
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



The Ocular Surface 19 (2021) 176–182

Available online 21 May 2020
1542-0124/© 2020 Elsevier Inc. All rights reserved.

The eye as the discrete but defensible portal of coronavirus infection 
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A B S T R A C T   

Oculo-centric factors may provide a key to understanding invasion success by SARS-CoV-2, a highly contagious, potentially lethal, virus with ocular tropism. 
Respiratory infection transmission via the eye and lacrimal-nasal pathway elucidated during the 1918 influenza pandemic, remains to be explored in this crisis. The 
eye and its adnexae represent a large surface area directly exposed to airborne viral particles and hand contact. The virus may bind to corneal and conjunctival 
angiotensin converting enzyme 2 (ACE2) receptors and potentially to the lipophilic periocular skin and superficial tear film with downstream carriage into the 
nasopharynx and subsequent access to the lungs and gut. Adenoviruses and influenza viruses share this ocular tropism and despite differing ocular and systemic 
manifestations and disease patterns, common lessons, particularly in management, emerge. Slit lamp usage places ophthalmologists at particular risk of exposure to 
high viral loads (and poor prognosis) and as for adenoviral epidemics, this may be a setting for disease transmission. Local, rather than systemic treatments blocking 
virus binding in this pathway (advocated for adenovirus) are worth considering. This pathway is accessible with eye drops or aerosols containing drugs which appear 
efficacious via systemic administration. A combination such as hydroxychloroquine, azithromycin and zinc, all of which have previously been used topically in the 
eye and which work at least in part by blocking ACE2 receptors, may offer a safe, cost-effective and resource-sparing intervention.   

Background 

Unexpectedly, ophthalmology may be playing a central role in the 
current Coronavirus Disease 2019 (COVID-19) epidemic. The harbinger 
of the third zoonotic coronavirus epidemic in as many decades [1], was 
Dr Li Wenliang, an ophthalmologist, who died following infection with 
COVID-19 [2,3]. It was thought he was infected during examination of a 
patient with angle closure glaucoma in the second week of January 
2020. He suspected an outbreak after seeing patients with SARS-like 
symptoms and the system failure to heed his warning may well have 
changed the course of world history. The second instructive case is that 
of the respiratory physician Guangfa Wang [4]. Days before pneumonia 
onset, his earliest symptoms related to left conjunctivitis, then catarrhal 
symptoms and fever which developed after 2–3 h, slower than might be 
expected from older studies tracing the passage of bacteria through the 
lacrimal drainage system [5]. While an N95 respirator was worn, of-
fering protection from infection via oro-nasal pathways, eye protection 
was not. 

Evidence that ocular and periocular tissue may be uniquely placed as 
an entry point for viral invasion will be reviewed. At the height of the 
1918 world influenza epidemic, a landmark paper appeared, proposing 
transmission of acute respiratory infections via the eye and lacrimal- 
nasal pathway [5] (Fig. 1). It was noted that this pathway had been 
“disregarded in planning measures for the prevention of the spread of 

contagious diseases” and it would appear that little has changed. 
A third factor in this perfect storm is the well-established but not well 

recognized coronavirus ocular tropism [6]. The study of oculotropic 
influenza and adenoviruses [7–9] sets precedents for disease patterns, 
bought into focus by coronaviruses. Whereas influenza viruses generally 
represent a respiratory pathogen and only occasionally cause ocular 
complications, adenoviruses mirror image this disease pattern, causing 
severe ocular surface disease, and are often highly contagious (known as 
“eye hospital eye [10]) with fewer, seldom lethal, systemic manifesta-
tions. Thus, all three virus types share a common ocular entrée but vary 
in their degree of contagion, ocular versus respiratory/system impact 
and lethality. Taken as a whole, these disease patterns have implications 
for more effective management strategies. 

Why Are Ophthalmologists/Eye Care Providers At Occupational Risk 
of COVID-19? 

Dr Li Wenliang’s death and the apparent high infection rate in 
ophthalmologists (and ENT surgeons) [11], attributed to the high viral 
shedding from the nasal cavity, should not be unexpected. A high initial 
viral load is associated with poor prognosis [12] and ophthalmologists 
are particularly at risk, since ophthalmic practice involves very close 
ophthalmologist-patient physical proximity. This is necessitated by op-
tical imperatives to optimise image quality by close alignment of im-
aging devices to the eye. Slit lamp biomicroscopy is the cornerstone of 
ophthalmic practice and the slit lamp is also used to carry out surgical 
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procedures. The back focal distance (the distance of the subject from the 
front lens surface of the microscope), is set to give the surgeon sufficient 
space for manipulation ~ 11 cm (Fig. 2A). With the instrument body 
length added, the distance from patient to the surgeon’s eye is at a 
convenient working distance of ~28–30 cm. This proximity and the 
possibility of cross infection between examiner and examinee has long 
been recognized and a protective, transparent, typically Perspex® 
“breath shield” was added to slit lamps. It is evident in slit lamps from as 
early as 1919 [13] and may well have gained popularity during the era 
of the 1918 influenza pandemic. The necessity for such shields is readily 
apparent from studies in which exposure between two face-to-face 
breathing manikins is measured [14] – Fig. 2B and C. Tracer gas ex-
periments to investigate the range of exhalation, either by mouth 
(Fig. 2B) or nose (Fig. 2C) show that at ~30 cm, one would be within the 
“line of fire”. This study concluded that air exhaled from human respi-
ration contains contaminants and is able to penetrate the breathing zone 
of other nearby persons. Of interest is that exhalation flow may stratify 
in a horizontal layer at breathing zone height under certain conditions. 
Thus, with slit lamp examination, the layer of air between patient and 
ophthalmologist may remain stable, exposing both individuals for the 
entire time of the examination. Breath shields are often missing from slit 
lamps either because they are not fitted or because, as they get in the 
way, are removed. 

That slit lamps and their accessory lenses are a source of infection 
transmission has long been known [15]. In epidemic adenoviral kera-
toconjunctivitis ((AKC), shipyard/eye hospital eye) [10,16], ophthal-
mologists are not infrequently infected although this is not well 
documented [17,18]. While AKC can cause considerable incapacity and 
has resulted in some risk-minimization measures, unlike coronavirus it 
does not usually result in death. The earlier severe acute respiratory 
syndrome (SARS) epidemic resulted in recommendations for how to 
manage eye facilities and include advice in relation to slit lamp cleaning 

and eye protection for staff [19,20]. Slit lamp biomicroscopy is an 
almost optimal method of transferring material in breaths between two 
individuals, short of actual facial contact. A very recent study provides 
evidence for human-to-human transmission [21]. Pathways include 
direct transmission, such as cough, sneeze, droplet inhalation 

Fig. 1. The lacrimatory-nasal mechanism for the mechanical disposition of organisms entering the upper respiratory tract [5].  

Fig. 2a. Typical configuration during slit lamp examination indicating dis-
tances between patient and physician: (a) Back focal distance - 11 cm, (b) 
Distance between front lens surface and ophthalmologist’s eyes - 17–19 cm, (c), 
Distance between ophthalmologist and patient eyes - 28–30 cm. 

M.T. Coroneo                                                                                                                                                                                                                                    



The Ocular Surface 19 (2021) 176–182

178

transmission as well as contact transmission including contact with oral, 
nasal, and eye mucous membranes [22]. SARS-CoV-2 aerosol and fomite 
transmission is highly likely, since the virus can remain viable and in-
fectious in aerosols for hours and on different surfaces up to days [23]. 
While transmission of coronaviruses occurs via an airborne route [24], 
because infected, symptomatic patients tend to develop severe lower, as 
opposed to upper respiratory tract infections, it has been supposed that 
airborne agent virus has to be small enough to penetrate directly into the 
lower respiratory tract to preferentially replicate there before causing 
disease. That transmission could occur via the ocular-nasolacrimal 
pathway was not considered. 

Is the ocular surface an entry point for SAR-CoV2? 

Human eyes are located at a coign of vantage in the body, simulta-
neously providing information from our highest bandwidth sense but 
also being exposed to risk of exposure including to airborne virus. The 
surface area of the eye(s) is large compared to that of the mouth and 
nares – (Fig. 2D) and was recognized early as a target for “promiscuous 
spraying” whereby coughing could project material at least 10 feet away 
[5]. Since this 1919 study [5], a number of other studies have investi-
gated ocular surface area and reported as a total (for two eyes) as 
226–426 [25] and 300–640 mm2 [26], indicating that the figure from 
Maxcy’s early study [5] was a good estimate (Table 1) of the “visible” 
ocular surface. The later study [26] also explains variability in mea-
surements, since palpebral aperture is dependent on eye gaze direction. 
However, the total ocular surface area has been estimated at 

~1600–1869 sq. mm/eye [27,28], including the cornea, this repre-
senting a maximal absorptive area of ~3738 sq.mm, accounting for the 
tarsal conjunctiva and including the palpebral fornices. Even this 
consideration underestimates the potential ocular/periocular landing 
zone for a viral particle. It is not an uncommon observation that makeup, 
applied around the eye, can “migrate” onto the ocular surface [29], 
similar to the phenomenon by which noxious agents in minute quantities 
are easily transferred from fingertip to periocular skin and then the eye. 
This may be due to subtle actions of Riolan’s muscle [30]. In fact, this 
mechanism of transport of agents from the periocular eye lid skin to the 
eye (obviating the need for eyedrops) has been termed supracutaneous 
and has been developed as an efficient delivery system for management 
of dry eye syndrome [31]. This supracutaneous mechanism, might 
provide a substantial periocular area in which viral particles could land 
and be “funnelled” onto the ocular surface and beyond. Table 1 provides 
available information on the size of the orbital opening [32] and 
reviewed in [33], which likely underestimates the area of eyelid skin. 
We have estimated eyelid skin to be ~4000 mm2 and that of the brow to 
be ~3000 mm2, so that in total with the ocular surface area, a landing 
site of ~10,000 mm2 would be available, – 2 orders of magnitude greater 
than for the nares and mouth. This does not take into account the surface 
area that could be attributed to the hair of the eyebrows or the eyelashes, 
for which estimates have not been made. Eyelash aerodynamics may 
also play a role [34]. Eyelashes have been shown to divert airflows, 
acting as a passive ocular dust controlling system. They reduce evapo-
ration and particle deposition up to 50%. In a comparative study [35], 
Asian eyelashes had lower lift-up and curl-up angles, fewer numbers and 
a thicker transverse diameter as compared to Caucasian eyelashes. 
Whether these differences play any role in influencing the rate at which 
particles land on the ocular surface is unknown. However, it is possible 

Fig. 2b. Smoke visualisation of exhalation flow from mouth of mannequin on 
the right. The breathing zone of mannequin the left mannequin is obviously 
penetrated despite a distance of 1.2 M [14]. 

Fig. 2c. Smoke visualisation of exhalation flow from nose of the mannequin on 
the right – separation of mannequins was 0.4 M. The breathing zone of the 
mannequin on the left is again penetrated but its closer proximity to the exhaled 
smoke would suggest a greater degree of breathing zone penetration [14]. 

Fig. 2d. Comparison of eye exposure to direct droplet spray to that of the 
mouth and nares: (a), average total eye surface exposed; shaded area represents 
proportion of time not exposed, due to winking; (b), average total mouth area 
exposed in talking; shaded area represents proportion of time not exposed, due 
to closure; (c), average total area of cross-section of nares exposed; shaded area 
represents proportion of time not exposed, owing to protected position and 
expiration [5]. 

Table 1 
External ocular surface areas.  

Palpebral Aperture 
mm2 Methodology Reference 
600 Unreported [5] 
226–426 Digitized video images [25] 
300–640 Digitized video images [26] 
Total Ocular Surface Area 
3200 Designed instrument [27] 
3738 Molds of cadaver eyes [38] 
Total Orbital Aperture Area 
2509 (estim) CT Scan [32] 
1793–1987 Radiographs [33]  
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that a deficiency in this mechanism could increase the risk of infection. 
In the 1919 study [5], Bacillus prodigiosus (Serratia marcescens) was 

instilled into the lacrimal sac of 5 volunteers and subsequently was 
recoverable from the nose, throat and stool after 5 min, 15 min and 24 h 
respectively. It was concluded that via this ocular lacrimatory-nasal 
mechanism (Figs. 1 and 2), the upper respiratory tract of a person 
wearing a properly constructed mask may be infected by exposing the 
eye briefly to direct droplet spray. 

Role of Ocular Surface Cellular Receptors 

Identification of ocular surface cellular receptors utilized by respi-
ratory viruses has provided information as to the permissiveness of 
ocular tissue to infection with these agents [6,36]. Central to COVID-19 
pathogenicity is that cellular entry is via the cell surface angiotensin 
converting enzyme 2 (ACE2) receptor [37,38]. It is the only mammalian 
group I coronavirus known to use ACE2 as its receptor [39]. ACE2 was 
previously identified as the receptor for SARS-Cov and NL63 [40]. Virus 
infectivity studies have shown that ACE2 is essential for SARS-CoV-2 to 
enter HeLa cells [41]. 

While ACE2 mRNA is known to be present in virtually all organs, 
surface expression of ACE2 protein was described in lung alveolar 
epithelial cells and small intestinal enterocytes [42] and it was postu-
lated that ACE2 might provide the coronavirus entry route. The eye and 
its adnexae were not investigated in this study. It was subsequently 
shown that ACE2 protein is more abundantly expressed on the apical 
than the basolateral surface of polarized airway epithelia [43] and thus 
accessible by topical agents. An immunohistochemical study revealed 
both extra- and intraocular localisation of ACE in human eyes [44]. Of 
particular interest was the localisation of ACE to the epithelial cells of 
both the cornea and conjunctiva. Apical epithelia location and whether 
receptors are ACE2 remains to be confirmed. Recently, more widespread 
distribution of SARS-CoV-2 entry factors, ACE2 as well as TMPRSS2 
protease and cathepsin B/L activity (for post-binding spike protein 
priming) have been documented using single-cell RNA-sequencing data 
[45]. While it was recognized that binding affinity of the spike protein 
and ACE2 is the major determinant of SARS-CoV replication rate and 
disease severity and that viral entry also depends on protease activity, 
ACE2, rather than protease activity, may be a limiting factor for initial 
viral entry. This study confirmed evidence of ACE2 in the limbus, 
corneal epithelium (basal/suprabasal, superficial and wing cells) and 
conjunctiva (basal and superficial cells) and co-location with TMPRSS2 
in superficial conjunctival cells. Of interest is that this study demon-
strated evidence of ACE2 in nasal goblet cells which also express genes 
associated with immune functions including innate and antiviral im-
mune functions. There should be some priority for re-evaluation of these 
elements in the ocular surface [46]. 

The density of SARS-CoV-2 entry factors and their presence or 
absence in the lacrimal drainage system would be of interest, since viral 
particles that land in the tear film need not necessarily bind to an 
epithelial cell immediately but could be presented with a second op-
portunity (a “wash through” effect) in the lacrimal drainage system. 
Tear film resilience may well protect the underlying corneal and 
conjunctival epithelium so that viral adherence to the tear film could 
prevent access to the apical epithelial surface, which may account for 
the relatively low incidence of keratitis/conjunctivitis reported to date 
[47,48]. 

The tear film lipid layer plays an important role in retarding tear film 
evaporation and tear spillage [49]. However, this lipophilicity and that 
of the periocular skin [50] may potentially play a role in how corona-
viruses and perhaps other enveloped viruses access the ocular surface. In 
the skin, extracellular surface lipids provide a barrier function [51] and 
while a similar function might keep viruses from accessing ocular sur-
face receptors, tear and supracutaneous flow could result in a “second 
chance” for the virus to bind to receptors downstream in the lacrimal 
drainage pathway and beyond. The tear film, comprised of nonpolar 

lipids, is generally hydrophobic [52]. The coronaviruses with a crown of 
spike proteins around a lipid bilayer envelope [53] may be well suited to 
adhering to the ocular surface. Coronavirus cell entry and adhesion 
require lipid rafts and the presence of cell membrane cholesterol [54,55] 
and in a sense, the cholesterol containing tear lipid layer [56] might act 
as “lipid raft”, facilitating initial viral adhesion. The precise nature of 
potential viral adhesion to the tear film requires elucidation since this 
represents another potential means of intervention via local rather than 
systemic means. 

The possibility of ocular surface viral replication and transmission 
should be further explored given the finding of likely sustained SARS- 
CoV-2 replication in three patients with systemic infection and 
conjunctivitis [57–59]. While it was found that no viral RNA was 
detected in the tear fluid and conjunctival secretions of infected patients 
without conjunctivitis in one study, it was felt that this did not eliminate 
the risk of transmission via this pathway [57]. The finding that human 
conjunctival explant cultures were more extensively infected by 
SARS-CoV-2 than by SARS-CoV is also significant [46]. Taken together, 
these findings are also consistent with the concept that the tear film may 
protect the ocular surface from epithelial infection and convey virus 
downstream. 

The nasolacrimal system, via the nasopharynx (considered crucial 
for viral replication [46]) thus provides a bridge between ocular and 
respiratory tissues, serving as a conduit for virus-containing fluid ex-
change between these sites [60]. Furthermore, beyond the anatomical 
linkage, it was recognized that the structure and distribution of cellular 
receptors in these systems is likely contributing to the tissue tropism of 
respiratory viruses [60]. Furthermore, there is respiratory-ocular 
mucosal immune interdependence with linkage via the nasolacrimal 
lymphoid tissue [6,61]. 

Despite early suggestions of ocular involvement [62] in this process, 
it appears that this was not taken into consideration in framing early 
guidelines for protection against infection. More recently, American 
Academy of Ophthalmology recommendations include protection for 
the mouth, nose and eyes when caring for patients potentially infected 
with this virus [63]. 

Thus, the pathophysiology of ocular surface-SARS-CoV-2 in-
teractions requires re-evaluation, not only to determine the dynamics of 
ocular surface viral exposure and binding but also transmission via the 
lacrimal drainage system. Less pathogenic coronaviruses as well as other 
respiratory viruses could be used in animal models to better elucidate 
this relatively unexplored pathway. 

Potential for intervention 

Thus, the ocular surface, representing a large surface area, exposed 
to and likely receptive to coronavirus, bearing the appropriate SARS- 
CoV-2 entry factors, may be an ideal point of intervention. Efforts in 
directly targeting the ACE2 receptor in this way are limited [64]. 
Potentially, blocking the ACE2 receptor would deprive coronaviruses 
from their main point of tissue binding. P4 and P5 peptides and NAAE, a 
small molecule targeting ACE2 have been developed but there have been 
concerns about a narrow spectrum of activity and effects on blood 
pressure regulation [65]. This strategy has previously been employed, 
using antibodies [66] - anti-ACE2 but not anti-ACE1 antibody blocked 
viral replication in a model system. Blocking of TMPRSS2 protease and 
cathepsin B/L activity could also be considered, however it appears that 
ACE2, rather than protease activity, may be the viral entry rate limiting 
factor [45]. 

Possible drug interventions targeting the ACE2 receptor include ACE 
inhibitors and chloroquine. ACE inhibitors are widely used in the 
treatment of systemic diseases including hypertension and are generally 
well tolerated [67]. This class of drugs has not previously been consid-
ered as having an anti-viral role. Crystallography studies demonstrate 
that while the ACE inhibitor lisinopril binds in a region near the centre 
of the receptor [68,69], the virus binding sites are on the outer surface of 
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the receptor near the N terminal [39], so direct blocking by lisinopril of 
the virus attachment site seems unlikely. However, the potent ACE2 
inhibitor MLN-4760 induces a large receptor conformational change, a 
hinge bending motion, important for both inhibitor binding and catal-
ysis and could prove to be unfavourable for viral binding to the receptor 
and/or syncytial formation [69]. It was thought that metallopeptidase 
inhibitors such as MLN-4760 may prove useful for prevention of viral 
binding to ACE2 [70]. 

A search of FDA-approved drug libraries identified a number of drugs 
including chloroquine as potentially having anti-coronavirus actions 
[71] and therefore potentially able to be repurposed. Table 2 summa-
rises the drugs that have been identified as potential treatments for 
coronavirus infection, their efficacy (in vitro and in vivo) and for which 
there is data (for that agent or a related compound) for previous topical 
ocular surface usage. It is apparent that while for each of these agents, 
there is evidence of in vitro anti-coronavirus activity, there is a paucity 
of in vivo studies. This has been raised as a matter for concern in that 
there are precedents for paradoxical untoward drug systemic effects that 
result in increased disease severity when in vitro testing alone might 
suggest efficacy [85]. 

Chloroquine has long been used in the treatment of malaria and 
subsequently, autoimmune disorders (such as rheumatoid arthritis) as 
well as in oncology and for pediatric inflammatory disease. However, 
chloroquine has direct antiviral effects, inhibiting pH-dependent steps of 
the replication of flaviviruses, retroviruses, and coronaviruses [86], 
exhibiting strong antiviral effects on coronavirus infection of primate 
cells [72,87]. The drug can be effective either before or after exposure to 
the virus, so could act both therapeutically and prophylactically. Several 
mechanisms have been proposed but of particular interest is that the 
drug appears to interfere with terminal glycosylation of ACE2 [87–89]. 
Chloroquine also has immuno-modulatory effects [86,90], suppressing 
the production/release of tumour necrosis factor and interleukin 6, 
which may mitigate the severe inflammatory cascade associated with 
severe COVID-19 disease [86]. Recently, hydroxychloroquine was found 
to be more potent than chloroquine at inhibiting SARS-CoV-2 in vitro 
[91], fortuitous, since it appears that lower toxicity has been attributed 
to this derivative [92]. 

A recent systematic review of clinical trials utilising chloroquine or 
hydroxychloroquine [74] concluded that 5/7 trials had shown favorable 
outcomes for patients using these drugs and 2/7 demonstrated no sig-
nificant change compared to control. It was noted that all 7 trials carried 
varying degrees of poor study design and bias. One such study, a pilot 
observational study [93] showed that use of hydroxychloroquine and 
azithromycin demonstrated apparent improved clinical outcomes in 
65/80 patients, expanding earlier work suggesting that combined 
therapy resulted in rapid reduction in viral load. Clearly, more robust 
clinical studies are needed and have been called for [74]. 

While systemic chloroquine and its derivatives appear to be 

associated with relatively minor side effects in the shorter term, elec-
trocardiogram QT interval prolongation has been reported [94] and this 
may be exacerbated by combination treatment with azithromycin [74]. 
The well-known association with irreversible visual loss due to retinal 
toxicity is considered a late manifestation [95], however early-onset 
(~2 months) has been reported in a case where the ideal dosage was 
exceeded for one month [96]. A number of predisposing factors to 
retinal toxicity include genetic [97] - polymorphisms in the cytochrome 
P450 gene, drug interactions [98] and racial factors [99]), may play a 
role. Chloroquine’s anticancer activity in concert with zinc have been 
explained by the fact that chloroquine acts as a zinc ionophore [100], 
significantly, inhibiting cellular autophagy and enhancing apoptotic cell 
death via inhibition of lysosome function. It transpires that zinc inhibits 
coronavirus polymerase activity [101], blocking viral replication. For 
this reason, combination treatment for Covid-19 with chloroquine and 
zinc has been suggested [102], although this intervention has yet to be 
formally reported. 

Possibility of topical/local treatment for SARS-CoV-2 

It is perhaps unsurprising, given the passage of time, that an un-
derstanding of viral oculotropism from the 1918 influenza epidemic has 
faded. Yet if SARS-CoV-2 oculotropism is confirmed, this invasion entry 
point also represents an opportunity for intervention. Given the poten-
tial toxicity of apparently efficacious drugs and issues relating to drug 
bioavailability, initially in the upper airways and respiratory system, 
local, topical therapy offers potential significant advantages. 

Many of the proposed systemic therapies such as chloroquine, zinc 
and ACE inhibitors have all been used topically in the eye (Table 2). 
Chloroquine as 0.03% chloroquine phosphate eye drops have apparently 
been efficacious in the management of dry eye syndrome in humans [75, 
76]. Significant side effects were not reported, however there is a report 
of chloroquine keratopathy in workers chronically exposed to chloro-
quine dust [103]. Chronic usage is unlikely in the setting here proposed. 

ACE inhibitors have been used topically in animal models of glau-
coma [104]. In this class of drugs, agents such as telmisartan are long 
acting, with a mean half-life of 24 h [105]. Zinc has traditionally been 
used in astringent eye drops or as an excipient, zinc sulphate (0.25%) 
[83]. Since chloroquine and ACE2 inhibitors seem to act at different 
parts of the receptor, in combination, synergy is possible or at the very 
least an additive effect, permitting a reduction in dosage and risk of 
potential side effects. However, another issue is that ACE2 inhibitors 
may upregulate this receptor [106], perhaps increasing the risk of 
coronavirus infection. Early reports have suggested that hypertension 
may be a risk factor for infection but these are unconfirmed [107]. 
Azithromycin has also previously been safely used topically in the 
human eye as a 1–1.5% solution to treat ocular infections [78,79]. In the 
case of hydroxychloroquine, preliminary calculations suggest that with 
topical application, a dosage one to two orders of magnitude higher than 
plasma levels (reached with systemic treatment [108]) could be 
achieved. 

Conclusion 

At this point, clinical studies are needed expeditiously to investigate 
the safety and efficacy of local prophylactic regimens following expo-
sure to SARS-CoV-2. For instance, investigations can include initial local 
delivery of a combination of chloroquine, zinc and azithromycin to the 
eyelids and ocular surface with eye drops or a spray/aerosol. This would 
potentially inhibit binding of SARS-CoV-2 to the likely major entry point 
into the human body, would reduce the risk of systemic side effects and 
conserve drugs that may become scarce, since the dosage required 
would be much less than for systemic treatment. A spray or aerosol 
preparation would also allow treatment of the nasal passages [45] and 
mouth [109], given high ACE2 receptor populations in these locations. 
However, if the virus is truly oculotropic, this may be superfluous. If a 

Table 2 
Proposed Agents For Initial Ocular Surface anti-SARS-CoV-2 Intervention.  

Proposed Agents For Initial Ocular Surface anti-SARS-CoV-2 Intervention 

Agent Anti- SARS-CoV-2 Effect Ocular Surface Application 
(for SARS-CoV-2-unrelated 
disease)  

In 
Vivo 

In 
Vitro 

Clinical Human Animal 

Chloroquine 
Phosphate 

+72 -a73 ±74 +75,76(0.03%) 0 

OHChloroquine +72 0 ±74 0 0 
Azithromycin +77 0 ±77 +78,79(1–1.5% +80,81 

(0.2–1.5%) 
Zinc +aa82s 0 0 +83(0.25% as 

SO4) 
+84 (0.5%) 

+ denotes efficacy, - denotes inefficacy, ± denotes equivocal results, 0 denotes 
lack of studies. 

a For SARS-CoV. 
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patient has active infection of the respiratory tree, then this combined 
medication could also be given in an inhaled form. The advantage of this 
ACE2 targeting approach is that ACE2 receptors from the outer cornea, 
through the lacrimal drainage system to the respiratory and gastroin-
testinal systems as well as both nasal and oral cavities, are directly 
accessible to a high topical drug dose. Thus, the portals that make us 
susceptible to coronavirus attack and invasion can be used to provide 
protection that is likely to be safe, extensive, convenient and at low cost. 
The ocular surface, offering all of the benefits of local treatment familiar 
to ophthalmologists, may thus provide a convenient testing ground for 
rapid, safe and likely cost-effective trials of newer drugs that may be 
developed to combat this modern plague. 
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