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In recent years, the morbidity and mortality of gastrointestinal cancer have remained high
in China. Due to the deep location of the gastrointestinal organs, such as gastric cancer,
the early symptoms of cancer are not obvious. It is generally discovered at an advanced
stage with distant metastasis and lymph node infiltration, making it difficult to cure.
Therefore, there is a significant need for novel technologies that can effectively diagnose
and treat gastrointestinal cancer, ultimately reducing its mortality. Gold nanoparticles
(GNPs), a type of nanocarrier with unique optical properties and remarkable
biocompatibility, have the potential to influence the fate of cancer by delivering drugs,
nucleic acids to cancer cells and tissues. As a safe and reliable visualization agent, GNPs
can track drugs and accurately indicate the location and boundaries of cancer, opening
up new possibilities for cancer treatment. In addition, GNPs have been used in
photodynamic therapy to deliver photosensitizers, as well as in combination with
photothermal therapy. Therefore, GNPs can be used as a safe and effective
nanomaterial in the treatment and diagnosis of gastrointestinal cancer.

Keywords: gold nanoparticles, gastrointestinal cancer, ncRNA, imaging, cancer therapy
INTRODUCTION

According to the “2020 Global Cancer Report” recently released by the World Health
Organization’s International Agency for Research on Cancer (IARC), the top ten new cancer
cases in China in 2020 are as follows: lung, colorectal, gastric, breast, liver, esophageal, thyroid,
pancreatic, prostate, and cervical cancers (WHO/IARC published the World Cancer Report 2020).
Most of the cases are gastrointestinal cancers, which are closely linked to individuals with high sugar
and low fiber diet, helicobacter pylori infection, sedentary, obesity, drinking, and smoking (1–5).
They are generally diagnosed at an advanced stage, which seriously impacts the prognosis and life
quality of patients. In order to reduce the incidence and mortality of gastrointestinal cancers, as well
as improve the survival rate of patients, it is critical to excogitate the treatment and diagnosis of
gastrointestinal cancers. In recent years, noble metal nanoparticles have received significant
attention in cancer medical research due to their unique efficacy and specificity in imaging,
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diagnosis, and therapy (6–8). Gold nanoparticles (GNPs) are
widely used, particularly in cancer research, because of their ease
of synthesis, adjustable size and shape, remarkable
biocompatibility, unique optical properties, and surface
plasmon resonance (SPR) properties (9–11). Different GNPs
have been designed for different types of cancers. The
expression of surface receptors, and tumor environment are
utilized for photothermal therapy (12), immunotherapy (13),
photodynamic therapy (14), gene therapy (15), targeted therapy
(16), and a combination of multiple treatments (15), allowing the
integration of cancer diagnosis and treatment. This review
focuses on the application of GNPs in gastrointestinal cancer.
GNPs WITH DIFFERENT STRUCTURES

In 1857, Michael Faraday discovered the light-scattering properties
of suspended gold microparticles, which is now known as the
Faraday-Tyndall effect (17). Fifty years later, Hirsh et al. found
that GNPs irradiated with an electromagnetic wavelength at 820 nm
were able to increase the surrounding temperature, which could be
used for the treatment of solid tumor (18). In July 2019, the U.S.
Food and Drug Administration (FDA) approved an oral drug based
on GNPs (CNM-Au8, Clene Nanomedicine, Inc.) for the treatment
of amyotrophic lateral sclerosis (ALS) (19). This demonstrated that
GNPs are a safe and reliable tool with great potential for disease
Frontiers in Oncology | www.frontiersin.org 2
treatment. The polarization of free electrons and the distribution of
surface charges are determined by size (20, 21). GNPs are
synthesized in various morphologies, shifting the absorption/
scattering peak to the near-infrared window, allowing GNPs in
the deep tissue to receive incident light energy (22). Over the last 20
years, many studies have reported GNPs of various shapes,
including nanoclusters (23), nanorods (24), nanoplates (25),
nanoshells (26), nanocages (27), and nanostars (28), which have
widely studied in various cancer. In particular, gold nanorods,
nanocages, and nanoclusters have been extensively used in
gastrointestinal cancer (Figure 1).

Gold Nanorods
Compared to the other two gold nanoparticles, the gold
nanorods have short and long axis directions, with two present
wavelengths, which are the plasmon resonance peaks (29).
Plasmon resonance can be changed by adjusting the length-to-
width ratio or effective volume of the rod (18). Therefore, it can
be absorbed by the tumor tissue due to the penetration effect
while maintaining a small diameter and better light absorption
properties to simultaneously achieve the effect of photothermal
treatment (30, 31). Furthermore, studies have shown that gold
nanorods modified with low-density lipoprotein binding
domain-binding polypeptide (RLT polypeptide) have a
relatively evident inhibitory effect in the gastric cancer cell. In
addition, they displayed significant anti-tumor efficacy in the
FIGURE 1 | Different shapes of GNPs.
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treatment of tumors, as well as higher biosafety in vivo compared
to the free drug doxorubicin (32). In comparison to the polymer
nanomicelles F127 and Clip, a novel gold nanorod that enhances
the delivery efficiency of the photodynamic drug aluminum
phthalocyanine tetrasulfonic acid (AlPcS4) was developed. This
gold nanorod can reduce its ability to bind serum proteins,
increase the production of singlet oxygen, induce mitochondrial
dysfunction, and reduce mitochondrial membrane potential to
activate cell apoptosis, resulting in a highly effective anti-tumor
therapy for gastric cancer (33). The EPPT-1 and the
myristoylated polyarginine peptide were conjugated to the gold
nanorods to target the pancreatic ductal adenocarcinoma (PDA)
cells. The novel complex can induced cell death via plasmonic
photothermal treatment (PPTT) which shows great promise for
developing a new cancer therapy (34). The GNR@Mem was
developed to target the oral squamous cell carcinoma (OSCC)
and enhance the radiation sensitivity of OSCC cells. Moreover,
combined with the photothermal therapy, it shows predominant
anti-cancer effect in vivo (35).

Gold Nanocages
Gold nanocages are a type of gold nanoparticles with a hollow
cage-like structure. Compared to the other two gold nanoparticles,
they have a high specific surface area, good surface modifiable
properties, and a high drug loading rate (36, 37). Hyaluronic acid
(HA), anti-GPC-1 antibody, rubescensine A, and gold nanocages
were combined to inhibit pancreatic cancer. Furthermore, the
multi-mode imaging ability of gold nanocages, including near-
infrared fluorescence (NIRF) and magnetic resonance imaging
(MRI), can detect pancreatic cancer at an early stage (38). The
PDL1 antibody, TGF-b inhibitor, and gold nanocages were
combined to form a complex that can selectively target colon
cancer cells and accumulate in tumors. In addition to preventing
primary tumor growth, the complex also inhibits distant
metastasis of colorectal cancer by enhancing the distal
effect mediated by synergistic immunotherapy (39). The
PPHAuNCsTNCs was constructed with miR-26a loading,
hyaluronic acid-modified, polyetherimide-conjugated PEGylated
gold nanocages. They can accumulate in the HCC, deliver miR-
26a to the tumor site and be monitored by fluorescence and
photoacoustic tomography imaging (40).

Gold Nanoclusters
Gold nanoclusters are ultra-small particles composed of several to
a few hundred gold atoms (41), that have extremely low
cytotoxicity and excellent red fluorescence characteristics that
allow them to effectively avoid autofluorescence background in
vivo compared to gold nanorods and nanoclusters (42). Moreover,
gold nanoclusters coated with folic acid conjugated silica
exhibiting excellent red fluorescence optical properties, X-ray
absorption, and the ability to target gastric cancer cells, have
been successfully developed. They can be used for optical and CT
dual-mode imaging of gastric cancer, and have great application
potential for early detection of early gastric cancer in vivo (43). The
near-infrared fluorescent dye cy5.5 and albumin nanoparticles on
the surface of gold nanoclusters can be modified to form an
AuNCs/BSA-NPs complex with a significant photothermal effect.
Frontiers in Oncology | www.frontiersin.org 3
Under 808 nm laser irradiation, AuNCs/BSA-NPs can increase the
temperature of colorectal cancer tumors on the surface of mice up
to 50°C significantly inhibiting tumor growth, while displaying
good optical fluorescence imaging properties in HCT116 tumor-
bearing mice (44). The AuNCs@GSH-FA were developed with
excellent biocompatibility and photostability which could target to
gastric cancer to exert great excellent imaging ability for
fluorescence/CT dual-mode imaging. This novel complex can
acts as a promising diagnostic method for gastric cancer (45).
GNPs AS A DELIVERY SYSTEM

GNPs have a passive tumor targeting effect due to their small
particle size, which can passively accumulate at the tumor site
(46). Furthermore, when combined with specific active
molecules, GNPs are able to actively target the tumor site and
influence tumor cells (47) (Figure 2). For example, the
ramucirumab antibody has been linked to gold nanorods to
target gastric tumor and improve the anti-cancer effect of the
drug (48). Therefore, gold nanomaterials can be used as a carrier
to deliver chemotherapeutics and genes to the tumor site, greatly
improving the efficacy of the active molecule (49, 50). The tumor
microenvironment constantly changes during tumor occurrence
and development (51). GNPs can reprogram the tumor
microenvironment and inhibit tumor growth (52). Different
types of gold nanodelivery systems have been designed to
release the active molecule in the tumor site to perform an
anti-tumor role depending on the conditions of the tumor
microenvironment (52, 53), such as acid (54) and redox (55).

The Role of GNPs in Drug Delivery
Although the chemotherapy drugs have anti-tumor properties,
negative effects develop during the therapeutic process, such as
high systemic toxicity in other organs of the body (56). Therefore,
GNPs were used for targeted delivery of chemotherapy drugs to
achieve precision therapy for gastrointestinal cancer (57). The
targeting drug trastuzumab (Tmab) was combined with AuNCs
(T-AuNPs) to create new nanocomposites that can target human
epidermal growth factor receptor-2 (HER2) to induce autophagy
on both Tmab sensitive and Tmab resistant gastric cancer cells
(58). The anti-tumor drug epigallocatechin gallate (EGCG) is
delivered by GNPs to gastric cancer cells and tissues in a time-
dependent manner. This significantly inhibits proliferation
compared to direct injection of the EGCG drug for gastric
cancer and has no toxic effect on normal epithelial tissue (59).
By encapsulating GNPs with cisplatin and glucose, cisplatin can be
effectively delivered into head and neck squamous cancer
(HNSCC). Compared to cisplatin used as a free drug, GNPs
with cisplatin effectively inhibit tumor cell proliferation and
enhance radiotherapy sensitivity in HNSCC. Furthermore, as a
CT contrast agent, they can be used as an adjuvant cancer therapy
in CT imaging for HNSCC diagnosis and treatment (60). Plectin-
1-targeted multifunctional peptides were used to modify the GNPs
to target pancreatic ductal adenocarcinoma (PDAC).
Furthermore, the anti-cancer drug Gemcitabine (GEM) was
conjuceted to the surface of the GNPs to form the GNPs-Gem,
January 2022 | Volume 11 | Article 819329
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which can selectively deliver GEM into cancer cells and exert a
significant anti-proliferative effect in PDAC cell lines (61).

The Role of GNPs in ncRNA Delivery
MiRNAs are a type of non-coding RNAs (ncRNAs) that have a
length of 20 - 22 nucleotides (62). Many studies have reported that
miRNAs play an important role in the occurrence, development,
and metastasis of various cancers (63). The delivery of ncRNAs to
cancer cells or tissues to directly affect the expression of related
proteins is an exciting prospect in cancer treatment.

However, the major limitation of using ncRNAs for cancer
treatment is that they can be degraded by nuclease in serum and
quickly removed in vivo (64, 65). Incubation of let-7a mimics
with HAuCl4 in the tumor microenvironment leads to self-
assembly of Au-let-7a NCS, which can inhibit cmyc gene
expression by let-7a. This results in a significant inhibition in
the migration, invasion, and proliferation of hepatocellular
carcinoma (HCC) cells. Furthermore, biological imaging can
be effectively carried out, and photothermal therapy can be
used to induce apoptosis in HCC cells (66).

Small interfering RNAs (siRNAs) are short, double-stranded
RNA that can induce mRNA degradation (67). The siRNA of
nerve growth factor (NGF) was conjugated to gold nanoclusters to
form GNC-siRNA, which increased the stability and prolonged
the circulation time of siRNAs in blood serum. In addition, it
effectively downregulates the expression of NGF and significantly
inhibits tumor progression in pancreatic tumor models without
significant adverse effects (68). The nanocomposites AR-GT NPs
were formed by conjugating the siRNA of protein kinase B (Akt)
with GNPs and encapsulating glycol chitosan taurocholic acid on
the periphery, allowing them to be administered orally and
Frontiers in Oncology | www.frontiersin.org 4
effectively pass through the intestinal epithelial cells. In an
orthotopic colorectal liver metastases (CLM) animal model, the
nanocomposites can reduce Akt protein expression in cancer
tissues and initiate tumor cell apoptosis (69).
APPLICATION OF GNPs IN
CANCER DIAGNOSIS

Precise detection of tumor location and depth in patients is
required for successful cancer treatment (70). Currently, imaging
systems, such as computed tomography (CT) and nuclear
magnetic resonance (MRI), are used for the clinical diagnosis and
treatment of cancers. The GNPs are stable, nonimmunogenic and
low toxicity in vivo. In addition, they can accumulated in the tumor
sites due to the EPR effect so they are attractive in imaging diagnosis
(71) (Table 1). Traditional CT contrast agents are small molecular
iodine-based compounds with short circulation time and side
effects, such as vomiting and itching, that limit their widespread
use (70). GNPs are a promising CT contrast agent due to their high
x-ray attenuation coefficient and biocompatibility (76, 77). A
monoclonal antibody to HSP70 conjugated to GNPs was able to
target mouse colon cancer cells and act as a CT contrast agent,
displaying remarkable imaging ability in spectral CT and high
sensitivity for the detection of even single cells (72).The Ac-PE-
AuNPs was developed with favorable biocompability and
remarkable X-ray attenuation property, which can accumulate in
normal liver than in necrosis region caused by HCC. It can serve as
a negative CT imaging agent that provide a novel diagnostic method
for HCC (73). MRI is an non-invasive imaging modality that is
preferred to be applied in the soft tissue imaging due to its optimal
FIGURE 2 | Delivery using GNPs to regulate tumor cell fate.
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tissue contrast resolution and multiplanarity (78). The GNPs are
often conjugated with T1 or T2 contrast agents to make them
applied in MR imaging. For instance, the gold shell conjugated with
the super paramagnetic Fe2O3 could enhance the R2 values that can
get high-resolution T2*-weighted images to despict individual
PANC-1 cell positions (75). The Fe3O4@Au@b-CD was
developed with low r2/r1 ratio and could be a potential T2
contrast agent for MRI. Moreover, it can target to the gastric
cancer cells and exhibit red fluorescence, which hold remarkable
application potential diagnosis and treatment of gastric cancer (74).
Furthermore, the detection sensitivity of gold nanoclusters was
enhanced by utilizing the microneedles and the ultrasound to
enhance the transparent efficiency, which increase the optical
coherence tomography contrast level to identify the early
neoplasia (79).

AlthoughMRI, CT are widely used in cancer diagnosis, the costs
of the machines are high and the places where they can be used are
limited (80). In contrast, ultrasound instruments are affordable and
portable. Photoacoustic imaging (PAI) is a non-ionizing and non-
invasive emerging ultrasound imaging modality that can provide
high-resolution imaging in deep tissues (80–82). Compared to
conventional exogenous agents, the absorption cross-section of
GNCs is significantly improved due to their surface plasmon
resonance (SPR) effect, which can produce strong photoacoustic
signals. Furthermore, GNPs are more stable, have a higher laser
damage threshold, and are biomedically inert in vivo, making them
a promising photoacoustic imaging contrast agent (83, 84). A 5 nm
molecularly activated plasmonic nanosensor (MAP) has been
developed, which has better organ distribution and tissue
permeability compared to larger diameter MAPs. Furthermore, it
can produce a strong photoacoustic signal in the near-infrared light
(NIR) region while simultaneously targeting the epidermal growth
factor receptor (EGFR) to detect HNSCC with high sensitivity and
specificity (85). Paclitaxel (PTX), gold nanorods, perfluorohexane
(PFH), and folic acid-bovine serum protein (FA-BSA) have been
combined to form the PTX-PANP-FA complex. It can act as an
ultrasound contrast agent, significantly enhancing photoacoustic
contrast in a mouse model. Furthermore, PTX-PANP-FA is rapidly
destroyed due to PFH vaporization, resulting in quick PTX release
after laser irradiation, transforming the nanocarrier into a system
Frontiers in Oncology | www.frontiersin.org 5
with drug release, imaging, and therapeutic functions (86). These
reports demonstrated that GNPs act as an imaging agent that can be
utilized for cancer diagnosis (Figure 3). Compared to conventional
diagnostic contrast agents, GNPs have an additional cancer
therapeutic effect.
GNPs IN CANCER THERAPY

At present, GNPs play an important role in the treatment of
gastrointestinal cancers (Table 2). Photothermal therapy (PTT) is
a unique cancer treatment that can selectively heat tumor tissue
while avoiding damage to other tissues (89). After being irradiated
by NIR, the plasmonic nanoparticles are delivered to the tumor cells
or tissue, where the absorbed light is converted into heat, causing
irreversible damage to the surrounding pathological tissues (90).
Although a variety of nanoparticles are used for PTT, especially
GNPs can passively accumulate in tumor tissue. Furthermore, their
structural size can be altered to maximally absorb NIR ≈ 650 - 1350
nm) light, which has emerged as a major therapeutic platform for
photothermal therapy (91). Photodynamic therapy (PDT) is a novel
method for treating neoplastic diseases with photosensitizing drugs
and laser activation. The photosensitizers are delivered to tumor
cells or tissues and irradiated with a specific laser wavelength,
producing a highly reactive oxygen species (1O2) that inhibits
tumor growth (92). The most used photosensitizer is
tricarbocyanine dye indocyanine green (ICG), which has been
approved by the US Food and Drug Administration (FDA) as a
potential near-infrared photosensitizer for clinical imaging and
diagnosis (93). However, the use of ICG in fluorescence imaging
and photodynamic therapy is limited by its poor stability and rapid
blood clearance (94). Therefore, developing a novel cancer therapy
that combines PTT and PDT to treat gastrointestinal cancer is a
promising prospect (95, 96) (Figure 4). A PTT/PDT composite
nanosystem was constructed by coupling indocyanine green (ICG)
on the surface of hollow gold nanospheres (HAuNS) and
subsequently modified with fal polypeptide (FAL) to target the
endoplasmic reticulum (ER). When irradiated with NIR at 808 nm,
there was a simultaneous increase in temperature increased and
generation of ROS, inducing ER stress to enhance the immune
TABLE 1 | The important uses of GNPs in the diagnosis of gastrointestinal tumors.

Particle name Nanoparticle
Size

Detection Main results Imaging
modality

References

AuNCs@SiO2-
FA

~58 nm Gastric cancer Targeting gastric cancer and exhibiting excellent optical property
and X-ray absorbance

Fluorescence,
CT imaging

(43)

CG-GNPs 20nm Head and neck squamous
cell carcinoma

Accumulating in tumor and last for 7days CT imaging (60)

cmHsp70-
AuNPs

54 ± 11 nm Colorectal cancer Targeting to colorectal cancer and accumulated in tumor sites CT imaging (72)

PPHAuNCs-
TNCs

30nm Pancreatic ductal
adenocarcinoma

Accumulated in liver and FI/PAI dual-mode imaging PAI, Fluorescence (40)

Ac-PE-AuNPs 95.4 ± 2.4 nm Hepatoma carcinoma Accumulated in normal liver than in necrosis region to serve as
negative CT imaging agent

CT imaging (73)

Fe3O4@Au@b-
CD

71.40nm Gastric cancer Targetng to gastric cancer cells and exhibit red fluorescence,and
can serve as T2 contrast agent

MRI,
Fluorescence

(74)

GoldMag ~50nm Pancreatic cancer Serve as serve as photothermal sensitizers, and MRI is feasible to
quantify delivery.

MRI (75)
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response (87). A branched polyethylene glycol (PEI) that had a
molecular weight of 10 kDa was used as a linker to conjugate ICG
molecules to gold nanospheres (HAuNS). This novel nanosystem is
able to inhibit tumor growth and metastasis using a combined PTT
and PDT therapymediated byNIR. Furthermore, the nanosystem is
amenable to NIR fluorescence imaging, which could represent a
promising approach for cancer therapy (88).
5 GOLD NANOPARTICLES COMBINED
WITH BIOMOLECULES

Many studies have recently focused on the combination of gold
nanoparticles and biomolecules to treat or diagnose tumors (97–99),
especially exosomes (100, 101) (Figure 5). Exosomes are vesicles
secreted by cells that have a diameter of 30 - 100 nm and are formed
in the endocrine pathway (102, 103). They are typically composed of
lipid bilayers containing membrane proteins that contain nucleic
Frontiers in Oncology | www.frontiersin.org 6
acids, such as mRNA and miRNAs, which are involved in cell
communication (104–106). Due to their physical properties, such as
surface plasmon resonance and scattering, GNPs can be used as a
new fluorescent probe to label exosomes and analyze them using
high-resolution imaging technology to trace the specific distribution
of exosomes (107). Compared to traditional exosome fluorescent
probes, GNPs have biocompatibility and stability advantages.
Previous studies mainly focused on using exosome transport
GNPs to treat cancer. For instance, GNPs were combined with
proteins on the surface of exosomes, which were loaded with
doxorubicin, to form the complex EVdox@AuNP. It has
remarkable biocompatibility, no obvious toxicity in vivo, and can
be used in combination with photothermal and chemotherapy for
the treatment of melanoma (108). Furthermore, exosomes from the
urine combined with Au-BSA@Ce6 can form a new nanocarrier
EXO-PMA/Au-BSA@Ce6 that achieves real-time near-infrared
fluorescence imaging and enhances PDT in gastric cancer.
Compared to free Ce6, it has long-term retention, remarkable
FIGURE 3 | The applications of GNPs in cancer diagnosis.
TABLE 2 | The important uses of GNPs in the treatment and therapy of gastrointestinal tumors.

Particle name Nanoparticle Size Cell lines Functions Therapy and
Treatment

References

GNC-
Gal@CMaP

51nm CT26 Induced immunogenic cell death and improve the anti-cancer efficiency of
anti-PDL1 and TGF-b inhibitors.

PTT,
Immunotherapy

(39)

AuNCs/BSA-
NPs

33.8 nm HCT116 Inhibit the cell growth and tumor growth, good optical fluorescence
imaging

PTT (44)
~87.9 nm

T-AuNPs 85.39 ± 0.68nm MKN7,MKN74,
NCI-N87

Inhibit the cell growth of Tmab-sensitive and Tmab-resistant gastric
cancer cells through autophagy

Chemotherapy (58)

FU-CMC-
EGCG-GNPs

30~70 nm MKN45 Inhibit the tumor growth selectively. Chemotherapy (59)

GNP-Gem 5.4 ± 1 nm PANC-1,
ASPC-1

Exert great anti-proliferative effect. Chemotherapy (61)

Au-miR-let-7a
NCs

4nm HepG2,
SMMC-7721

Tumor growth inhibition,bioimaging Gene therapy,
PTT

(66)

GNC–siRNA 16.6 ± 3.0 nm PANC-1 Knockdown the expression of NGF in vitro and in vivo to suppress tumor
growth.

Gene therapy (68)

FAL-ICG-
HAuNS

151 ± 4.6 nm CT-26 Improve the generation of ROS, inducing ER stress to enhance the
immune response.

PTT, PDT,
Immunotherapy

(87)

ICG-PEI-
HAuNS

122.5 ± 13.5 nm SKOV3 Reduce the cell viability, induce cell apoptosis, enhance the level of
SOSG.

PTT, PDT (88)
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biocompatibility, superior tumor permeability, and a good targeting
effect (109).

Currently, exosomes can carry the GNPs, which are used as a
fluorescent imaging reagent, to specific sites in gastrointestinal
cancer. The gold-iron nanoclusters were biosynthesized utilizing
the tumor microenvironment by incubating HAuCl4, FeCl2, and
Na2SeO3 with tumor cells, and the tumor cells can release
exosomes containing nanoparticles. These exosomes can be used
as fluorescence, CT, and MRI imaging tools for the diagnosis and
ablation of HCC (110). In addition, GNPs were loaded into the
Frontiers in Oncology | www.frontiersin.org 7
exosomes isolated from HNSCC cells. The exosomes were
discovered to be capable of targeting and accumulating at the
tumor site for CT imaging. Therefore, GNPs combined with
exosomes have great potential in clinical applications (111).

Moreover, the miRNAs found in exosomes can reflect the
specific physiological conditions and cellular functions of source
cells (112). Detection of miRNAs can be used for early cancer
diagnosis. MiRNA-21 has been targeted by developing a
terahertz (THz) supramaterial biosensor for the detection of
sensitive and specific exosomal miRNA in the plasma of
FIGURE 4 | The use of PTT and PDT combination therapy to treat tumors.
FIGURE 5 | Gold nanoparticles combined with exosomes in cancer therapy and diagnosis.
January 2022 | Volume 11 | Article 819329
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pancreatic cancer patients. The conjugated GNPs have a high
refractive index, which enhances the frequency shift of the
terahertz metamaterial resonance peak. Therefore, it can be
used as a promising method to detect miRNA expression levels
in exosomes (113). An LSPR sensor based on complementary
oligonucleotide functionalized glass substrate bonded alloy
nanotubes has been developed to detect miRNA-10 in PDAC.
The detection method has high sensitivity and can be used to
distinguish miR-10b expression levels in PDAC, chronic
pancreatitis patients, and the normal control group. This
method can detect PDAC at an early stage and can be used to
monitor the recurrence of PDAC after treatment or resection,
which holds great clinical application promise (114).
DISCUSSION

In recent years, the advancement of nanomedicine has given rise to
new approaches for cancer treatment (115). Different shapes of
GNPs and their surface modifiers have been developed according to
the corresponding therapeutic effects (116). For example, gold
nanomaterials modified by antibodies and target ligands have
been designed to perform targeting therapy (116, 117). In
addition, these GNPs can act as a delivery system, utilizing the
tumor microenvironment to release and increase drug availability at
the tumor site (118, 119). Furthermore, the GNCs, which have
passive targeting and a highly permeable long retention effect on
solid tumors, can significantly improve the therapeutic effect of
drugs on tumors (120). This review mainly recapitulated the role of
GNPs, which have significant diagnostic and therapeutic
advantages, in gastrointestinal tumors, (Figure 6). GNPs have
remarkable biocompatibility, allowing them to be easily taken up
by cells and metabolized by the organism without causing damage
to other organs (121). Furthermore, due to the photothermal
conversion effect and surface modifiability of GNPs, different
treatment modalities for cancer, such as PTT, PDT,
Frontiers in Oncology | www.frontiersin.org 8
immunotherapy, and chemotherapy can be combined to inhibit
tumors (122, 123). The diagnosis and treatment can also be
integrated through the imaging ability of GNCs (124).
Furthermore, the nanodrug CYT-6091, which was created by
linking human TNF alpha (rhTNF) and polyethylene glycol
(PEG) to the surface of GNPs, was tested in a phase I clinical trial
on a variety of solid tumors, including colon adenocarcinoma. The
results showed that the highest dose of CYT-6091 outperformed the
MTD of native rhTNF by 3-fold, implying that GNPs could be
promising agents in clinical application (125). However, numerous
challenges remain in the development process, such as drug
metabolism, safety concerns, in vivo efficacy, biocompatibility and
stability, preparation costs, and immunogenic issues. Despite the
challenges that remain in the way of clinical trials, GNPs are still
valuable in gastrointestinal cancer therapy and diagnosis. As a result
of the extensive and successful research on GNPs in biological
imaging and cancer reatment, their future clinical application is very
promising to overcome the challenges of gastrointestinal cancer
treatment and diagnosis.
CONCLUSION

In summary, GNPs can efficiently and accurately deliver cargos,
especially ncRNAs, to exhibit anti-cancer effects and be used for
the diagnosis and treatment of gastrointestinal cancer. Therefore,
GNPs represent a potential tool for imaging, diagnosing, and
treating gastrointestinal cancers.
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