARTA_COMP_PATHWAY 0.1004 0.0797

BIOCARTA_CELLCYCLE_PATHWAY 0.1011 0.0912

PID_MYC_ACTIV_PATHWAY 0.1093 0.0961

PID_AURORA_A_PATHWAY 0.1035 0.0961

REACTOME_MUSCLE_CONTRACTION 0.1144 0.0978

REACTOME_SYNTHESIS_OF_DNA 0.1011 0.0867

REACTOME_METABOLISM_OF_CARBOHYDRATES 0.1144 0.0961

REACTOME_COMPLEMENT_CASCADE 0.1011 0.0797

NABA_ECM_AFFILIATED 0.1144 0.0961

data set. Among them, “KEGG_CELL_CYCLE” and
“KEGG_P53_SIGNALING_PATHWAY” are two pathways that
are documented in pathways known to be related to colorectal
cancer in KEGG database (hsa05210). When examining all
eight pathways known to be related to colorectal cancer, we also
observed that JointNormKS overall improved the FDR statistical
significance of these pathways compared with single data set
analysis. The full result is summarized inAdditional File 2A. We
further examined the enriched pathways exclusively identified by
JointNormKS and single data set analysis, respectively. We find
that all three pathways exclusively identified by JointNormKS
are closely related to cancer. “BIOCARTA_P53_PATHWAY”
and “PID_MYC_PATHWAY” are two canonical cancer-related
pathways. As for “REACTOME_TRANSCRIPTION,” after we
examined the gene family categorization on MsigDB, we find
that many genes in this gene set belong to gene family related to
cancer such as “oncogene,” “tumor suppressor” etc. On the other
hand, in the six gene sets exclusively identified by single data set
analysis, only one gene set: “WNT_SIGNALING” is the process
known to be related to cancer progress. The other four gene sets
might be potential false positives because very few reports could
be found for these biological processes. The full list of identified
enriched gene sets in colorectal adenocarcinoma could be found
in Additional File 2B.

Real Data Application: Alzheimer’s Disease and

Huntington’s Disease
Furthermore, we apply JointNormKS on two neurodegenerative
disorder data sets and evaluate the identified enriched gene
sets. The comparison results are summarized in Figure 4.
JointNormKS demonstrated improved statistical power by
identifying more enriched gene sets than single data set analysis
while enriched gene sets identified by single data set analysis
could also be identified by JointNormKS. On the other hand,
in AD data set, JointNormKS exclusively identified 13 enriched
gene sets and in HD data set, the number is 57. A clear statistical
power gain is observed in JointNormKS over single data set
analysis here.

In AD data set, we first examined three pathways
known to be related to AD disease documented in KEGG
disease pathway (hsa05010). “KEGG_APOPTOSIS” and
“KEGG_OXIDATIVE_PHOSPHORYLATION” are identified
by both methods with similar level of significance. The results
of three known AD related pathways are summarized in
Additional File 3A. A further examination on the 13 exclusively
identified gene sets by JointNormKS shows that these gene
sets belong to category of apoptosis/cell survival, neuron
development and energy metabolism all of which has a close
relationship to AD (Table 3). The full list of identified enriched
gene sets are summarized in Additional File 3B.

In HD data set, seven pathways known to be related to
HD documented in KEGG disease pathway are first examined
(hsa05016). “KEGG_CALCIUM_SIGNALING_PATHWAY,”
“KEGG_OXIDATIVE_PHOSPHORYLATION,”
“KEGG_PROTEASOME,” “KEGG_APOPTOSIS” are identified
by both methods where JointNormKS demonstrated on average
better statistical significance. It worth noting that one HD-related
pathway, “KEGG_RNA_POLYMERASE” is exclusively identified
by JointNormKS. The full result of these HD related pathways
is summarized in Additional File 4A. Furthermore, among
the 57 gene sets exclusively identified by JointNormKS, we
are surprised to find many cancer-related pathways. A further
literature search shows that biological processes such as cell
cycle, DNA repair, apoptosis and kinase signaling are both
implicated in both diseases suggesting a potential link between
two diseases (Plun-Favreau et al., 2010; Driver, 2012). The full
list of enriched gene sets identified in HD are summarized in
Additional File 4B.

CONCLUSIONS AND DISCUSSION

In this study, we proposed two novel joint gene set enrichment
analysis frameworks: JointNormKS and JointPathway aiming
at borrowing shared information across similar disease from
gene-level and pathway-level, respectively. Compared our
previously developed joint gene analysis framework, the
framework proposed here focused on pathway-level detection
and demonstrated that assumption of similar disease sharing
similar pathways is valid. The framework provides researchers
with new opportunities to view their data from a different angle
and could complement the limitation of gene-level analysis.

The two frameworks were first tested through simulation test
and compared with MAPE, the current meta-analysis methods
of gene set enrichment analysis. The results showed that the
JointNormKS performed best among all tested methods under
all simulation scenarios. The JointNormKS was then applied
to two real data sets and identified a comparable or more
number of enriched gene sets than analyzing the data set
alone. Further examination revealed that JointNormKS could
recover most of enriched gene sets that was identified by
single data set analysis and the enriched gene sets exclusively
identified by JointNormKS were mostly related to the disease.
These results demonstrate that when similar diseases are
jointly analyzed, the proposed joint gene set framework
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FIGURE 4 | Venn diagram of identified enriched pathways by JointNormKS and single data set analysis in AD and HD data sets. FDR cutoff is set to 0.1.

TABLE 3 | Pathways exclusively identified by JointNormKS in AD data set.

Pathway Single FDR JointNormKS

FDR

KEGG_APOPTOSIS 0.0117 0.0087

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 0.0125 0.0090

BIOCARTA_CERAMIDE_PATHWAY 0.0125 0.0096

BIOCARTA_PDGF_PATHWAY 0.0116 0.0081

ST_JNK_MAPK_PATHWAY 0.0128 0.0092

REACTOME_DEVELOPMENTAL_BIOLOGY 0.0268 0.0081

REACTOME_NEURONAL_SYSTEM 0.0128 0.0091

REACTOME_MRNA_PROCESSING 0.0106 0.0087

REACTOME_AXON_GUIDANCE 0.0241 0.0091

REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE 0.0116 0.0087

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 0.0445 0.0100

REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_PROTEINS 0.0129 0.0081

REACTOME_ACTIVATED_TLR4_SIGNALLING 0.0129 0.0055

could borrow information from each other and improve
identification power.

In the simulation test, we observed that in Scenario 1,
the JointNormKS was not sensitive to the DE gene similarity
(Figure 2). The reason is that after the joint analysis at gene-
level, the rank of genes which are DE in both data sets
would be prioritized to the top of the gene list ordered by
posterior probability of DE status and the improvement of
the rank of these genes is similar across different DE gene
similarity values. Since the Normalized KS statistic is rank-
sensitive, the ranks of enriched pathways would remain the
same and so is the ROC although the posterior probability of
these DE genes within an enriched pathway keep increasing.
In scenario 2, when an enriched gene set in both data sets
is composed of non-overlapped DE genes across two data
sets, we observed that JointNormKS was still able to detect
these gene sets and even had a better AUC improvement. The
reason is that after gene-level joint analysis, the ranks of DE
genes in the disease to be borrowed from would improve and
Normalized KS statistic which is sensitive to these changes would
increase the rank of these shared pathways. This might raise
a concern whether this will lead to increased number of false

positives. We would like to argue that the whole framework is
designed based on the assumption that similar diseases would
share similar enriched pathways. If this assumption holds, the
JointNormKS framework would work well as demonstrated in
simulation tests.

Three improvements need to be implemented in the future
work. The first improvement is to design a likelihood test
to detect the shared DE gene or enriched pathway similarity
before joint analysis is performed so that researchers using this
framework would have a better sense of whether these disease
data sets should be jointly analyzed or not. The test procedure
would be similar to that described in Chung et al. (2014). The
second improvement is the ability of the framework to include
more disease data sets to borrow as currently the size of prior
probability vector increases exponentially based on the total
number N of data sets (2N). A heuristic approximation or a
hierarchical structure could be implemented as described in Lai
et al. (2017). The third improvement is the incorporation of
gene set dependence in the joint gene set enrichment analysis
framework. In this study, gene set independence is assumed
even many gene sets share common genes. This is hardly
the case in real world. How to address the gene set/pathway
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dependence has been discussed and is a hot topic in the field
of statistics (Tamayo et al., 2016; Tomoiaga et al., 2016; Xie
et al., 2017). Extra work is needed to include it in the framework
proposed in this study and several options would be explored in
the future.
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