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Simple Summary: Staphylococcus aureus, apathogen that causes bovine mastitis, produces various
virulence factors, and human consumption of milk contaminated with the S. aureus enterotoxin may
pose a public health risk. This study analyzed the genetic characteristics of bovine-mastitis-related
virulence factors to evaluate the potential pathogenesis of S. aureus isolated from bulk tank milk. The
results show that S. aureus isolated from bulk tank milk, not from mastitis, had a high prevalence of
virulence factors and that the high presence of enterotoxins may be due to poor hygiene. Therefore,
developing a strong monitoring and sanitation program for dairy factories is important to ensure
hygienic milk production.

Abstract: Staphylococcus aureus, a persistent mastitis-causing pathogen, produces various virulence
factors, including enterotoxins. This study analyzed the genetic characteristics of bovine-mastitis-
related virulence factors to evaluate the potential pathogenesis of S. aureus isolated from bulk tank
milk. Among 93 S. aureus isolates from 396 dairy farms operated by 3 dairy companies in Korea,
40 (43.0%) isolates carried one or more enterotoxin genes. Moreover, S. aureus carrying enterotoxin
genes showed a higher prevalence in all virulence genes tested in this study except for pvl and lukM,
which were not detected in any isolate, than in the isolates without enterotoxin genes. In particular,
the prevalence of six genes (hla, hlb, lukED, fnbA, clfA, and clfB) was significantly higher in S. aureus
carrying the enterotoxin genes than in the isolates without the enterotoxin genes (p < 0.05). The
most common multilocus sequence type of enterotoxin-producing isolates was ST188, and all isolates
of ST188 harbored the see gene. S. aureus isolated from bulk tank milk, not from mastitis, had a
high prevalence of virulence factors, posing a public health threat. Moreover, a high presence of
enterotoxins in bulk tank milk is probably because of poor hygiene; therefore, it is important to
develop strong monitoring and sanitation programs for dairy factories.

Keywords: bulk tank milk; enterotoxin; virulence factor; bovine mastitis

1. Introduction

Staphylococcus aureus (S. aureus) is one of the most common pathogens causing con-
tagious mastitis in the dairy industry [1]. In particular, S. aureus is persistent and causes
chronic mastitis, and consumption of these dairy products transmits virulence factors from
the contaminated milk to humans and may pose a public health risk [2,3].

S. aureus has various virulence factors, such as toxic shock syndrome toxin-1 (TSST-1),
enterotoxins, and leukotoxins. In particular, the staphylococcal enterotoxin, belonging to the
superantigen family, is the most potent because it can induce polyclonal activation of T cells
at picomolar concentrations [4]. This activity is suspected to enhance virulence by inhibiting
the host response to staphylococcal antigens produced during infection or present during
toxinoses. Moreover, ingestion of enterotoxins causes severe food poisoning with vomiting,
nausea, and diarrhea [5]. To date, more than 20 types of enterotoxins have been identified, of
which classical enterotoxin types (sea-see) pose serious public health concerns because they
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retain their biological and immunological activities after pasteurization [6]. Additionally,
classical enterotoxins account for more than 90% of staphylococcal food poisoning cases
worldwide [7], and some new enterotoxins (seg-sei) exhibit emetic activity [5].

Other virulence factors, such as adhesion and biofilm-related genes in S. aureus, can
also cause various diseases in humans, ranging from mild skin infections to severe life-
threatening infections. Moreover, Panton–Valentine leukocidin (PVL) disrupts the mem-
branes of host defense cells and erythrocytes by the synergistic action of two specific
proteins, lukS-PV and lukF-PV; therefore, it is also associated with bovine mastitis [8,9].
Although S. aureus was isolated from normal bulk tank milk, not from mastitis in this study,
we analyzed the genetic characteristics of bovine-mastitis-associated virulence factors to
evaluate the potential pathogenesis of S. aureus.

2. Materials and Methods
2.1. Bacterial Isolation

S. aureus was isolated from 1,588 batches of bulk tank milk from 396 dairy farms
in 6 factories (A1, A2, B1, B2, B3, and C1) operated by 3 dairy companies (A, B, and C)
according to standard microbial protocols published by the Ministry of Food and Drug
Safety (2018) [10]. Briefly, 1 mL of the milk sample was inoculated in 9 mL of tryptic
soy broth with 6% NaCl (BD Biosciences, Sparks, MD, USA). After incubation at 37 ◦C
for 24 h, each medium was streaked onto 5% sheep blood agar (KOMED, Seoul, Korea).
Confirmation of S. aureus was performed using PCR with a species-specific primer as
described previously [11]. If two isolates of the same origin showed the same antimicrobial
susceptibility patterns, only one isolate was randomly chosen. A total of 93 S. aureus isolates
were tested for this study.

2.2. Detection of Virulence Factors

The presence of the genes encoding the enterotoxins (sea, seb, sec, sed, see, seg, seh, sei,
and sej), the toxic shock syndrome toxin (tsst-1), hemolysins (hla and hlb), Panton–Valentine
leukocidin (pvl), leukocidins (lukED and lukM), fibronectin binding proteins (fnbA and fnbB),
clumping factors (clfA and clfB), and intercellular adhesion (icaA and icaD) were detected
by PCR using the Accupower PCR PreMix (Bioneer, Daejeon, Korea). The primers are listed
in Table 1.

Table 1. Primers used in this study.

Target Sequence (5′ → 3′) Size (bp) References

nuc F: GCGATTGATGGTGATACGGTT 279 [12]
R: AGCCAAGCCTTGACGAACTAAAGC

sea F: GAAAAAAGTCTGAATTGCAGGGAACA 560 [13]
R: CAAATAAATCGTAATTAACCGAAGGTTC

seb F:ATTCTATTAAGGACACTAAGTTAGGGA 404 [13]
R: ATCCCGTTTCATAAGGCGAGT

sec F:CTTGTATGTATGGAGGAATAACAAAACATG 275 [13]
R: CATATCATACCAAAAAGTATTGCCGT

sed F:GAATTAAGTAGTACCGCGCTAAATAATATG 492 [13]
R: GCTGTATTTTTCCTCCGAGAGT

see F: CAAAGAAATGCTTTAAGCAATCTTAGGC 482 [13]
R: CACCTTACCGCCAAAGCTG

seg F:TCTCCACCTGTTGAAGG 323 [13]
R: AAGTGATTGTCTATTGTCG

seh F: CAATCACATCATATGCGAAAGCAG 376 [13]
R: CATCTACCCAAACATTAGCACC

sei F: GTACCGTTGAAAATTCAG 461 [13]
R: AGGCAGTCCATCTCCTG



Animals 2022, 12, 301 3 of 10

Table 1. Cont.

Target Sequence (5′ → 3′) Size (bp) References

sej F: TCAGAACTGTTGTTCCGCTAG 138 [13]
R: GAATTTTACCAYCAAAGGTAC

tst F: CTGGTATAGTAGTGGGTCTG 271 [14]
R: AGGTAGTTCTATTGGAGTAGG

hla F: CTGATTACTATCCAAGAAATTCGATTG 209 [15]
R: CTTTCCAGCCTACTTTTTTATCAGT

hlb F: GTGCACTTACTGACAATAGTGC 309 [15]
R: GTTGATGAGTAGCTACCTTCAGT

lukS/F-PV F: ATCATTAGGTAAAATGTCTGGACATGATCCA 433 [15]
R: GCATCAASTGTATTGGATAGCAAAAGC

lukED F: TGAAAAAGGTTCAAAGTTGATACGAG 269 [16]
R: TGTATTCGATAGCAAAAGCAGTGCA

lukM F: TGGATGTTACCTATGCAACCTAC 780 [15]
R: GTTCGTTTCCATATAATGAATCACTAC

fnbA F: GTGAAGTTTTAGAAGGTGGAAAGATTAG 643 [17]
R: GCTCTTGTAAGACCATTTTTCTTCAC

fnbB F: GTAACAGCTAATGGTCGAATTGATACT 524 [17]
R: CAAGTTCGATAGGAGTACTATGTTC

clfA F: ATTGGCGTGGCTTCAGTGCT 292 [18]
R: CGTTTCTTCCGTAGTTGCATTTG

clfB F: ACATCAGTAATAGTAGGGGGCAAC 205 [18]
R: TTCGCACTGTTTGTGTTTGCAC

icaA F: CCTAACTAACGAAAGGTAG 1315 [19]
R: AAGATATAGCGATAAGTGC

icaD F: AAACGTAAGAGAGGTGG 381 [19]
R: GGCAATATGATCAAGATAC

2.3. Molecular Typing

The genetic relationship of S. aureus with one or more enterotoxins was analyzed with
multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). MLST
was performed as previously described by Saunders and Holmes (2014) [20], and seven
housekeeping genes (arcC, aroE, glpF, gmk, pta, tpi, and yqiL) purified using the GFX PCR
DNA and Gel Band Purification Kit (Amersham Bioscience, Freiburg, Germany) were
sequenced with an automatic sequencer (Cosmogenetech, Deajeon, Korea). Sequence types
(STs) were obtained by combination using the S. aureus database (https://pubmlst.org/
organisms/staphylococcus-aureus (accessed on 22 January 2022)). Moreover, PFGE was
conducted by digesting genomic DNA using the SmaI enzyme (Takara Bio Inc., Shiga,
Japan) according to a standard protocol of the Centers for Disease Control and Prevention
(CDC, USA) [21], using a CHEF-MAPPER apparatus (Bio-Rad Laboratories, Hercules,
CA), as described previously [22], and analyzed using the BioNumerics software (Applied
Maths, Kortrijk, Belgium).

2.4. Statistical Analysis

The Statistical Package for the Social Sciences (SPSS) v.25 (IBM Corp., Armonk, NY,
USA) was used for statistical analyses. Pearson’s chi-squared and Fisher’s exact test with
Bonferroni correction were performed. Differences were considered significant at p < 0.05.

3. Results
3.1. Prevalence of S. aureus with Enterotoxingenes

Among the 93 S. aureus isolates, 40 (43.0%) carried at least 1 or more enterotoxin
genes (Figure 1). However, the prevalence of enterotoxin genes was significantly high
in S. aureus from factory A1 (89.5%), followed by factory C1 (66.7%), B1 (60.0%), and
B2 (46.2%) (p < 0.05). Otherwise, the prevalence of enterotoxin genes in S. aureus from
factory A2, owned by the same company as A1, was only 28.0%. Moreover, there was no

https://pubmlst.org/organisms/staphylococcus-aureus
https://pubmlst.org/organisms/staphylococcus-aureus
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S. aureus-carrying enterotoxin gene from factory B3, owned by the same company as B1
and B2.
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Figure 1. Prevalence of enterotoxin among 93 Staphylococcus aureus isolates from bulk tank milk in
6 dairy factories (A1 to C1). Values with different superscript letters represent significant differences
by factories (p < 0.05).

3.2. Distribution of Virulence Genes

The distribution of virulence genes in 93 S. aureus isolates is shown in Figure 2.
The prevalence of virulence genes showed the difference depending on the presence of
enterotoxin genes. In other words, S. aureus-carrying enterotoxin genes showed a higher
prevalence in all virulence genes, except for pvl and lukM, which were not detected in
any S. aureus isolates, than in the isolates without the enterotoxin genes. Among S. aureus
isolates carrying the enterotoxin genes, hla (100.0%) and hlb (100.0%) were highly prevalent,
followed by lukED (95.0%), fnbA (92.5%), clfA (50.0%), fnbB (47.5%), clfB (37.5%), icaD
(35.0%), and icaA (15.0%). Moreover, the prevalence of six genes (hla, hlb, lukED, fnbA, clfA,
and clfB) was significantly higher in S. aureus-carrying enterotoxin genes than in those
without the enterotoxin genes (p < 0.05).
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Animals 2022, 12, 301 5 of 10

The distribution of virulence gene patterns in 40 S. aureus isolates carrying the en-
terotoxin genes is shown in Table 2. Although 19 virulence gene patterns showed no
significant differences between the prevalence rate, S. aureus isolates carrying 8 virulence
genes simultaneously were found in factory A1, which showed the highest prevalence of
enterotoxin genes.

Table 2. The virulence gene patterns of 40 enterotoxin-positive Staphylococcus aureus isolates from
bulk tank milk in 6 dairy factories.

Virulence Gene Patterns No. (%) of Isolates a Factory (No. of Isolates)

hla, hlb, clfA, lukED 2 (5.0) A2 (1), B1 (1)
hla, hlb, clfB, lukED 1 (2.5) A1 (1)
hla, hlb, fnbA, clfB 1 (2.5) A1 (1)

hla, hlb, fnbA, fnbB, clfB 1 (2.5) A2 (1)
hla, hlb, fnbA, clfA, lukED 6 (15.0) A2 (6)
hla, hlb, fnbA, clfB, lukED 4 (10.0) A1 (3), A2 (1)
hla, hlb, fnbA, fnbB, lukED 1 (2.5) B2 (1)

hla, hlb, fnbA, clfA, icaD, lukED 2 (5.0) A2 (1), B1 (1)
hla, hlb, fnbA, clfB, icaA, lukED 1 (2.5) A1 (1)
hla, hlb, fnbA, clfB, icaD, lukED 3 (7.5) A1 (2), A2 (1)
hla, hlb, fnbA, fnbB, clfA, lukED 6 (15.0) A1 (3), B1 (1), C1 (2)
hla, hlb, fnbA, fnbB, icaD, lukED 4 (10.0) B2 (4)

hla, hlb, fnbA, clfB, icaA, icaD, lukED 1 (2.5) A1 (1)
hla, hlb, fnbA, fnbB, clfA, icaA, lukED 2 (5.0) A1 (2)
hla, hlb, fnbA, fnbB, icaA, icaD, lukED 1 (2.5) B2 (1)
hla, hlb, fnbA, fnbB, clfA, clfB, lukED 1 (2.5) A2 (1)
hla, hlb, fnbA, fnbB, clfB, icaD, lukED 1 (2.5) A1 (1)

hla, hlb, fnbA, fnbB, clfA, icaA, icaD, lukED 1 (2.5) A1 (1)
hla, hlb, fnbA, fnbB, clfB, icaD, lukED, tsst-1 1 (2.5) A1 (1)

a No significant differences (p < 0.05).

3.3. Genotypic Characteristics of S. aureus Carrying the Enterotoxin Genes

The genetic relationship of 40 S. aureus isolates carrying the enterotoxin genes is shown
in Figure 3. Although PFGE revealed 29 clusters showing 85% similarity and no correlation
with virulence factors, 5 STs were associated with virulence genes. In particular, none of
the isolates of ST1 and ST72 carried the see gene; however, all isolates of ST188 harbored
the see gene. Additionally, all isolates of ST1 carried the seh gene, whereas isolates of ST6,
ST20, and ST72 did not harbor the seh gene. One isolate with both sea and sec genes and two
isolates with the sed gene were only revealed in ST1. Although the relationship between
ST and virulence factors, except for the enterotoxin genes, was not characterized in this
study, all STs harbored hla and hlb genes; however, ST72 did not harbor fnbB, clfA, icaA, and
icaD genes.
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4. Discussion

S. aureus produces many potential virulence factors to promote host tissue coloniza-
tion, adhere to host cells, resist physical removal, invade host cells, and compete for
iron and other nutrients [23]. In particular, plasmids and transposons typically contain
antibiotic-resistance genes, whereas phage-related and pathogenicity islands contain most
S. aureus toxins and other virulence determinants [24]. Moreover, most S. aureus toxins
and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs) [24], and the
transfer of virulence genes via SaPIs may increase the risk of pathogenicity because they
are transmitted not only to the same species but also to completely unrelated bacteria such
as L. monocytogenes.

In Korea, five major dairy companies produce 84% of the total milk and dairy prod-
ucts (ATFIS, 2020) [25], and S. aureus isolated from six factories operated by three dairy
companies was investigated in this study. Although 93 S. aureus isolates were from nor-
mal bulk tank milk, not from mastitis, 40 (43.0%) carried at least 1 or more enterotoxin
genes. Moreover, the presence of enterotoxin genes was significantly different among the
factories. Interestingly, even in the same company, the prevalence of enterotoxin genes
showed a significant difference among the factories. Previous studies reported the presence
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of enterotoxins in 27.1–79.0% of S. aureus in milk and dairy products, and the frequency
of enterotoxin genes varied by geographic region [13,16,26]. Furthermore, Schelin et al.
(2011) [27] reported that enterotoxin production was influenced by environmental factors,
such as temperature, pH, and moisture; therefore, management programs of dairy factories
may affect the level of enterotoxins.

In the distribution of several virulence factors, which implicate the pathogenesis of
S. aureus, all virulence genes, except pvl and lukM tested in this study, were shown to be
present at a higher rate in the enterotoxin-producing isolates than in non-producing isolates.
Primarily, hla and hlb genes allow for more persistence of pathogens in the mammary gland
and cause chronic infection [6]. Therefore, these genes are the most prevalent in S. aureus
from bovine mastitis milk [17,28–30]. Moreover, enterotoxin-producing S. aureus from
normal bulk tank milk in this study is highly likely to cause chronic mastitis.

Leukocidin, including PVL, a type of cytotoxin, is an important factor contributing
to increased virulence [31,32]. In this study, although none of the S. aureus isolates carried
pvl and lukM genes, 95.0% of enterotoxin-producing isolates carried the lukED gene, and
the prevalence was significantly higher than that in the non-producing isolates. Previ-
ous studies have reported that lukED was the most prevalent in S. aureus isolated from
bovine mastitis milk in South Africa (100.0%), Finland (96.6%), Japan (96.0%), and the
US (95.0%) [16,33–35]. The lukED has the ability to penetrate and kill cells, such as neu-
trophils that carry the bovine chemokine receptor, and is essential for the pathogenesis
of mastitis [36]. Although pvl and lukM, which are associated with leukocyte destruction
and necrosis and severity of mastitis, respectively, were not detected in any of the isolates,
the high prevalence of lukED in enterotoxin-producing isolates could imply that there is a
potential to induce mastitis.

Adhesion is essential to invade host cells and evade immune responses [37], and the
biofilm-forming ability causes chronic or persistent infections [38]. S. aureus harbors various
adhesion- and biofilm-related genes, such as fnbA, fnbB, clfA, clfB, icaA, and icaD, and the
prevalence of these genes has been reported to vary according to geographic regions [18].
In this study, the prevalence of fnbA (92.5% vs. 52.8%), clfA (50.0% vs. 20.8%), and clfB
(37.5% vs. 3.8%) genes between enterotoxin-producing and non-producing isolates was
significantly different. Previous studies have also reported a high prevalence of fnbA in
S. aureus isolated from mastitis [29,39].

Another superantigen virulence factor, tsst-1, hyperactivates the host immune re-
sponse, resulting in toxic shock syndrome in humans, and can retain biological activity in
milk after pasteurization [6]. Although each enterotoxin-producing and non-producing
isolates carried tsst-1 in this study, S. aureus carrying the tsst-1 gene can lead to a public
health concern.

In this study, five STs, ST1, ST6, ST20, ST72, and ST188, were revealed in enterotoxin-
producing isolates. Song et al. (2015) [40] reported that ST1, ST6, and ST188 are frequently
found to be associated with staphylococcal food poisoning in East Asia. Wang et al.
(2018) [41] also reported that S. aureus ST188, a major lineage-causing infection in humans
and livestock, possesses high nasal colonization and biofilm formation abilities in several
host species. Mechesso et al. (2021) [42] have identified ST188 from bovine mastitis in
Korea, but its prevalence was 23.3%. In this study, the prevalence of ST188 was higher than
that of other STs; therefore, it seems to have a high potential to induce mastitis. Moreover,
interestingly, all isolates in ST188 harbored the classical enterotoxin gene, see.

The see gene, which has the highest prevalence (75.0%) in enterotoxin-producing
S. aureus in this study, has reported no or only low detection in milk [1,13,43]. Homsombat
et al. (2021) reported that the growth of see-positive staphylococci in milk was significantly
faster at a temperature of more than 8 ◦C. In this study, each bulk tank milk sample was
collected from factories and sent to the laboratory under 4 ◦C. However, the bulk tank milk
might not have been refrigerated to the correct temperature during transportation from the
farms to the factories, or the temperature of whole milk might have risen during the milk
in/out process.
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Moreover, novel SEs, seg, seh, and sei genes were detected in 40.0%, 25.0%, and 20.0%
of isolates, respectively, and have also been reported in food poisoning and bovine mastitis-
related S. aureus worldwide [40,42,44,45]. Although the mechanism of novel enterotoxins
in S. aureus is not clearly known, several molecular studies have suggested that they may
play an important role in enhancing virulence because they are widely distributed in
S. aureus [46].

5. Conclusions

These data provide that S. aureus isolated from normal bulk tank milk, not from masti-
tis, has a high prevalence of enterotoxins and that S. aureus, which produces enterotoxins,
has various virulence factors simultaneously, posing a public health threat. Moreover, the
high presence of enterotoxins in bulk tank milk usually may be due to a combination of poor
hygiene, bad milking technique, refrigeration failure, and unsanitary milking equipment.
Therefore, developing a strong monitoring and sanitation program for dairy factories is
important for hygienic milk production.
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