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ARTICLE INFO ABSTRACT

Keywords: Estimated breeding values using best linear unbiased prediction (BLUP) through pedigree relationship can
BLUP enhance selection efficiency and save time as well as resources in autotetraploid potato breeding program. Here,
EBY . we used historical preliminary yield evaluation trials data of 469-619 breeding lines for tuber yield and late blight
?:;;;:lehty resistance to estimate heritability and BLUP based breeding values modelling auto-tetraploid inheritance in mixed
Relationship matrix model analysis. The pedigree file had a depth of 3-4 generations with total 370 individuals including 111
Agronomy founders. Heritability estimates varied from 0.15 for marketable tuber yield to 0.47 for late blight resistance
Horticulture computed using A matrix. The prediction accuracy for total tuber yield, marketable tuber yield and late blight
Plant biology resistance (AUDPC) was 0.53 + 0.02, 0.44 + 0.02 and 0.81 =+ 0.01, respectively. The prediction accuracy was
Plant genetics highest for late blight resistance and moderate for total and marketable tuber yield. The prediction bias measured
Phenology as regression of observed phenotype values on predicted values for late blight resistance was almost nil in
Bioinformati?s comparison to total and marketable tuber yield. Moderate to high prediction accuracies for tuber yields and late
?};t;c;xirgutanonal method blight resistance suggest the selection of genotypes based on EBVs in Indian potato breeding programme for

higher genetic gain.

1. Introduction

Selection of best individuals is a great challenge in plant breeding.
The genetic gain in plant breeding using visual selection has not yiel-
ded the desired results in comparison to the results of estimated
breeding values in animal breeding programmes. Use of best linear
unbiased prediction (BLUP) procedure, which combines phenotypic
performance and pedigree relationship is required to maximize the
genetic gain in plant breeding programmes including potato. BLUP is
the standard selection method in animal breeding where the breeding
values of sires are estimated based on progeny performance to select
superior genotypes and to breed superior families (Henderson, 1950,
1976). Recently, the method was applied in crop plants (Piepho et al.,
2008) and has also been extended in clonal crops, potato (Slater et al.,
2014; Ticona-Benavente and da Silva Filho, 2015) and sweet potato
(Borges et al., 2010). BLUP uses mixed models with genotypes as
random effect.
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In animal breeding, pedigree BLUP is in practice and was recently
replaced by genomic BLUP, where pedigree relationship is replaced by
genomic relationship matrix of marker data (de los Campos et al., 2013).
The pedigree based genetic variance-covariance matrix is replaced with
genomic variance in genomic BLUP (Slater et al. 2016, 2018; Caruana
et al., 2019). The basic requirement for genomic BLUP i.e. dense marker
data is limited in most crops, therefore, pedigree BLUP is the most
promising strategy for selection of desirable plant genotypes (Slater et al.,
2014).

Potato is an important non-grain food crop of the world and is grown
and consumed in almost all the countries of the World. The potato
breeding programme generally uses phenotypic recurrent selection
(Bradshaw and Mackay 1994) and breeding populations are developed
by controlled hybridization, followed by selection pressure on progeny to
reduce the population size. In the initial clonal generations, the breeding
lines/clones are selected based merely on visual selection (Jansky 2009).
The fewer clones are multiplied for tuber number and through assess-
ment afterwards (Slater et al., 2014). Visual selection is ineffective in
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Table 1. Year wise total variance for all the three traits (+s.e.).

Year Number of breeding lines Total variance

Total tuber yield Marketable tuber yield Late blight resistance (AUDPC)
2000 18 2355.56 + 8.68 2873.88 + 6.97 -
2001 19 2867.65 + 9.91 2203.17 £+ 7.96 -
2002 35 4638.53 + 11.51 5141.23 £+ 12.12 -
2003 21 2747.53 + 11.44 2148.03 £+ 10.11 16671.08 + 28.18
2004 31 6570.35 + 14.56 5654.12 + 13.51 29828.01 + 31.02
2005 29 3249.40 + 10.59 2761.95 + 7.79 109018.88 + 61.31
2006 32 2820.61 + 7.54 2196.34 £ 6.11 38800.84 + 34.82
2007 31 2806.20 + 7.63 2607.38 + 7.20 17759.80 + 23.94
2008 31 2870.62 + 2.46 2162.30 £ 2.29 40949.78 + 36.34
2009 46 4236.64 + 9.60 2600.10 + 7.52 -
2010 53 3109.14 £ 7.66 2439.46 £+ 5.21 43550.97 + 28.67
2011 23 2168.61 + 7.13 2392.98 + 4.13 32082.35 + 37.35
2012 24 2852.65 + 6.62 2557.59 + 4.82 303460.62 + 112.45
2013 32 2278.95 + 8.44 2136.77 £+ 5.96 90855.46 + 53.29
2014 34 2624.60 + 6.91 6486.56 + 7.90 92913.52 + 52.28
2015 56 2707.42 £+ 5.52 2605.67 + 3.29 61739.91 + 33.20
2016 35 4238.75 + 11.00 2800.66 + 8.95 244382.98 + 83.56
2017 35 4546.55 + 11.40 2254.00 + 8.02 256896.56 + 85.67
2018 34 4514.90 + 11.52 4045.33 + 10.91 88932.38 + 51.14

breeding as it leads to the elimination of both superior and inferior in-
dividuals and intense phenotypic selection have been found to be inef-
fective despite 150 years of breeding (Jansky 2009). This is because the
expression of most traits is influenced by the environmental factors.

Although progeny testing and phenotypic recurrent selection have
demonstrated genetic gains in potato breeding, its adoption is limited
and breeding cycle is longer (Jansky 2009; Slater et al., 2014). BLUP
prediction of breeding value is a standard practice in animal breeding
and animal breeding programs have been benefitted from selection of
best individuals based on genetic merit by use of pedigree information in
the analysis (Piepho et al., 2008; Slater et al., 2014). Still, BLUP has not
gained much popularity in crop breeding in India.

BLUP uses mixed linear models to calculate breeding value derived
from pedigree relationships and expected genetic covariances from large
datasets. BLUP takes into consideration the information from all relatives
in the analysis, resulting in good accuracy, particularly for low herita-
bility traits. It also uses more information from relatives that are more
closely related to account for the degree of genotypic similarity. To
implement BLUP-based breeding, the heritability values of the target
traits are required. The inheritance pattern in potato is more complex
than diploids due to its auto-tetraploid nature and thus the analysis must
consider the relevant inheritance pattern of auto-tetraploids (Slater et al.,
2014). In auto-polyploids, the multiple homologous chromosomes pair to
form multivalents during meiosis and the alleles from sister chromatids
can be delivered to same gamete, known as double reduction (Slater
et al., 2014). Kerr et al. (2012) modified the relationship matrix, which
considered this complex inheritance pattern in auto-tetraploids. The
present work aims to apply BLUP EBV-based selection in auto-tetraploid
potato for tuber yield and late blight resistance for enhanced genetic gain
in potato breeding in India for the first time.

2. Materials and methods

Historical data of replicated preliminary yield evaluation trials
conducted at Kufri, Shimla, which is a major potato breeding station for
late blight resistance breeding in India, were compiled with year wise
information of breeding lines evaluated in F;C4 to F1Cy; generation from
2000-2018. The number of breeding lines evaluated each year varied
from 18 to 56 with an average value of 33 lines per year (Table 1). The

plot size varied from 3 to 5 rows of 2m each with a spacing of 60 x
20cm. The common traits observed in these trials were total tuber yield,
marketable tuber yield and late blight resistance. The data were
cleaned, checked for the uniformity of units and merged in a single
excel file.

Total tuber yield and marketable tuber yield was recorded on plot
basis and converted into quintals per hectare. Late blight resistance was
recorded as AUDPC based on 3-4 readings during the season. The late
blight observations were taken on weekly intervals after first appearance
of symptoms till 100% disease was observed in susceptible control. The
AUDPC was calculated as per the standard formula (Forbes et al., 2014).
Kufri is located at an elevation of 2500 m amsl and is a hotspot for field
screening of potato lines to late blight resistance. For total and market-
able tuber yield, the phenotypic data of 619 entries was used, while the
number was 469 for late blight resistance.

Pedigree details i.e. parents, grandparents and great grandparents of
each breeding line were searched in the local pedigree database and
potato pedigree database (van Berloo et al., 2007) as well as in publi-
cations i.e. Potato Journal (Indian Potato Association) and American
Journal of Potato Research. The pedigree file covered 3—4 generations for
most of the breeding lines except few, where the pedigree could not be
traced back. There were total 370 individuals including 111 founders i.e.
individuals with no parental information in the pedigree.

Pedigree based best linear unbiased prediction (ABLUP) is a model
predicting breeding values using the expected relatedness among in-
dividuals (A) (Henderson 1984).

The model

y=Inp+Xb+Zu+e

was fitted to the data for all the three traits separately as explained
previously by Slater et al. (2014).

y is a vector of phenotypic records

u is the overall mean.

1n is a vector of ones

b is a vector of year effects.

X is a matrix allocating records to year effects.

Z is a matrix allocating records to breeding values

u is a vector of breeding values

e is a residual vector.
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Total tuber yield variation over the years

o
g2 °
53 o
(o]
=] &
S o e 1
© | H
< ! i
g - o 1 1
o= ! o ! -
F & T l - l - l
o 1 ! - | H E
2 i o R B
= ‘g‘ e i
o
T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Year
Marketable tuber yield variation over the years
o
9, 7 o
(o]
o
8 4
[}

i) W
5 g g :
> & o i
=
=
- v T 2 B
T8 . ] I
& H
SH T i ]
4L - g 4 =+
o =
T T T T T T T T T T T 1} T
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Year
Late blight AUDPC variation over the years
o
C o
8 | 8 8 8
e 8 5
8
[$)
& 8 ‘ e °
g e P8 8 g
=z | °
o 1 -] o
= - —_ H
\ -] i |
<} 8 T ' 8 :
3 7 o L i ° &
: . . . W
: l » . b =
° ' - : . .
o] === - _._---‘-— --ﬁ--
T T T T T T T T T T T T T T T
2003 2005 2007 2010 2012 2014 2016 2018
Year

Figure 1. Variation in total tuber yield, marketable tuber yield and late blight resistance over the years a) Total tuber yield b) Marketable tuber yield c) Late blight
resistance (AUDPC).
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Table 2. Basic statistics of potato breeding lines evaluated in Kufri, Shimla from
2000-2018.

Trait Min Max Mean SD
Total Tuber yield (q/ha) 26.1 448.1 151.3 72.4
Marketable tuber yield (q/ha) 8.30 393.9 105.9 62.3
Late blight resistance (AUDPC) 0 1846.25 209.28 323.72

The numerator relationship matrix (A matrix or pedigree relationship
matrix) was calculated as per Slater et al. (2014) considering 10 per cent
double reduction.

Mixed model was used to estimate variance components (REML),
predict estimated breeding values (EBV's) for each hybrid, trait and BLUP
values. The heritability was calculated as h? = [genetic variance/(genetic
variance + environmental variance)].

Prediction accuracies: The predictive ability of the models was
assessed using the Pearson's correlation between the observed pheno-
types and EBV's, which is the prediction accuracy. Fifty breeding lines
were randomly sampled as a validation set for 50 replicates, while the
remaining lines were considered as training set. Year information was
fitted as a fixed effect in the model. Bias was investigated as the slope of
the regression of phenotypes on EBV, and scatter plot of EBVs vs observed
phenotypes.

All the analyses were done in R (R Core Team, 2014) using various
packages. The package “AGHmatrix” (Amadeu et al., 2016) was used for
construction of A matrix, “Sommer” (Covarrubias-Pazaran 2016) was used
for mixed model analysis, estimation of breeding values, BLUP values and
heritability. Prediction bias was estimated using ggplot2 library and lm
function and heatmap of A matrix was made using package “superheat”.

3. Results
The data on all the three traits under study, i.e. total tuber yield,

marketable tuber yield and late blight resistance (AUDPC) showed
wide range of variation as depicted in box plots (Figure 1). Total and

Table 4. Training population size and the prediction accuracies for traits.

Traits ABLUP Prediction Accuracy
Total Training Teby:tby"
records population size
Total Tuber yield 619 569 0.53 + 0.02
Marketable tuber yield 619 569 0.44 + 0.02
Late blight (AUDPC) 469 419 0.81 + 0.01
Mean 0.59 + 0.02

* values are mean + s.e. for 50 individuals using 50 replicates.

marketable tuber yield varied from 26.1 q/ha to 448.1 q/ha and 8.30
to 393.90 g/ha, respectively. The average total and marketable total
yield was 151.3 and 105.9 gq/ha (Table 2). The late blight AUDPC
score values varied from O to 1846.25 with an average of 209.28.
High standard deviation values were observed for all the three traits
(Table 2). As per the values of genetic and environmental variance,
the heritability estimates computed using A matrix for late blight
resistance was moderate (0.47 £ 0.06), while low heritability was
recorded for total (0.27 + 0.06) and marketable tuber yield (0.15 +
0.05) (Table 3).

The relationship matrix prepared using pedigree relationship showed
the pair wise relationship among individuals (Figure 2). The heatmap of
A matrix showed that majority of the relationship was in between 0 - 0.1
(19818), followed by 0.1-0.3 (7984), 0.5-1.0 (1534), 0.3-0.5 (1292) and
1.0-1.5 (370) (Figure 2).

The training population size was 419 for late blight and 569 for
total and marketable tuber yield (Table 4). The prediction accuracy for
total tuber yield and marketable tuber yield was 0.53 + 0.02 and 0.44
+ 0.02, respectively, while late blight resistance (AUDPC) observed
high prediction accuracy of 0.81 + 0.01. The prediction accuracy was
highest for late blight resistance and moderate for total and market-
able tuber yield. The average prediction accuracy was 0.59 + 0.02
(Table 4).

Table 3. Variance components and heritability estimates of different traits (+s.e.).

Trait o2 o? h?

Total Tuber yield 1530 + 3.10 4059 + 5.05 0.27 £ 0.06
Marketable tuber yield 810 + 2.26 4452 + 5.29 0.15 + 0.05
Late blight resistance (AUDPC) 31242 + 16.0 35163 + 16.98 0.47 £ 0.06

o2 - genetic variance; o2-environmental variance; h? -Heritability.

Color Key

0 40000 16405

Amatrix

Figure 2. Heatmap of pedigree relationship matrix (A matrix).
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Table 5. EBV/BLUP values of breeding lines for all the traits. The values are arranged in descending order for total and marketable tuber yield, while late blight

resistance values were arranged in ascending order.

Breeding line

Total tuber yield

Breeding line

Marketable tuber yield

Breeding line

Late blight resistance (AUDPC)

SM/11-120
SM/98-106
HB/82-372
SM/93-18
SM/90-45
SM/10-139
SM/91-1515
SM/92-168
SM/08-11
SM/93-04
SM/10-255
SM/94-44
SM/08-12
SM/94-137
SM/94-38
SM/09-99
SM/08-04
SM/94-133
SM/93-233
SM/10-178
SM/10-103
SM/09-91
SM/05-75
VMT 5-1
SM/93-17
SM/93-237
SM/94-134
SM/95-43
SM/09-163
SM/10-118
SM/94-43
SM/09-121
SM/09-161
KS/95-124
SM/95-188
SM/09-123
SM/98-239
SM/94-11
SM/10-239
SM/88-343
SM/10-178A
SM/95-05
SM/09-10
SM/94-31
SM/03-25
KS/96-725
SM/10-102
SM/10-233
SM/10-136
SM/08-09
SM/00-43
SM/09-84
SM/09-153
SM/09-57
SM/92-338
SM/09-94
SM/10-164
SM/05-170

99.94
61.96
50.64
47.67
47.50
47.08
46.51
46.03
45.76
43513
41.81
41.45
41.39
40.81
40.71
40.28
39.82
39.26
39.20
38.48
38.11
37.09
36.93
34.97
34.51
34.45
34.22
33.09
32.39
31.32
30.35
30.31
29.24
29.02
28.18
27.57
27.28
26.60
25.64
24.80
23.53
23.34
22.70
21.98
21.17
20.81
20.52
20.21
20.21
20.13
19.08
19.06
18.90
18.62
18.34
18.31
17.96
17.57

SM/11-120
SM/98-106
SM/91-1515
SM/90-45
HB/82-372
SM/95-05
SM/95-188
SM/94-38
SM/98-239
KS/95-124
SM/94-44
SM/93-04
SM/95-32
SM/92-168
SM/08-04
SM/10-255
SM/93-237
SM/93-18
SM/10-178
SM/88-343
SM/08-11
SM/10-103
SM/10-139
SM/09-163
SM/93-233
SM/95-43
SM/09-99
SM/94-133
SM/08-12
SM/09-91
SM/09-161
SM/93-17
SM/94-137
SM/05-75
SM/09-121
SM/10-118
SM/96-127
SM/03-25
SM/09-123
SM/09-10
SM/98-232
SM/94-11
SM/94-43
VMT 5-1
SM/94-31
SM/94-82
KS/96-725
SM/10-233
SM/87-151
SM/10-136
SM/10-239
SM/88-991
SM/09-153
SM/92-338
SM/10-164
SM/94-134
SM/10-178A

Kufri Himalini

130.70
81.51
79.81
61.87
61.48
58.63
57.12
51.41
50.81
50.61
43.58
43.43
42.77
42.45
42.15
41.59
40.77
40.31
40.30
39.99
38.92
36.24
35.83
33.30
31.63
31.55
29.15
28.93
28.22
28.00
27.49
25.87
25.46
25.28
25.19
24.92
24.44
22.89
21.87
21.70
20.94
19.13
18.35
18.23
17.37
17.15
16.53
16.52
16.14
16.05
15.53
15.47
14.66
14.06
12.89
12.83
12.83
12.22

SM/08-11
SM/09-91
SM/10-239
SM/10-136
SM/08-01
SM/08-04
SM/10-139
SM/10-178A
SM/10-178
SM/09-99
SM/10-233
SM/08-09
SM/09-94
SM/09-100
SM/09-121
SM/09-136
SM/08-12
SM/10-255
SM/09-161
SM/09-122
SM/09-163
SM/09-84
Kufri Girdhari
SM/05-75
SM/09-10
SM/03-25
SM/10-103
SM/11-120
SM/10-118
SM/09-03
LBY-2
SM/09-123
SM/09-24
SM/09-14
SM/03-23
SM/09-01
SM/09-33
SM/10-164
SM/10-102
SM/03-32
SM/09-141
SM/03-45
SM/09-153
SM/03-13
SM/03-70
SM/09-57
SM/10-44
SM/10-05
SM/03-17
SM/09-162
SM/03-02
SM/03-49
SM/09-164
VMT 5-1
SM/01-04
SM/10-116
SM/03-16
LBY-24

-282.52
-280.53
-273.63
-271.24
-270.81
-266.42
-262.74
-261.05
-260.88
-256.61
-254.60
-254.36
-250.29
-244.82
-243.49
-239.72
-236.68
-236.40
-234.33
-234.04
-223.55
-213.96
-211.90
-211.43
-207.36
-206.76
-205.36
-203.23
-203.16
-200.10
-199.98
-198.64
-195.86
-195.07
-194.91
-192.43
-192.12
-184.87
-183.17
-179.20
-175.41
-175.06
-173.32
-170.27
-165.50
-157.44
-145.27
-140.39
-139.86
-139.73
-138.90
-129.58
-128.06
-127.81
-124.50
-123.89
-119.23
-105.92

(continued on next page)
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Table 5 (continued)

Breeding line Total tuber yield Breeding line Marketable tuber yield Breeding line Late blight resistance (AUDPC)
SM/96-127 17.54 SM/10-102 12.07 SM/00-42 -104.66
SM/09-136 17.02 SM/09-136 11.61 SM/01-07 -101.91
SM/94-82 16.15 SM/99-13 10.93 SM/02-01 -97.41
LBY-18 13.82 SM/87-55 10.44 SM/02-03 -91.45
SM/09-122 13.29 SM/96-206 10.33 SM/00-43 -82.91
SM/09-14 12.59 SM/09-84 10.07 SM/10-67 -82.11
Kufri Himalini 12.56 SM/09-57 9.60 SM/00-72 -81.51
CP2379 12.04 SM/09-122 9.03 SM/00-191 -81.17
SM/09-164 11.97 SM/08-09 8.59 SM/05-170 -79.93
SM/03-23 11.32 SM/09-94 8.55 SM/02-02 -69.36
SM/00-42 11.14 SM/08-01 8.50 SM/02-07 -66.83
SM/09-100 10.43 SM/09-164 8.49 SM/02-04 -66.59
SM/09-03 10.41 SM/05-170 8.13 SM/02-06 -57.20
SM/98-232 10.15 SM/09-03 7.42 SM/01-03 -57.09
SM/09-162 10.00 SM/03-23 7.33 SM/00-120 -53.73
SM/04-20 9.93 SM/00-42 7.31 SM/04-20 -48.97
SM/08-01 9.19 SM/00-43 6.64 SM/97-50 -45.88
SM/09-33 8.43 SM/09-162 6.48 VMT 2-5 -44.83
SM/95-32 7.82 B 4201 6.39 SM/02-08 -43.87
SM/09-24 7.70 LBY-18 6.22 SM/01-08 -42.41
Kufri Girdhari 7.52 SM/04-20 5.80 SM/97-203 -33.25
SM/09-01 7.29 SM/09-14 5.27 SM/99-56 -18.42
SM/94-62 5.48 SM/94-62 4.32 LBY-18 -18.24
SM/10-05 3.87 SM/87-185 3.93 SM/00-192 -11.84
SM/05-40 3.27 SM/09-24 3.78 KS/96-919 -11.71
SM/03-32 3.22 SM/00-191 2.66 KS/97-204 -7.54
SM/99-13 1.67 Kufri Girdhari 2.28 KS/95-124 -7.16
SM/10-44 1.65 Kufri Giriraj 2.02 SM/98-232 4.59
KS/96-919 1.62 SM/09-33 1.70 SM/99-67 17.76
LBY-24 1.06 KS/96-919 0.09 SM/98-239 19.86
SM/94-55 0.88 SM/97-243 -0.02 SM/05-40 24.63
SM/99-56 0.69 SM/09-100 -0.43 SM/98-106 27.01
SM/00-191 -1.25 SM/10-05 -1.09 SM/95-43 29.79
SM/96-206 -1.31 SM/96-103 -2.06 SM/99-71 34.55
SM/03-13 -2.15 SM/09-01 -2.10 SM/00-59 41.37
B 4201 -3.38 CP2379 -2.54 SM/96-104 59.62
SM/09-141 -4.56 SM/00-120 -2.60 SM/98-182 62.57
SM/00-72 -5.44 SM/94-55 -3.79 SM/97-219 66.15
SM/03-70 -6.61 SM/99-56 -3.98 LBY-15 68.69
SM/98-182 -8.02 SM/05-40 -5.15 SM/00-45 76.17
SM/00-120 -8.33 SM/00-72 -5.59 SM/99-33 88.75
SM/96-103 -8.80 SM/10-44 -5.84 KS/96-725 89.13
SM/10-116 -9.07 SM/03-13 -7.11 Kufri Himalini 89.19
SM/88-991 -10.02 SM/98-182 -8.65 SM/00-168 99.08
SM/03-45 -10.24 SM/99-42 -9.27 SM/99-02 103.72
SM/03-02 -10.47 SM/96-145 -11.40 HR 9-3 119.36
LBY-17 -11.53 LBY-24 -11.89 SM/00-44 121.95
SM/10-67 -12.94 KS/96-814 -12.47 Kufri Shailja 123.40
LBY-15 -13.12 SM/09-141 -12.69 SM/99-11 132.63
LBY-2 -13.78 SM/99-67 -12.81 SM/97-243 137.44
KS/96-814 -14.02 SM/99-35 -13.04 SM/99-13 140.14
LBY-19 -15.85 SM/10-67 -13.24 KS/96-814 142.79
Kufri Giriraj -16.08 SM/99-33 -13.82 SM/05-25 157.77
KS/97-204 -16.90 SM/10-116 -14.08 SM/96-127 172.95
SM/87-151 -17.03 KS/97-204 -14.11 SM/99-42 175.48
SM/99-35 -17.93 SM/03-70 -15.07 LBY-19 198.49
SM/99-33 -18.18 SM/03-32 -15.54 SM/00-63 211.93
SM/87-55 -18.26 SM/99-11 -17.29 HR 5-2 212.58
SM/99-42 -19.19 SM/03-45 -17.89 LBY-17 212.90

(continued on next page)
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Breeding line Total tuber yield Breeding line Marketable tuber yield Breeding line Late blight resistance (AUDPC)
HR 2-5 -19.76 SM/01-07 -20.08 SM/00-115 229.88
SM/97-243 -19.89 Kufri Jyoti -20.50 Kufri Giriraj 250.62
SM/99-67 -20.21 SM/97-219 -21.31 SM/00-29 423.93
SM/97-219 -21.19 SM/02-01 -22.80 SM/00-18 490.21
SM/96-145 -21.55 SM/00-192 -22.80 Kufri Jyoti 635.21
SM/99-71 -21.75 SM/97-203 -23.61
SM/03-17 -23.35 SM/03-02 -23.65
SM/03-16 -24.10 LBY-2 -24.06
SM/99-11 -25.39 LBY-17 -24.86
HR 9-3 -25.62 SM/99-71 -25.29
HR 5-2 -26.20 SM/96-104 -26.27
SM/87-185 -26.28 LBY-15 -29.44
SM/03-49 -26.88 SM/01-04 -30.91
SM/00-192 -27.86 VMT 2-5 -31.28
VMT 2-5 -28.78 SM/02-06 -31.98
SM/02-01 -29.00 SM/00-168 -32.27
SM/05-25 -29.67 SM/02-04 -33.37
SM/01-07 -30.15 SM/00-29 -36.12
SM/99-39 -31.35 LBY-19 -36.60
SM/02-03 -34.64 SM/99-39 -37.03
Kufri Jyoti -34.81 SM/00-59 -38.08
SM/97-203 -34.93 Kufri Shailja -39.31
SM/02-06 -35.62 HR 2-5 -39.36
SM/00-168 -36.12 SM/03-17 -40.74
SM/00-29 -36.49 SM/03-49 -40.82
SM/02-08 -37.56 SM/02-02 -41.71
SM/01-04 -38.07 HR 5-2 -42.01
SM/96-104 -38.57 SM/01-03 -43.06
SM/01-03 -39.88 SM/05-25 -43.88
SM/02-04 -40.87 SM/02-08 -44.05
SM/02-07 -41.80 SM/02-03 -44.37
SM/97-50 -42.10 SM/03-16 -44.84
SM/00-59 -50.25 HR 9-3 -45.70
SM/02-02 -50.31 SM/97-50 -45.81
SM/00-63 -51.19 SM/02-07 -46.31
SM/00-115 -52.09 SM/00-63 -50.45
SM/01-08 -55.13 SM/00-115 -52.06
SM/00-18 -60.49 SM/01-08 -54.92
Kufri Shailja -61.06 SM/99-02 -55.83
SM/00-44 -64.42 SM/00-18 -58.87
SM/99-02 -65.79 SM/00-44 -61.16
SM/00-45 -71.19 SM/00-45 -68.27
According to BLUP/EBVs for all the breeding lines, the top five lines
BLUP values for diffrent traits for total and marketable tuber yield were same with one exception
(Table 5, Figure 3). The top lines were SM/11-120, SM/98-106, HB/
600 ° 82-372, SM/93-18, SM/90-45 and SM/91-1515. Based on EBVs, the
o five best breeding lines for late blight resistance were SM/08-11, SM/
400 ° 09-91, SM/10-239, SM/10-136 and SM/08-01 (Table 5).
200 - ‘ﬁ
° :
—(f— IR 3 Table 6. Regression coefficients of observed phenotype values on EBVs.
o ——
— — Traits Regression coefficient*
200 ; Total Tuber yield 1.41 £+ 0.09
, , — Marketable tuber yield 1.46 + 0.08
E g | Late blight (AUDPC) 0.97 £+ 0.03
Mean 1.28 + 0.07

Figure 3. Variation in BLUP values of breeding lines for total tuber yield,

marketable tuber yield and late blight resistance.

" EBVs of all the breeding lines were used for regression analysis.
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Figure 4. Regression plots of observed phenotype value over estimated breeding value for all the traits a) Total tuber yield b) Marketable tuber yield c¢) Late blight
resistance (AUDPC).
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In prediction bias, the deviation from the slope of regression shows
the over estimation or underestimation of EBV values in comparison to
observed phenotypes. For late blight the regression coefficient was
close to one (0.97 + 0.03), while the deviation for total tuber yield
(1.41 + 0.09) and marketable tuber yield (1.46 + 0.09) was high
(Table 6). The scatter plot of EBVs and observed phenotypes also
showed that EBVs are in line with observed phenotypes for late blight
resistance (Figure 4). The adjusted R? value i.e. goodness of fit of
linear regression model was 0.65 for late blight resistance (AUDPC),
followed by 0.35 for marketable tuber yield and 0.28 for total tuber
yield (Figure 4).

4. Discussion

The improvement in the development of potato varieties with higher
yield and resistance to late blight is evident. However, the demand is
continuously increasing for further genetic progress in the future.
Continuous success in selection programs depends on the use of all
improvement strategies available. Selection is the process of identifica-
tion of genetically superior individuals based on the phenotypic values of
the individual and its relatives. Most of the economic traits in potato
breeding are complex and controlled by polygenes. The conventional
breeding scheme follows recurrent selection and results in slow and
steady improvement. The selection based on estimated breeding values
using BLUP model could result in faster genetic gains particularly for
complex traits with polygenic inheritance. The pedigree details however
should be accurate and complete for capturing the total variance through
pedigree relationship matrix. The selections based solely on phenotype
are misleading and inappropriate (Bradshaw et al., 2009). Thus, use of
mixed models for estimation of breeding values of clones or parental lines
through best linear unbiased prediction (BLUP) is an appropriate strategy
for complex traits with low heritability as the EBVs estimate only the
additive genetic effect, the genetic component that is transmitted from
parents to progeny.

The breeding lines showed wide variation for all the three traits,
which is a prerequisite for any selection programme in crop breeding
(Machida-Hirano 2015; Bonierbale et al., 2020). The variation for total
and marketable tuber yield was high in comparison to late blight resis-
tance. The reason being all the breeding lines belong to biotic stress
resistance breeding programme and have undergone rigorous selection
for late blight resistance through artificial inoculation as well as field
reaction in initial generations. The material under evaluation also
included control varieties which vary from highly resistant to highly
susceptible category. High standard deviation for all the three traits
indicated that the observations are spread out from the mean value of the
data.

Heritability is a key parameter in quantitative genetics because it
determines the response to selection. The heritability estimates here are
based on pedigree relationship using autotetraploid inheritance. Late
blight resistance (AUDPC) showed moderate heritability estimate, while
both the tuber yields recorded low estimates for heritability. The results
are in line with the genetic control of traits i.e. late blight resistance is an
oligogenic trait while yield is a highly complex trait controlled by many
genes. Thus, yield has low heritability and is most affected by the envi-
ronmental variations and late blight resistance is least affected. The se-
lection will be more effective for highly heritable traits. The similar
heritability estimates have been observed earlier for late blight (Enci-
so-Rodriguez et al., 2018). Ticona-Benavente and da Silva Filho (2015)
also observed low heritability for tuber yield, while Slater et al. (2014)
observed moderate heritability for tuber yield.

This study demonstrated the potential advantage of EBVs using
pedigree BLUP in potato breeding for effective selection in all traits in
Indian potato breeding programme. As the BLUP uses genetic informa-
tion of all relatives, the estimation of breeding values is much accurate
than progeny mean analysis, which uses only full sibs (Slater et al.,
2014). This clearly indicates that selection based on BLUP estimated

Heliyon 6 (2020) e05624

breeding values is superior to phenotypic selection, especially for low
heritability traits like tuber yield. We observed high prediction accuracy
for late blight and moderate prediction accuracies for total and market-
able tuber yield. High prediction accuracy for late blight could be
attributed to robust phenotypic data for late blight as Kufri is a hotspot
for late blight occurrence and the disease appears consistently over the
years without much deviation. Moreover, the heritability for late blight
was moderate and the traits is governed by few genes. The high predic-
tion accuracy for late blight resistance indicates that the estimated
breeding values could be used for late blight resistance breeding for se-
lection of resistant genotypes in breeding programme. Although, the
training population size was large for total and marketable tuber yield
compared to late blight resistance (Table 4), the predictions for tuber
yields were moderate. Yield is a complex trait highly influenced by
environmental variations. We too observed low heritability and high
yearly yield variations for the breeding lines. Although the yield pre-
dictions were good for selection of genotypes, a further increase in the
training population size of breeding lines could enhance the yield pre-
dictions i.e. estimating breeding values. The BLUP values for all the
breeding lines were in agreement to the observed phenotype value for all
the three traits.

The predictions are also affected by relationship of the individuals in
the pedigree which could be observed in the heatmap of A matrix
(Figure 2). The prediction accuracy in general increases with the increase
in relationships in the matrix. In our pedigree relationship matrix i.e. A
matrix (370 x 370), the relationship was observed in 30,628 pairs, while
no relationship was found in 105902 pairs. In potato, out of 4,397 cul-
tivars cultivated worldwide, 14.9% have been bred from 15 genotypes (Li
et al., 2018), which indicate that common parents have been used in
potato breeding across the globe. Therefore, increasing the depth of
pedigree could increase the relationship in the matrix, which can capture
all the genetic variance for the traits under study.

The regression coefficients for EBV indicated no bias for late blight
resistance and high bias for tuber yields based on deviation of regression
slope from one. Similar regression coefficients were reported in earlier
studies (Sverrisdottir et al., 2017; Caruana et al., 2019). The scatter plots
of EBVs and observed phenotypes also revealed the same results for
prediction bias (Figure 4). In general, high adjusted R? value indicate
good fit of the model i.e. smaller differences between the observed data
and the fitted values. This can be seen in the late blight resistance plot
where the differences between observed phenotype values and EBVs
were lower, hence the adjusted R? value was high. However, total and
marketable tuber yield plots had low adjusted R? values and the residual
plots also showed large differences between observed phenotype value
and EBVs (Figure 4). The higher R? values does not always indicate good
fit of the model and a good model can have low R? values also. Similarly,
when the variances (scales) for the two variables are different, we don't
get 1.0 slope for no bias.

There is a remarkable progress and success of BLUP in animal
breeding, which has led to high genetic gains, and consequently resulted
in the adoption of methodology in crop plants too (Piepho et al., 2008;
Slater et al., 2014). The BLUP analysis provides an individual estimate of
EBV for all the lines, the superior lines can therefore be identified from
low scoring families also (Molenaar et al., 2018). The BLUP based esti-
mation of breeding values for individuals across multiple traits could also
be used to generate a selection index for selection of superior individuals
for all the traits together (Xu et al., 2012). We expect the replication of
similar results in our potato breeding programme. Our results showed
that selection of breeding lines based on EBVs will be more efficient than
observed phenotypic values to maximize the genetic gain in potato
breeding in India. Moreover, it will save the additional resources
required for tuber multiplication and phenotyping large number of
breeding clones to select the best lines. However, maintaining accurate
and extensive pedigree records for devising relationship matrix to esti-
mate EBVs is an important activity in breeding programs. Nonetheless,
the more accurate and efficient approach is DNA markers based genetic
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relatedness to implement genomic selection (Heffner et al., 2010; Crossa
et al., 2010). Pedigree based EBVs could be the most effective breeding
strategy until genomic selection can be routinely implemented. Decisions
about parent selection based on EBVs and GEBVs will ultimately enable
new, improved high yielding disease resistant potato varieties in India.
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