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Abstract
Along with recent developments in deep learning techniques, computer-aided diagnosis (CAD) has been growing rapidly in the
medical imaging field. In this work, we evaluate the deep learning-based CAD algorithm (DCAD) for detecting and localizing 3 major
thoracic abnormalities visible on chest radiographs (CR) and to compare the performance of physicians with and without the
assistance of the algorithm. A subset of 244 subjects (60% abnormal CRs) was evaluated. Abnormal findings includedmass/nodules
(55%), consolidation (21%), and pneumothorax (24%). Observer performance tests were conducted to assess whether the
performance of physicians could be enhanced with the algorithm. The area under the receiver operating characteristic (ROC) curve
(AUC) and the area under the jackknife alternative free-response ROC (JAFROC) were measured to evaluate the performance of the
algorithm and physicians in image classification and lesion detection, respectively. The AUCs for nodule/mass, consolidation, and
pneumothorax were 0.9883, 1.000, and 0.9997, respectively. For the image classification, the overall AUC of the pooled physicians
was 0.8679 without DCAD and 0.9112 with DCAD. Regarding lesion detection, the pooled observers exhibited a weighted JAFROC
figure of merit (FOM) of 0.8426 without DCAD and 0.9112 with DCAD. DCAD for CRs could enhance physicians’ performance in the
detection of 3 major thoracic abnormalities.

Abbreviations: AUC = area under the ROC curve, CAD = computer-aided diagnosis, CI = confidence interval, CR = chest
radiograph, DCAD= deep learning-based CAD algorithm, FOM= figure of merit, ROC= receiver operating characteristic, wJAFROC
= weighted jackknife alternative free-response ROC.
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1. Introduction

Chest radiography has been the most ubiquitous diagnostic
examination for screening thoracic diseases because of its
relatively low cost and wide availability. The detection of
abnormal pathological lesions on chest radiograph (CR) often
leads to the primary diagnosis of fatal pulmonary diseases such as
lung cancer.[1] However, the interpretation of CR is still a
demanding task in clinical settings. A retrospective study
discovered that 1 out of every 5 errors in diagnostic radiology
occurred during the interpretation of CRs.[2] Considering that
variable factors such as low proficiency or heavy workload can
degrade the performance of physicians, it might be unsurprising
that the interpretation of CRs by humans could not guarantee
consistent and intelligible readings to patients.
Along with recent developments in deep learning techniques,

computer-aided diagnosis (CAD) has been growing rapidly in the
medical imaging field. Artificial intelligence has been introduced
to enhance the detection or measurement of breast cancer,[3,4]

brain tumors,[5] liver lesions,[6] vessel border,[7] and blood flow
dynamics.[8] For thoracic diseases, automated detection algo-
rithms have been designed to detect major diseases, such as
tuberculosis, and to classify normal and abnormal CRs.[9]

Localizing exact lesions has been another major concern of
researchers. Singh et al[10] reported a relatively high accuracy
(area under the receiver operating characteristic curve [AUC]
0.837–0.929) of automated detection in classifying pulmonary
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opacities, hilar prominence, cardiomegaly, and pleural effusion.
However, this paper could not prove the efficacy of the algorithm
in detecting specific CR findings, such as pulmonary nodules,
masses, and fibrosis. A recently developed DR-based automated
detection algorithm has shown impressive results in classifying 4
major thoracic diseases.[11] However, regarding the dataset used
for validation, which was experimentally designed, further
investigation is necessary to show the utility of the deep learning
algorithm with variable datasets. To our knowledge, there were
few studies on deep learning-based automated diagnosis
algorithms for thoracic lesions indicating case–control data
collection from consecutive image datasets.[12,13] It is necessary
for accurate interpretation of AI-supported diagnosis of thoracic
lesions. The aims of this study were to evaluate the deep learning-
based computer-aided detection algorithm for detecting and
localizing thoracic abnormalities visible on CRs and to compare
the performance of physicians with and without the assistance of
the algorithm.
2. Methods

The present retrospective case–control studywas approved by the
Seoul National University Boramae Medical Center Institutional
Review Board (Seoul, Korea, IRB no. 10-2019-48), which waived
the informed consent requirement. All methods were performed
in accordance with the relevant guidelines and regulations. Lunit
(Seoul, Korea) provided technical support for analyzing chest
radiographs with the DL algorithm and obtaining outputs.
2.1. Deep learning algorithm and sample size calculation

A DL algorithm (Lunit INSIGHT for Chest Radiography; Lunit
[accessible at https://insight.lunit.io]) used in this study was
designed to classify chest radiographs of patients with 3 major
abnormal findings, including nodule/mass, consolidation, and
pneumothorax, and enhance the performance of human read-
ers.[11]

We expect that the AUC between physician alone test and deep
learning-based CAD algorithm (DCAD)-aided test will be
different. Physician alone and DCAD-aided tests were performed
by panels without and with the aid of the algorithm. Based on the
pilot study (AUC – physician alone test=0.9289; AUC – DCAD-
aided test=0.9445), we expect that the effect size will be 0.0156.
Under the assumption that the power is 0.8 and the alpha value is
0.05, the minimum sample size is 49 for normal and 73 for
abnormal findings if the number of panels is 6. The final sample
size was 244 with a calculated power of 0.9902 (normal:
abnormal=0.4:0.6).
2.2. Data collection

For the evaluation of DLAD, 98 CRs with normal results and 146
CRs with abnormal results were retrospectively collected
(Supplementary Fig. 1, http://links.lww.com/MD2/A91). The
number of each abnormal finding was collected following the
prevalence and distribution rate of the X-ray 14 dataset from the
National Institute of Health (NIH) Clinical Center. The X-ray 14
dataset is an open-source dataset released by the NIH, containing
CRs from 32,177 patients with 14 labels based on the presence
and absence of pathologies.[10,14] Based on the distribution of
abnormal findings in the X-ray 14 dataset, the number of
abnormal findings was calculated as 80 (55%) for mass/nodules,
2

31 (21%) for consolidation, and 35 (24%) for pneumothorax.
All CRs were collected from patients over 19years old. CRs with
abnormal findings were classified into 1 of 3 categories of nodule/
mass, localized consolidation, and pneumothorax and selected by
following inclusion and exclusion criteria. First, all CRs had
normal or only 1 category of abnormal findings. Second, the
nodules/masses that were pathologically or clinically diagnosed
were visible on CR. Third, regardless of diagnosis, consolidations
were localized on CR or CT. To ensure the reliability of the
nodule/mass or consolidation, patients who underwent CR and
chest CTwithin 1month were included. If underlying diffuse lung
lesions or concurrent pathologic lesions were identified on CR,
they were excluded from the abnormal findings cases. If lesions
were smaller than 5mm or could not be identified on CR, those
were excluded from abnormal findings. If the CRs showed more
than 4 lesions of a single type or different types of lesions, they
were also excluded from the dataset. CRs with pneumothorax
and chest draining catheter were excluded. Supplement 1, http://
links.lww.com/MD2/A91 describes the inclusion and exclusion
criteria in data collection. To select cases with normal and
abnormal results, 12-years experienced thoracic radiologist
retrospectively reviewed images and radiologic reports on PACS.
Normal cases were included from subjected who visited health
screening center or oncology outpatient clinic. Cases with any
abnormal findings on CR or CT were excluded. Abnormal cases
with pulmonary nodules were selected from the pathologically
confirmed cases in subjects who underwent CT-guided biopsy.
Abnormal cases with localized consolidation were selected from
subjects who visited the emergency department or respiratory
medicine. Abnormal cases with pneumothorax were selected
from subjects who visited the department of thoracic surgery.
2.3. Establishing the standard of reference

To establish the standard of reference, all CRs were labeled and
annotated by board-certified radiologists. They confirmed
whether the CRs were classified correctly and marked locations
of any abnormal findings on the image. Normal CRs and
abnormal CRs with nodule/mass and consolidation were
reviewed by 1 board-certified radiologist, while CRs with
pneumothorax were reviewed by 2 board-certified radiologists.
All annotated lesions in CRs with nodule/mass or consolidation
were considered true lesions, but only the lesions annotated by 2
radiologists in consensus were selected as the reference standards
of CRs with pneumothorax.
2.4. The observer performance test

The observer performance test was conducted to compare the
performance of the algorithm and physicians and to assess
whether the performance of physicians can be enhanced with the
aid of the algorithm. The reader panel comprised 6 physicians
with various backgrounds: 2 board-certified radiologists, 2 non-
radiology physicians, and 2 general practitioners. The physicians
who participated in the establishment of the standard of reference
were excluded from the observer performance test. The test
proceeded in 2 sessions. In session 1, any diagnostic information
related to the CRs was concealed, and the observers indepen-
dently assessed each CR without the help of the algorithm. First,
they were required to determine whether significant abnormal
findings that need further examination or treatment existed on
the CRs and provide confidence levels from 1 to 5. Then, they
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marked the location of abnormalities and scored the confidence
level based on their certainty. In session 2, with the assistance of
the algorithm, the observers re-evaluated each CR. They could
change or confirm their first decision on classification, localiza-
tion, or lesion-based abnormality score.
Each assessment result of 6 different physicians for 244 CRs

was treated independently. For both image classification and
lesion localization, the cutoff value of the confidence level was
established at 1, so if any confidence level marked on an image or
lesion was above 1, it was considered abnormal. Finally, the
results of each session were compared with the standard of
reference to measure the agreement on the existence and
localization of lesions.
2.5. Statistical analysis

Receiver operating characteristic (ROC) analysis was applied to
evaluate the performance of the algorithm and physicians in
image classification. The maximum value of the lesion-based
abnormality score was considered the patient-based abnormality
score, and the cutoff value was chosen between 1 and 5 points. If
the patient-based abnormality score was higher than the cutoff
value, the CR was classified as positive, which means there was a
significant lesion, but if the score was lower, the CRwas classified
as negative. Then, compared with the standard of reference, the
ROC curve was plotted with the true positive rate (TPR) and
false-positive rate (FPR) values to measure the AUC. For both
sessions 1 and 2 in the observer performance test, the AUCs were
calculated at a 95% confidence interval.
Likewise, the quality of lesion detection was evaluated based

on the following standards: the area under the JAFROC curve,
sensitivity, specificity, positive/negative predictive value, accura-
cy, and false-positive rate. For the JAFROC analysis, while the
lesion marked by the observer was categorized as lesion
localization (LL) or non-lesion localization (NL), the AFROC
curve was plotted with the lesion-localization fraction (LLF)
against the probability of at least 1 FP per normal CR. Both the
readers and CRs were treated as random effects. For the analysis
of sensitivity and specificity, the threshold for the output of the
algorithm was defined as 15%. Thus, values below 15% were
considered negative, meaning normal, and values above 15%
were considered positive, meaning abnormal.
These statistical analyses for image classification and lesion

detection were performed for both the standalone test and reader
test. While the standalone test measured the efficacy of the
algorithm, the reader test determined whether the performance of
physicians was enhanced with the assistance of the algorithm. To
compare the AUCs between physician alone test and DCAD-
aided test, the DeLong test was used for computing P-values. The
Dorfman-Berbaum-Metz test was used for the comparison of the
weighted jackknife alternative free-response ROC (wJAFROC)
Table 1

Demographic description of the dataset.

Normal Nodule/mass

Number of patients 98 80
Female 59 39
Male 39 41
Age (yr) 48.84±12.54 66.17±11.16

3

figure of merit (FOM) between physician alone test and DCAD-
aided test and generalized estimating equations for the compari-
son of sensitivity, specificity, positive or negative predictive value,
accuracy, and false-positive rates. A P-value�0.05 was consid-
ered significant. All statistical analyses were conducted using R
software, version 3.5.3.
3. Results

Among 80 cases of nodules/masses, there were 75 CRs with a
single nodule/mass and 5 CRs with 2 nodules/masses. For CRs
with consolidations, lesions appeared on a single lobe in 22 CRs,
multiple lobes of a single lung in 1 CR, and both lungs in 7 CRs.
The demographic features of the CR dataset are described in
Table 1.
3.1. Performance of the algorithm

In the standalone test using the standard reference of 244 CRs, the
algorithm achieved an AUC of 0.9935 (95% confidence interval
[CI], 0.9868–1.000), an wJAFROC FOM of 0.9735 (0.9539–
0.9916), sensitivity of 97.26% (95%CI, 95.21–99.31), specificity
of 92.86% (95%CI, 89.63–96.09), positive rate of 95.30% (95%
CI, 92.65–97.96), negative rate of 92.86% (95% CI, 89.63–
96.09), and accuracy of 95.49% (95% CI, 92.89–98.10). The
performance of the model in both image classification and lesion
localization was measured to be higher than that of 3 observer
groups, including board-certified radiologists, non-radiology
physicians, and general practitioners (Figs. 1 and 2). The AUC
for detecting nodule/mass, consolidation, and pneumothorax was
0.9883 (95%CI, 0.99762–1.000), 1.000 (95%CI, 1.000–1.000),
and 0.9997 (95% CI, 0.9989–1.000), respectively.
3.2. The observer performance test

For the primary evaluation of image classification, the overallAUC
of pooled physicians was 0.8679 (95% CI, 0.8507–0.8850) in
physician alone test and 0.9112 (95% CI, 0.8769–0.9454) in
DCAD-aided test. This increase from physician alone test to
DCAD-aided test was statistically significant (95% CI, 0.0487–
0.0725). Regarding the speciality of observers, the AUCs of board-
certified radiologists, non-radiology physicians, and general
practitioners in physician alone test were 0.9313 (95% CI,
0.9097–0.9529), 0.9152 (95% CI, 0.8917–0.9389), and 0.7686
(95%CI, 0.7311–0.8062), respectively; in DCAD-aided test, with
the assistance of the algorithm, theAUCs of the 3 groups increased
to 0.9586 (95% CI, 0.9399–0.9730), 0.9440 (95% CI, 0.9425–
0.9747), and 0.8940 (95% CI, 0.8663–0.9218) (Fig. 3). The
increments of AUC (95% CI) between physician alone test and
DCAD-aided test were 0.0237 (0.0139–0.0407) in board-certified
radiologists, 0.0287 (0.0158–0.0416) in non-radiology physi-
Abnormal

Consolidation Pneumothorax Total

31 35 244
18 33 149
13 2 95
58.55±18.12 25.43±9.83 52.40±18.29

http://www.md-journal.com


Figure 1. Performance of observers in image classification. The areas under
the receiver operating characteristic receiver operating characteristic curves
(AUCs) of the deep learning algorithm and observer groups are shown for the
detection of 3 major thoracic abnormalities, including pulmonary nodules or
masses, consolidation, and pneumothorax. AUC (95% confidence interval)
was 0.9935 (0.9868–1.000) in deep learning-based CAD algorithm (DCAD),
0.9313 (0.9097–0.9529) in board-certified radiologists, 0.9153 (0.8917–
0.9389) in non-radiology physicians, and 0.7686 (0.7311–0.8062) in general
practitioners, respectively.

Figure 2. Performance of observers in lesion localization. A weighted jackknife
alternative free-response ROC curves (wJAFROC) figure of merit (FOM) of the
algorithm and observer groups are shown for the localization of 3 major
thoracic abnormalities, including pulmonary nodules or masses, consolidation,
and pneumothorax. A wJAFROC FOM (95% confidence interval) was 0.9735
(0.9539–0.9916) in deep learning-based CAD algorithm (DCAD), 0.8951
(0.8608–0.9293) in board-certified radiologists, 0.8859 (0.8518–0.9200) in
non-radiology physicians, and 0.7686 (0.7311–0.8062) in general practi-
tioners, respectively.

Figure 3. Chest radiograph with pulmonary nodule and result of the deep learning-based computer-aided diagnosis (CAD) algorithm. (A) A small ill-defined nodular
opacity in the right middle lung zone is noted on the chest radiograph (arrow); (B) the deep learning-based CAD algorithm correctly detected and localized the
nodule with a corresponding annotated circle and abnormality score of 87%. Among 6 observers, 3 classified the image as normal. After reviewing the results of the
deep learning-based CAD algorithm, all 3 observers changed the result to abnormal with localization of the pulmonary nodule.

Choi et al. Medicine (2021) 100:16 Medicine
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Table 2

Performance of observers in image classification.

AUC (95% CI)

Observer group Physician alone test DCAD-aided test DCAD-aided test – physician alone test
∗

Board-certified radiologists 0.9313 (0.9097–0.9529) 0.9586 (0.9399–0.9730) 0.0237 (0.0139–0.0407)
Non-radiology physicians 0.9153 (0.8917–0.9389) 0.9440 (0.9425–0.9747) 0.0287 (0.0158–0.0416)
General practitioners 0.7686 (0.7311–0.8062) 0.8940 (0.8663–0.9218) 0.1248 (0.0960–0.1548)
Total 0.8679 (0.8507–0.8850) 0.9285 (0.9157–0.9413) 0.0606 (0.0487–0.0725)

Tests 1 and 2 were performed by observers without and with the aid of the algorithm. AUC= area under the receiver operating characteristic curve, CI=confidence interval, DCAD=deep learning-based
computer-aided diagnosis algorithm.
∗
DeLong test for comparison of the AUC.

Table 3

Performance of observers in lesion localization.

Board-certified radiologists Non-radiology physicians General practitioners Total

Physician

alone test DCAD-aided test P

Physician

alone test

DCAD-

aided test P

Physician

alone test DCAD-aided test P

Physician

alone test

DCAD-

aided test P
∗

wJAFROC

FOM

0.8951

(0.8608–0.9293)

0.9307 (0.9032–

0.9582)

.0001 0.8859 (0.8518–

0.9200)

0.9222 (0.8950–

0.9494)

<.0001 0.7686 (0.7311–

0.8062)

0.8940 (0.8663–

0.9218)

<.0001 0.8426 (0.7635–

0.9217)

0.9112 (0.8769–

0.9454)

.0287

Sensitivity % 91.72 (89.27–94.17) 93.75 (91.60–95.90) .0004 87.93 (85.03–90.83) 92.41 (90.06–94.77) <.0001 67.93 (63.78–72.08) 86.21 (83.14–89.27) <.0001 82.53 (80.58–84.48) 91.72 (90.31–93.14) <.0001

Specificity % 75.51 (71.69–79.33) 85.89 (82.79–88.98) .316 84.69 (81.49–87.89) 91.33 (88.82–93.83) .0002 85.71 (82.60–88.83) 91.33 (88.82–93.83) .0023 81.97 (80.00–83.95) 86.39 (84.63–88.15) <.0001

Positive rate % 84.71 (81.51–87.91) 76.53 (72.76–80.30) .0005 89.47 (86.75–92.20) 94.04 (91.93–96.14) <.0001 87.56 (84.62–90.49) 93.63 (91.46–95.80) <.0001 87.14 (85.42–88.85) 90.89 (89.41–92.37) <.0001

Negative rate % 86.05 (82.97–89.13) 96.55 (94.93–98.17) .0003 82.59 (79.22–85.96) 89.05 (86.28–91.83) <.0001 64.37 (60.11–68.63) 81.74 (78.30–85.17) <.0001 76.03 (73.83–78.22) 87.59 (85.59–89.28) <.0001

Accuracy % 85.19 (82.03–88.34) 88.48 (85.64–91.32) .0004 86.63 (83.60–89.65) 91.98 (89.56–94.39) <.0001 75.10 (71.26–78.95) 88.27 (85.41–91.13) <.0001 82.30 (80.35–84.26) 89.57 (88.01–91.14) <.0001

Physician alone test and DCAD-aided test were performed by observers without and with the aid of the algorithm. DCAD=deep learning-based computer-aided diagnosis algorithm, FOM= figure of merit, ROC=
receiver operator characteristic, wJAFROC=weighted jackknife alternative free-response ROC.
∗
Dorfman-Berbaum-Metz test for comparison of the wJAFROC FOM and generalized estimating equations for the comparison of sensitivity, specificity, positive or negative predictive value, and accuracy.

Choi et al. Medicine (2021) 100:16 www.md-journal.com
cians, and 0.1248 (0.0960–0.1548) in general practitioners, which
shows that the algorithm was effective in improving the
performance of readers (Table 2).
The results for the secondary evaluation of lesion detection are

described in Table 3. The pooled observers exhibited a
wJAFROC FOM of 0.8426 (95% CI, 0.7653–0.9217) in
physician alone test and 0.9112 (95% CI, 0.8769–0.9454) in
DCAD-aided test, which also indicates significant improvement
between tests (P< .05). Specifically, in physician alone test, the
wJAFROC FOM of board-certified radiologists, non-radiology
physicians, and general practitioners were 0.8951 (95% CI,
0.8608–0.9293), 0.8859 (95% CI, 0.8518–0.9200), and 0.7469
(95% CI, 0.7049–0.7889), respectively; in DCAD-aided test,
these statistics significantly increased to 0.9307 (95% CI, 9032–
0.9582), 0.9222 (95% CI, 0.8950–0.9494), and 0.8806 (95%
CI, 0.8479–0.9132), meaning that the assistance of the algorithm
had ameaningful impact on the performance of readers (P< .05).
Table 4

False-positive rates of observers.

Physician alone test

Board-certified radiologists 24.49 (18.47–30.51)
Non-radiology physicians 15.31 (10.27–20.35)
General practitioners 14.29 (9.39–19.18)
Total 18.03 (14.92–21.13)

The physician alone test and the DCAD-aided test were performed by observers without and with the a
algorithm.
∗
Generalized estimating equations for the comparison of the false-positive rate.

5

In the case of board-certified radiologists, the sensitivity,
negative rate, and accuracy showed significant improvement
between physician alone test and DCAD-aided test (P< .05). The
positive rate decreased significantly, while the increment in
specificity was not meaningful. For non-radiology physicians and
general practitioners, significant improvements in DCAD-aided
tests were observed for sensitivity, specificity, positive rate,
negative rate, and accuracy (P< .05). In terms of the false-positive
rate, both non-radiology physicians and general practitioners
achieved significantly lower scores in DCAD-aided test than in
the physician alone test (P< .01) (Table 4).
Regarding types of pathology, the sensitivities of observers in

localizing nodule/mass, consolidation, and pneumothorax were
78.13 (95% CI, 74.43–81.82), 86.02 (95% CI, 81.04–91.00),
and 89.71 (95% CI, 85.54–93.88), respectively; these values
increased to 88.75 (95%CI, 85.92–91.58), 91.94 (88.02–95.85),
and 98.53 (96.88–100) in DCAD-aided test (Figs. 4 and 5).
False-positive rate (95% CI)

DCAD-aided test P
∗

23.47 (17.54–29.40) .316
8.67 (4.73–12.61) .0002
8.67 (4.73–12.61) .0023
13.61 (10.83–16.38) <.0001

id of the algorithm. CI= confidence interval, DCAD=deep learning-based computer-aided diagnosis

http://www.md-journal.com


Figure 4. Chest radiograph with pneumothorax and result of the deep learning-based computer-aided diagnosis (CAD) algorithm. (A) A small left pneumothorax
and pleural line in the right apex is noted on the chest radiograph (arrow); (B) the deep learning-based CAD algorithm correctly detected and localized the nodule
with a corresponding annotated circle and abnormality score of 97%. Among 6 observers, 4 classified the image as normal. After reviewing the results of the deep
learning-based CAD algorithm, 3 observers changed the result to abnormal with localization of the left pneumothorax.

Choi et al. Medicine (2021) 100:16 Medicine
4. Discussion
The purpose of this study was to validate the clinical impact of the
algorithm in enhancing physicians’ performance in detecting
major thoracic lesions. The results proved that with the assistance
of the algorithm, 3 reader groups made significant improvements
in their performance, while the algorithm itself also showed
notable performance in the stand-alone test. The improvement of
performance in both image classification (AUC, 0.8679–0.9285;
P= .0606) and lesion localization (AUC, 0.8426–0.9112; P
= .0287) was shown in this study. Our results were very similar to
those of a recent study showing the outperforming value of a deep
learning-based algorithm on chest radiographs with multicenter
datasets.[11] It showed improvements in diagnostic performance
in both image-wise classifications (AUC, 0.814–0.932 to 0.904–
0.958; all P< .005) and lesion-wise localization (AUC, 0.781–
Figure 5. Chest radiograph with pneumonia and result of the deep learning-base
opacity is noted on the chest radiograph (arrow); (B) coronal image of chest CT
atelectasis in the right upper lobe (arrow) and patchy consolidation in the left lower
the pneumonic consolidation in the left lower lobe, while the algorithm detected an
circle and abnormality score of 45%. Among 6 observers, 4 classified the image as
observers changed the result to abnormal with localization of bronchiectasis an
consolidation in the left lower lobe in both the physician alone test and DCAD-ai
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0.907 to 0.873–0.938; all P< .001) with the assistance of the
algorithm. Although our results were obtained with a single
center dataset, we calculated the sample size and referred to the
known distribution of major thoracic abnormalities on CRs in
the open-source image database.[14]

Regarding detecting thoracic lesions, we found that the
sensitivities of physicians were improved from 78.13% to
88.75% for nodule/mass, from 86.02 to 88.75% for consolida-
tion, and from 89.71 to 98.53% for pneumothorax. Another
study also revealed that the sensitivity of radiologists improved
(from 65.1% to 70.3%, P< .001) and the number of false-
positive findings per radiograph declined (from 0.2 to 0.18,
P< .001) when the radiologists re-reviewed radiographs with the
deep learning algorithm for pulmonary nodules.[15] However,
pulmonary nodules are one of the abnormal findings frequently
d computer-aided diagnosis (CAD) algorithm. (A) Small right supra-hilar patchy
image obtained 3d after the chest radiograph shows the bronchiectasis and
lobe (short arrows). (C) The deep learning-based CAD algorithm did not detect
d localized the bronchiectasis and atelectasis with a corresponding annotated
normal. After reviewing the results of the deep learning-based CAD algorithm, 2
d atelectasis in the right upper lobe, while none of observers detected the
ded test.
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noted in daily clinical practice. The strength of our study lies in
the distinct algorithm, which evaluates 3 major thoracic
abnormalities, including nodules or masses, consolidation, and
pneumothorax. Another notable achievement of this algorithm is
its high accuracy in localizing major pulmonary lesions, which
enables physicians to confirm more accurate and reasonable
diagnoses. The decision-making process of the algorithm is often
compared to the black box due to its weak and sometimes defying
explanation.[16,17] For instance, previous algorithms for classify-
ing thoracic diseases from radiographs calculated probabilities or
simply identified the existence of diseases without any reason-
ing.[18,19] Unlike human doctors who can list legitimate reasons
for their diagnosis, how these neural networks arrive at successful
results is untraceable. Even researchers who develop algorithms
cannot explain whether algorithms learn the relationship
between lesions and diseases or extracted patterns from irrelevant
features, which makes physicians hesitant about adopting
computer-aided detection.
In this context, rather than displaying only numbers, drawing

heatmaps that visualize confidence levels for each lesion may earn
more trust from physicians. By examining what the algorithm
labeled abnormal on a CR, physicians can strengthen their
reasoning behind the diagnosis and feel more confident with this
assistance. Our algorithm is designed to detect 3 major
pulmonary lesions, which may require further examination
and may lead to the discovery of thoracic diseases such as lung
cancer and tuberculosis. Indeed, the results proved that it leads to
a higher level of detection than radiologists. Therefore, this
lesion-localization function of our algorithm may unbox the
black-box system and give more confidence to its users.
As several researchers have already suggested,[9,20,21] the most

established application of the deep learning algorithm in chest
radiography is the second reader. Compared to unaided reading,
the assistance of computer-aided detection as the second reader
increases the accuracy and sensitivity of screening thoracic
diseases. According to Donald and Barnard,[2] perceptual errors
occupied 81% of diagnostic errors that occurred on chest X-ray
evaluation. If the second read by the algorithm follows after the
initial interpretation by physicians, overlooking lung lesions can
be prevented in advance. Indeed, White et al[20] revealed that
47% of lung cancers missed in the initial interpretation of
radiographs were identified by computer-aided detection soft-
ware. Hence, our algorithm, which exhibited outstanding
performance in the observer performance test, may facilitate
decision-making procedures in the clinical setting as the second
reader.
Additionally, the results of the standalone test indicate that

utilizing our algorithm as the concurrent reader can be clinically
useful. Prior to interpretation by humans, the algorithm can
automatically detect abnormalities and mark their locations with
shorter reading times than the second-reader mode.[22] It can
serve as a substitute in cases of urgent situations such as when
skilled radiologists are not available, and by prioritizing between
CRs with and without risk markers, physicians can examine
patients suspicious of serious illnesses first. Additionally, the
efficacy of our algorithm as the primary reader in the clinical
setting has been validated by the recent research of Hwang
et al,[23] which tested the same deep learning algorithm used in
our study. The algorithm was used to retrospectively review CRs
from consecutive patients who visited the emergency department.
Although the dataset was obtained from consecutive patients at a
tertiary hospital with a different population from our study, this
7

algorithm showed outstanding performance in classifying
abnormal CRs, achieving an AUC of 0.95.
Considering that the influence of the algorithm differed

according to the proficiency of physicians in the observer
performance test, 2 different scenarios can be proposed for the
application of our algorithm. First, the feedback of the algorithm
can prevent radiologists frommaking errors or biases. Regardless
of experience, physicians cannot avoid the fact that they are
humans who are prone to a variety of mistakes, such as
interpretation errors, omission errors, and cognitive biases.[2,24–
26] Though the failure to correctly interpret CRs often leads to
fatal consequences, problems such as a shortage of radiologists
and heavy workloads still augment visual and mental fatigue,
increasing radiologic errors.[27] On the other hand, our detection
algorithm only needs appropriate hardware and electricity to
produce stable outputs. Thus, by providing a reliable reference,
our algorithm may lighten the burden of physicians and improve
both the working environment and healthcare service for
patients. Second, in comparison with the other 2 groups, the
general practitioner group showed a significantly higher increase
in their performance after receiving the assistance of the
algorithm. This finding indicates that the algorithm will be more
helpful to medical care centers suffering shortages of skilled
radiologists. Rural areas or undeveloped regions are often
isolated from medical services, lacking both trained radiologists
and advanced medical equipment. As written in the WHO 2016
report, CXR is recommended as a useful triaging and diagnostic
tool due to its low operating costs, easy operation, and low
radiation dose.[28] If computer-aided detection is adopted in those
rural areas, people will be able to access more qualified and
reasonable medical treatment without expensing large costs to
equipment or relying on distant hospitals.[29] Similarly, in local
clinics, the algorithm trained with various cases of large hospitals
can supplement the diagnosis of doctors as a subsidiary tool.
There are several limitations in our study. First, the dataset

used for training and validating the algorithm was formed
experimentally. Though the collected dataset followed the
prevalence rate of pathologies, each CR only included 1 type
of pathology. Additionally, whether the algorithm can concur-
rently distinguish rare and clinically irrelevant types of lesions in a
single CR is unknown. Second, the algorithm covered only 3
major thoracic lesions, which occupy a large proportion but not
the whole spectrum of all lesions existing in real-world situations.
Third, the results of our study are limited to a single center, so the
generalizability to other institutions is uncertain. Nevertheless, as
mentioned earlier, Hwang et al,[23] who used the same algorithm,
determined that this algorithm exhibited a successful perfor-
mance in classifying lung abnormalities in CRs of consecutive
patients while identifying even nontarget diseases. Nevertheless,
prospectively designed datasets will greatly enhance the meth-
odological quality of the research.
In this study, we demonstrated better performance of

physicians in the diagnosis of major pulmonary lesions assisted
by the deep learning-based CAD algorithm in terms of image
classification and lesion localization. The improvement of
diagnostic performance was significant in both radiologists
and non-radiology physicians or general practitioners. In
conclusion, our study presented an algorithm that can detect 3
major pulmonary lesions at high accuracy and contribute to the
enhancement of physicians’ performance. Further studies are
expected to validate the efficacy of this algorithm in a prospective
setting.

http://www.md-journal.com
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