
The Potent and Broadly Neutralizing Human Dengue Virus-Specific
Monoclonal Antibody 1C19 Reveals a Unique Cross-Reactive Epitope
on the bc Loop of Domain II of the Envelope Protein

Scott A. Smith,a,b A. Ruklanthi de Alwis,c Nurgun Kose,b Eva Harris,d Kristie D. Ibarra,d Kristen M. Kahle,e Jennifer M. Pfaff,e

Xiaoxiao Xiang,e Benjamin J. Doranz,e Aravinda M. de Silva,c S. Kyle Austin,f Soila Sukupolvi-Petty,f Michael S. Diamond,f

James E. Crowe, Jr.b,g,h

Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USAa; The Vanderbilt Vaccine Center, Vanderbilt University
Medical Center, Vanderbilt University, Nashville, Tennessee, USAb; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel
Hill, North Carolina, USAc; Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USAd; Integral
Molecular Inc., Philadelphia, Pennsylvania, USAe; Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of
Medicine, St. Louis, Missouri, USAf; Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USAg; Department of
Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USAh

ABSTRACT Following natural dengue virus (DENV) infection, humans produce some antibodies that recognize only the serotype
of infection (type specific) and others that cross-react with all four serotypes (cross-reactive). Recent studies with human anti-
bodies indicate that type-specific antibodies at high concentrations are often strongly neutralizing in vitro and protective in ani-
mal models. In general, cross-reactive antibodies are poorly neutralizing and can enhance the ability of DENV to infect Fc
receptor-bearing cells under some conditions. Type-specific antibodies at low concentrations also may enhance infection. There
is an urgent need to determine whether there are conserved antigenic sites that can be recognized by cross-reactive potently neu-
tralizing antibodies. Here, we describe the isolation of a large panel of naturally occurring human monoclonal antibodies
(MAbs) directed to the DENV domain II fusion loop (FL) envelope protein region from subjects following vaccination or natural
infection. Most of the FL-specific antibodies exhibited a conventional phenotype, characterized by low-potency neutralizing
function and antibody-dependent enhancing activity. One clone, however, recognized the bc loop of domain II adjacent to the FL
and exhibited a unique phenotype of ultrahigh potency, neutralizing all four serotypes better than any other previously de-
scribed MAb recognizing this region. This antibody not only neutralized DENV effectively but also competed for binding against
the more prevalent poor-quality antibodies whose binding was focused on the FL. The 1C19 human antibody could be a promis-
ing component of a preventative or therapeutic intervention. Furthermore, the unique epitope revealed by 1C19 suggests a focus
for rational vaccine design based on novel immunogens presenting cross-reactive neutralizing determinants.

IMPORTANCE With no effective vaccine available, the incidence of dengue virus (DENV) infections worldwide continues to rise,
with more than 390 million infections estimated to occur each year. Due to the unique roles that antibodies are postulated to
play in the pathogenesis of DENV infection and disease, there is consensus that a successful DENV vaccine must protect against
all four serotypes. If conserved epitopes recognized by naturally occurring potently cross-neutralizing human antibodies could
be identified, monovalent subunit vaccine preparations might be developed. We characterized 30 DENV cross-neutralizing hu-
man monoclonal antibodies (MAbs) and identified one (1C19) that recognized a novel conserved site, known as the bc loop. This
antibody has several desirable features, as it neutralizes DENV effectively and competes for binding against the more common
low-potency fusion loop (FL) antibodies, which are believed to contribute to antibody-mediated disease. To our knowledge, this
is the first description of a potent serotype cross-neutralizing human antibody to DENV.
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Dengue viruses (DENVs) have continued to expand in geo-
graphic range over the last several decades and are now the

most common insect-transmitted virus that targets humans. As a
result, the incidence of infections has risen steadily, with more
than 390 million infections estimated to occur annually (1), with

increasing numbers of the most severe form of dengue disease,
dengue hemorrhagic fever (DHF) or shock syndrome (DSS) (2).
The mechanisms underlying severe dengue disease remain poorly
understood but may involve the pathogenic activities of cross-
reactive antibodies (Abs). Following an initial primary infection
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with DENV, lifelong antibody-mediated protection usually devel-
ops against the homologous infecting serotype. However, the an-
tibody response against DENV is dominated by a group of cross-
reactive antibodies that bind to all four DENV serotypes. These
cross-reactive antibodies are weakly neutralizing and generally do
not protect against DENV infection when present at physiologic
concentrations, although at high concentrations some reduce vi-
rus replication in semipermissive animal models. Moreover, the
most widely accepted model of pathogenesis of severe dengue dis-
ease proposes that with a subsequent infection by a different sero-
type (known as a secondary infection), serotype cross-reactive an-
tibodies form nonneutralized antigen-antibody complexes that
facilitate the efficient entry of the virus in to host cells expressing
Fc receptors. This enhanced uptake of virus into susceptible cells is
proposed to result in increased viral replication and release of
cytokines and vasoactive mediators that alter vascular permeabil-
ity. This process has been termed antibody-dependent enhance-
ment (ADE) of infection and has been demonstrated to occur
using human immune serum or monoclonal antibodies (MAbs)
in cell culture and in animal models (3–6).

DENVs are members of the Flaviviridae family of single-
stranded positive-sense RNA viruses that have pseudoicosahedral
symmetry and display 180 copies of the envelope (E) glycoprotein
and premembrane/membrane (prM/M) proteins, which are em-
bedded in the lipid bilayer membrane. The immunodominant E
glycoprotein is comprised of three structural domains, designated
domain I (DI), DII, and DIII; E protein exists as a homodimer in
the prefusion state on the mature virus particle and undergoes
multiple conformational changes during maturation and fusion.
Initial characterization of the targets of neutralizing antibodies
was performed using monoclonal antibodies (MAbs) isolated
from mice (7–11); however, the ability to translate this informa-
tion to the human immune response has been limited (12). The
major antigenic targets of the neutralizing human antibody re-
sponse have been studied using polyclonal serum from naturally
infected patients (13, 14). Given the polyclonal nature of serum,
however, the response to individual antibody epitopes has not
been easy to parse out at the molecular level.

A comprehensive understanding of the location of antigenic

sites targeted by the protective and/or pathogenic human anti-
body response is of critical importance to vaccine development
efforts against DENV. Over the past 3 years, several panels of hu-
man MAbs have been characterized by multiple groups, showing
that the human response targets both E and prM protein and is
comprised largely of serotype cross-reactive and weakly neutral-
izing antibodies (15–19). Only a small percentage of antibodies,
�10% of those directed against surface-exposed epitopes, are se-
rotype specific or potently inhibitory (neutralizing at a �0.5-
�g/ml concentration). This natural scarcity of strongly neutraliz-
ing antibodies has made it challenging to map the epitopes
targeted by the protective human antibody response. Recently,
studies using DENV immune serum depletion and human MAb
techniques suggested that the antibodies responsible for serum
neutralizing activity following primary DENV infection may be
serotype specific and likely target a site outside DIII, with MAbs
recognizing epitopes within the hinge region between DI and DII
on the E protein. Many of these antibodies bound quaternary
epitopes that existed only on the virion, and not on isolated E
proteins (13, 16). The structure of a virion-only binding antibody,
in complex with DENV1, was recently determined using cryo-
electron microscopy (20). These antibodies are quite potent but
generally are serotype specific in their ability to bind DENV and
neutralize infection.

It remains unclear if immune humans can also generate anti-
bodies with potent cross-neutralizing properties. Several recent
studies suggested that naturally occurring anti-DENV human
antibodies with cross-neutralizing activity target the fusion loop
(FL) epitope on DII of the E protein (DII-FL) (21–27). These
antibodies, however, frequently exhibit only weak to moderately
neutralizing activity (half-maximal effective concentration
needed for neutralization [EC50] of 1 to 5 �g/ml) and frequently
display significant ADE activity in vitro and in vivo (25). Sites
targeted by potent serotype cross-neutralizing human antibodies
have not been described.

In the present study, we assembled a large panel of MAbs, ob-
tained from human subjects following vaccination or primary and
secondary infection, to profile the anti-DENV serotype cross-
neutralizing antibody response. The majority of cross-reactive

TABLE 1 Subject demographics and serologic findings from DENV immune subjects studiedb

Type of
infection

Infecting
virus

Infecting
serotype(s)

Subject
no.a

Location
acquired

Yr
infected

Time
since
infection

Reciprocal serum antibody
50% neutralization titer, to
indicated DENV serotype

No. of
DENV
FL-specific
hybridomas
obtainedD1 D2 D3 D4

Primary Live attenuated
vaccine

1 49 U.S. NIH
vaccine trial

2008 7 mo 37 ND ND ND 1

Natural
wild-type
field strain

1 106 India 2007 2 yr 90 � � � 3
10 Thailand 2002 7 yr 254 � � � 1

2 19 Thailand 1997 8 yr 95 � 20 105 1
3 118 Nicaragua 2009 1 yr 60 32 980 76 1

3 Thailand 2001 4 yr 30 87 338 � 2
Secondary Natural

wild-type
field strains

Multiple 1089 Nicaragua 2009 1 yr 107 220 200 70 1
3387 Nicaragua 2009 1 yr 1,000 400 340 90 2
115 Sri Lanka 1974–1997 12 yr 90 134 330 165 1
9 India-Sri Lanka 2000 5 yr � � 290 393 1
184 Mexico 2006 4 yr 282 209 166 76 16

a Subject numbers were assigned in the original clinical studies, as outlined in Materials and Methods.
b Symbols: �, titer greater than 1:1,280; �, titer less than 1:20; ND, not determined.
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DII-FL antibodies exhibited weak neutralizing potency and
showed strong ADE activity. One unusual clone (1C19), however,
exhibited ultrahigh neutralization potency against DENV strains
corresponding to all four serotypes. Fine epitope mapping studies
revealed that this MAb was distinct from the less potent DII-FL
MAbs in that it targeted the conserved bc loop (amino acids [aa]
73 to 79) adjacent to the FL. This antibody has several desirable
features, including both the ability to neutralize DENV effectively
and the ability to compete for binding against the more common
low-potency FL antibodies, which likely contribute to antibody-
mediated disease. Therefore, elucidation of the features of this
unique epitope may inform the design of vaccines intended to
elicit protective immunity with reduced capacity to induce anti-
bodies that enhance infection.

RESULTS
Human MAbs to the DII-FL region of DENV E protein. To study
the human antibody response to DENV, we generated several
hundred MAbs from subjects following primary and secondary
DENV infection as well as recipients of a live attenuated vaccine
(25). While characterizing these MAbs, we observed that a large
subset of DENV complex-reactive antibodies (those able to bind
to viruses from all four serotypes) targeted the DII-FL region,

some of which neutralized viruses from multiple DENV serotypes.
We assembled a large panel of these MAbs from subjects following
natural DENV infection or vaccination for further study (Table 1).
MAbs were obtained from subjects with diverse infection histo-
ries, including natural primary DENV1, -2, or -3 or secondary
infections.

We began to classify our panel of DII-FL MAbs for their bind-
ing properties. Using real-time biosensor technology (Octet Red
platform), we first performed competitive binding studies, using
representative full-length MAbs, on either intact DENV particles
or recombinant E80 protein. As can be seen in Fig. 1, all represen-
tative MAbs from our panel segregated into one competition
group, highlighted in red. No competition was observed between
FL MAbs in our panel and antibodies known to bind prM protein
or E protein DIII. MAb 1C19 had a unique binding property com-
pared to other MAbs in our panel, as it competed with the virion-
only binding MAb 1F4, which recognizes the DI/II hinge region.

Breadth of neutralizing activity of human MAbs. We tested
the neutralizing activity of our panel of MAbs against representa-
tive DENV strains from the four serotypes, using U937�DC-
SIGN target cells. As shown in Table 2, the neutralization potency
varied considerably among MAbs. Many of the MAbs showed

FIG 1 Competition binding assays using DENV1 virion particles or DENV2 soluble envelope protein reveal four major competition groups, with an
overlapping specificity for the broad and potent monoclonal antibody 1C19. Representative MAbs from our panel and control MAbs with previously defined
epitopes were assessed for competitive binding to DENV1 virion or DENV2 recombinant E protein using an Octet Red instrument. The antibodies were judged
to compete for the same site if maximum binding of the second antibody was reduced to �25% of its binding in the absence of the first antibody. No competition
was achieved if maximum binding of the second antibody was �75% of its binding in the absence of the first antibody. Gray boxes indicate self-pairing
combinations that were tested and for which competition was detected. Blue, red, green, or brown shading indicates the competition group A, B, C, or D,
respectively. The minus sign indicates that competition was tested but was not detected on virion particles or E80 protein. “V� (E�nt)” indicates that
competition was detected on virion particles but that competition was not tested on E80 protein because MAb 1F4 binds only virions. “V- (E�nt)” indicates that
competition was not detected on virion particles and that competition was not tested on E80 protein because MAb 1F4 binds only virions. “V�E�” indicates that
competition was detected on both virion particles and E80 protein.
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little or no neutralizing activity toward any serotype, requiring a
concentration of �10 �g/ml to neutralize 50% of the virus (EC50)
in our assay. Approximately half of the MAbs in our panel dis-
played moderate neutralization potency (EC50 between 1 and
10 �g/ml) to viruses from at least one DENV serotype. Six anti-
bodies (1M4, 1M7, 1N5, 1C19, 1C18, and 4E8) potently neutral-
ized viruses from at least one DENV serotype, with an EC50 of
�1.0 �g/ml. Two MAbs, 1M7 and 1C19, neutralized at least one
serotype below a 0.1-�g/ml concentration. Finally, 1C19 showed
the greatest cross-neutralizing potency, neutralizing DENV1, -2,
and -3 at or below a concentration of 0.06 �g/ml.

We also assessed the neutralization activity of a subset of our
panel using Vero cells. As shown in Table 3, differences in the
neutralization potency were observed for each MAb when com-
paring U937�DC-SIGN to Vero cells. In most cases, the EC50 was
10 to 100 times lower when Vero cells were used. Interestingly, the
neutralization potency of 1C19 was unchanged for DENV1 to -3
but was 60 times more potent for DENV4 when Vero cells were
used.

Most of the antibodies that we isolated to the DII-FL exhibited

TABLE 2 Characteristics of DENV-specific FL-binding human MAbs

Type of infection
Subject
no. MAb

IgG
subclassa � or �a

50% neutralization concentration
(EC50, �g/ml), against indicated
dengue virus (D) serotypeb

Fold enhancement of
infection, for indicated
serotype at 1 �g/mlc

D1 D2 D3 D4 D1 D2 D3 D4

Primary DENV1
vaccine

49 1M12.2 1 � � � � � 8 8 30 1

Primary DENV1
wild type

106 1M6.2 1 � � 8 � � 4 3 29 1
2J21 1 � � � � � 18 7 28 1
2I23 3 � � � � 5 1 1 1

10 1M4 1 � 0.56 0.27 5 2 6 1 56 1
Primary DENV2

wild type
19 5M22 1 � 7 9 5 � 11 11 42 11

Primary DENV3
wild type

3 1I17 1 � 10 8 8 � 7 12 27 7
2A15 1 � 7 7 5 10 10 6 16 5

118 1M7 1 � 0.55 0.30 0.02 0.50 1 1 1 1
Secondary

wild type
9 2C7 1 � 4 1 4 6 22 5 5 24
1089 1N5 1 � 0.1 0.2 0.5 0.4 5 2 9 7
3387 1F12.2 1 � � � � � 9 8 11 7

1C19 1 � 0.06 0.03 0.04 3 18 5 16 8
115 3H4 2 � 1 1 3 4
184 1E4 1 � � � � � 8 9 17 7

1B19 1 � 1 2 3 6 7 5 32 11
1C18 1 � 0.2 � � � 9 16 5 5
1H20 1 � � � � � 4 1 2 1
1I16 1 � � � � � 5 4 2 3
1K16 1 � � � � � 7 16 11 3
1L4 1 � � � � � 13 16 9 4
1L6 1 � 2 7 1 6 6 3 1 6
1N8 1 � 5 4 8 6 11 5 2 9
2M11 1 � 2 3 4 4 20 12 36 11
3B4 1 � 2 2 1 2 6 4 2 4
3D18 1 � � � � � 33 4 9 8
3G5 1 � � � � � 9 15 7 4
4E8 1 � 0.4 0.2 3 � 7 13 14 4
5C8 1 � 1 2 1 3 5 5 4 6
5K17 1 � 2 3 6 5 21 17 33 18

a Immunoglobulin isotype, subtype, and light chain utilization were determined by ELISA.
b The concentration (�g/ml) at which 50% of virus was neutralized (EC50) is shown for each dengue virus serotype: EC50 values between 1.0 and 10.0 �g/ml are shown, 50%
neutralization values of �1.0 �g/ml are shown in bold; EC50 values of �0.1 �g/ml are shown in bold italic. The “�” symbol indicates no neutralization detected when tested at a
concentration as high as 10 �g/ml.
c Enhancement assays were performed for each antibody at a concentration of 1 �g/ml, separately against each DENV serotype, and results are shown as fold enhancement.
Enhancement values greater than 20-fold are shown in bold.

TABLE 3 Neutralization potency of human MAbs, as tested in two cell
lines

50% neutralization concentration (EC50)a in indicated
cell type against DENV of indicated serotype (D1 to D4)

MAb

U937�DC-SIGN cells Vero-81 cells

D1 D2 D3 D4 D1 D2 D3 D4

1M7 0.55 0.3 0.02 0.5 0.1 0.03 0.07 2
1N5 0.1 0.2 3 � 0.1 0.02 0.02 0.01
1C19 0.06 0.03 0.04 3 0.03 0.01 0.01 0.05
1C18 0.2 � � � 0.7 0.2 2 3
1L6 2 7 1 6 0.2 0.02 0.5 0.2
1N8 5 4 8 6 0.3 0.1 2 1
3B4 2 2 1 2 0.1 0.04 0.4 0.4
4E8 0.4 0.2 3 � ND ND ND ND
5C8 1 2 1 3 0.2 0.03 0.4 0.3
a The concentration (�g/ml) at which 50% of virus was neutralized (EC50) is shown for
each DENV serotype: 50% neutralization values between 1.0 and 10.0 �g/ml are shown
in lightface roman, 50% neutralization values of �1.0 �g/ml are shown in bold, and
50% neutralization values of �0.1 �g/ml are shown in bold italic. The “�” symbol
indicates that neutralization was not detected even when tested at a concentration as
high as 10 �g/ml. ND, not done.
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evidence of antibody-dependent enhancement (ADE) of infection
in Fc receptor-bearing cells, when tested at 1 �g/ml (Table 2). In
many cases, the growth of virus was an order of magnitude greater
or more in the presence of the MAb tested.

Temperature dependence of neutralization. One possible ex-
planation as to why the DII-FL MAbs neutralized DENV1,
DENV2, and DENV3 more efficiently than DENV4 was that the
DII-FL epitope was not equivalently accessible on the surface of
the DENV4 virion compared to the other DENV serotypes. Recent
studies with mouse MAbs and different DENV serotypes have
suggested that increasing the temperature of preincubation facil-
itates exposure of buried epitopes on different virion conforma-
tional ensembles, which results in enhanced neutralizing activity
of some MAbs (28–31). To assess the effect that temperature has
on the ability of our panel of human MAbs to neutralize DENV,
single endpoint dilution (2 �g/ml) focus reduction neutralization
titer (FRNT) assays were performed using different DENV strains.
Most DII-FL MAbs displayed temperature dependence in their
ability to neutralize DENV4 (Table 4), with over 40% of MAbs
tested exhibiting at least a 2-fold increase in neutralization po-
tency at 40°C. MAb 1C19, however, did not have a substantial
increase in neutralization potency at 40°C compared to 37°C, sug-

gesting that its epitope was not differentially expressed on DENV4
virion structural ensembles.

DII-FL epitope mapping with WNV E proteins. To begin to
define the epitope specificity of our panel of MAbs, we next tested
them for binding to previously designed wild-type or mutant
DII-FL E proteins (Table 5) whose fusion loop is identical in se-
quence to that of DENV (32). Because of the identity in the fusion
loop, we considered it reasonable to use the existing West Nile
virus (WNV) mutant E proteins for screening purposes to identify
putative epitopes. A caveat for interpretation of such studies is
that the E protein scaffold for the FLs differs between WNV and
DENV, and it cannot be assumed that a MAb that binds the FL in
one context will bind the same FL in another E protein context
with equivalent affinity, since residues outside the FL may influ-
ence the binding of some MAbs. Most MAbs bound to the wild-
type E protein of WNV, with the notable exception of MAb 1C19.
As a way to confirm the DII-FL specificity and identify residues
important for binding, we next assessed the ability of the MAbs to
bind a mutated form of WNV E protein (quadruple [QUAD]
mutant) containing four altered residues in the WNV FL (aa 101
and 107) and adjacent bc loop (aa 76 and 77) regions. Each of the
MAbs that bound to wild-type WNV E protein also failed to bind
the WNV QUAD mutant E protein. Mutation of DII-FL residue
101 alone disrupted binding of all MAbs tested, also establishing
the DII-FL region as a primary target of these cross-neutralizing
MAbs.

Epitope mapping with yeast library variants. As an alternate
strategy to identify residues involved in binding, we screened
many of our cross-neutralizing human MAbs for binding to wild-
type and mutant DENV2 E proteins (with amino acid point mu-
tation W101R, G106R, or L107D) by using yeast surface display
(Table 5) (33). Binding was disrupted by each of these three
changes for all of the MAbs identified above as binding to the
DII-FL region. Again, binding of MAb 1C19 was not disrupted,
suggesting that these DII-FL residues are not critical for the inter-
action of that MAb.

Epitope mapping using shotgun mutagenesis library. We
next identified specific residues of the epitopes engaged by our
panel of MAbs by screening mutagenized libraries of E proteins
for loss of binding of each of the MAbs under study. We com-
pleted epitope maps for 29 of the 30 antibodies (Table 5); MAb
2I23 exhibited high nonspecific binding in our library format, so it
was not tested. To epitope map each MAb, each of the antibodies
was screened on a DENV4 mutation array of human cells express-
ing E protein clones with alanine mutations at each amino acid
position (see Fig. S2 in the supplemental material). Selected MAbs
also were screened against a DENV3 mutation array that contains
random amino acid substitutions, which are typically more dis-
ruptive than alanine mutations. Table 5 shows the critical residues
identified by these loss-of-binding experiments (see Table S2 for
all critical residue binding data). With the notable exception of
1C19, at least one residue within the conserved FL region (aa 97 to
111) disrupted binding for each MAb. 1C19 was the only MAb in
our panel whose binding was not affected by alteration of DII-FL
residues. The bc loop residues 73, 78, and 79 were the only critical
residues identified by our loss-of-function binding screens for
1C19. Interestingly, in addition to residues within the FL, binding
of MAb 2J21 was also disrupted by changes in the neighboring bc
loop.

Screening of a small panel of previously isolated highly cross-

TABLE 4 Temperature dependence of neutralization mediated by
human MAbs to DENV FLa

MAb

% neutralization mediated by MAb
against indicated strain, at 37 or 40°C

DENV2 (strain NGC) DENV4 (strain 1036)

37°C 37°C 40°C

1C18 58 29 68
1B19 80 38 90
1C19 93 30 43
1E4 86 46 87
1F12.2 78 44 95
1H20 35 25 48
1I16 97 57 100
1I17 32 37 81
1K16 25 26 64
1L4 68 42 58
1L6 86 57 96
1M12.2 0 24 61
1M4 77 61 97
1M6.2 90 55 99
1M7 93 85 99
1N5 85 52 97
1N8 65 43 89
2A15 38 33 77
2C7 88 54 93
2I23 8 6 16
2J21 44 32 74
2M11 76 41 85
3B4 86 60 93
3D18 86 44 90
3G5 62 41 71
3H4 90 78 99
4E8 72 39 77
5C8 73 54 82
5K17 86 42 84
5M22 11 26 40
a Neutralization assays were performed at 2 �g/ml (single endpoint dilution). Data are
expressed as % neutralization (i.e., 100% � complete neutralization). These data are
from two independent experiments, each performed in duplicate.
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reactive murine MAbs also showed that the principal residues tar-
geted in the E protein fall within the DII-FL. Alterations in the bc
loop did not alter binding of any of the murine DENV- or WNV-
specific MAbs tested (DV2-29 or DV2-52 or WNV E18, WNV
E28, WNV E60, WNV E 86, WNV E106, or WNV E119) (see
Table S1 and Fig. S1 in the supplemental material). These data
suggest that murine DII-FL-specific antibodies, like human anti-
bodies, typically interact with the DII-FL proper and not with the
adjacent bc loop. It is of interest that there is a WNV-reactive
murine MAb E53 that has been reported to interact with the bc
loop of DII (34).

Figure 2 shows a representation of each of the epitope maps
grouped according to the phenotype of binding. For 5M22, we
identified critical residues in the DENV4 screen in both E and prM
proteins; this finding was considered an unusual distribution but
was reproducible in repeated assays. The results for this antibody
suggest that it interacts with a complex quaternary epitope formed
by both prM and E proteins. Screening of a different library
(DENV3) for binding with 5M22 also identified E protein resi-
dues.

Genetic features of the antibodies. Antibody heavy and light
chain sequences were obtained for the most potent and broadly

TABLE 5 Epitope mapping of DENV-specific FL region binding human MAbs by binding assays to WNV E protein FL or bc loop mutants or
shotgun mutagenesis studies with DENV E protein

Type of
infection

Subject
no. MAb

Binding phenotype in ELISA as � or � to the
indicated West Nile virus E protein

DENV E protein
mutation(s) that
disrupts binding

Wild-type
E
proteind

QUAD
mutantd

W101R
mutantd

Mutations that disrupted
binding in DENV2 E
yeast display (W101R)
G106R, or L107D)

Primary DENV1
vaccine

49 1M12.2 � � NDa 101, 106, 107 R99A, W101A, L107A, F108A,
G111A

Primary DENV1
wild type

106 1M6.2 ��� � � ND W101A, L107A
2J21 � � ND 101, 106, 107 G78A, E79A, L107A, K110A, G111A
2I23 � � ND 101, 106, 107 Not determinedb

10 1M4 ��� � � ND W101R, L107P, L107R, G111R
Primary DENV2

wild type
19 5M22 � � ND 101, 106, 107 K26A (prM, D4); N103D, G104E,

G111R (D3)
Primary DENV3

wild type
3 1I17 � � ND 101, 106, 107 W101A, G106A

2A15 �� � � ND W101A
118 1M7 ��� � � ND W101R, W101C, G111R

Secondary
wild type

9 2C7 ��� � � ND W101R, W101G, W101C, L107P,
L107R, F108I, G111R (D3);
W101A, F108A (D4)

1089 1N5 �� � � ND W101R, L107P, L107R, G111R
3387 1F12.2 � � � ND W101A, F108A

1C19 � � NAc No disruption detected R73A, G78A (D4); R73Q, G78D, and
E79V (D3)

115 3H4 �� � � ND W101A
184 1E4 �� � � ND W101A, F108A

1B19 � � � ND W101A
1C18 � � � ND W101R, W101C, L107P, L107R,

G111R
1H20 � � ND 101, 106, 107 R99A, W101A, L107A, F108A
1I16 � � � ND W101A, F108A
1K16 � � � 101, 106, 107 L107P, L107R, G111R
1L4 � � � ND W101A
1L6 �� � � ND G100A, W101A, F108A
1N8 � � � ND W101R, W101G, W101C, L107P,

L107R, G111R
2M11 � � � ND W101A, G104A
3B4 �� � � ND W101A, F108A
3D18 �� � � ND W101A, F108A
3G5 � � � ND F108A
4E8 � � � ND G100A, W101A, F108A
5C8 � � � ND W101A, F108A
5K17 � � � ND W101A, G104A, G106A

Control E16 control ��� ��� ��� ND ND
E18 FL-specific

control
��� � � ND ND

a ND, not done.
b Not determined because MAb 2I23 exhibited a high level of nonspecificity and so it was not mapped.
c NA indicates not applicable. Since 1C19 did not bind the wild-type WNV protein, loss of binding to the W101R mutant was not tested.
d Optical densities at A450 are summarized as follows: –, �0.4; �, 0.5 to 1.2; ��, 1.3 to 2.0; ���, �2.
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FIG 2 Epitope mapping of DII-FL region antibodies by shotgun mutagenesis library screening. We performed fine epitope mapping by screening DENV4
alanine scanning and DENV3 shotgun mutagenesis libraries for loss of binding. (A) At the top, a ribbon diagram indicating the structure of the DENV E80 dimer
is shown, with color coding for domains of interest, and the inset indicates structures shown in all panels. Critical residues are visualized on the DENV E protein
crystal structure (41) (PDB identifier 1UZG) and shown as green spheres. Tables indicate the particular residues affecting binding of each MAb in the left column.
At the bottom, critical residues are shown for 1C19 binding using DENV4 alanine scanning and DENV3 shotgun mutagenesis libraries. (B to F) Additional panels
show critical residues for MAbs obtained from subjects following DENV1 vaccination (B), natural DENV1 infection (C), natural DENV2 infection (D), natural
DENV3 infection (E), or secondary infection (F). *, DENV4 alanine scanning library identified one residue in prM critical for MAb 5M22 binding (data not
shown). **, for MAb 2C7, two of the four critical residues that were identified by DENV3 shotgun mutagenesis also were identified using the DENV4 alanine
scanning library.
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neutralizing antibodies in our panel, MAbs 1C19, 1N5, and 1M7.
Table S3 in the supplemental material shows the genetic features
of these MAbs. All three MAbs use different germ line antibody
variable-region genes and have distinct junctional sequences.
None of them display a particularly high degree of somatic hyper-
mutation, each having �20 amino acid changes from their heavy
chain variable-region germ line sequence.

Protective efficacy in vivo. We reasoned that the most potent
neutralizing MAbs should protect against virus replication in vivo.
We tested the human MAbs 1N5 and 1C19 in AG129 mice (129/Sv
mice deficient in alpha/beta and gamma interferon receptors) for
protective efficacy. Both antibodies tested reduced the level of
viremia after sublethal virus challenge by approximately 10- or
1,000-fold, for DENV1 or DENV2 virus strains, respectively
(Fig. 3). MAb 1C19 reduced DENV2 replication at a relatively low
dose of 20 �g per mouse (approximately 0.8 mg/kg of body
weight).

DISCUSSION

This study describes the characterization of a large panel of human
MAbs that recognize the DENV DII-FL and possess serotype
cross-reactive binding patterns. Most of the MAbs in this panel of
clones bind to the conventional FL antigenic region, primarily
exhibit mostly weak neutralizing potency, and show ADE activity.
One ultrapotent MAb, 1C19, however, neutralized viruses from
all four DENV serotypes and interacted with the bc loop of E
protein DII, adjacent to the FL, without directly binding the FL.
This antibody also was found to compete for binding against the
more common lower-potency FL antibodies.

Our cross-competition binding assays revealed that 1C19 dif-
fered from other cross-reactive MAbs in the panel since it com-
peted for binding with all of the MAbs in the panel and also com-
peted with a previously described neutralizing antibody, 1F4,
which recognizes the DI/II hinge region. None of the other DII-FL
MAbs that we isolated demonstrated this interference pattern.
The ability of 1C19 to block binding of an antibody to the hinge
region suggested that the epitopes for these two major classes of
potent neutralizing antibodies (bc loop or hinge specific) were
distinct but close to each other on the virion particle. We also

mapped murine antibodies that target the DII-FL region of DENV
and WNV, and we found that the mode of recognition of this
epitope of 1C19 also appeared to be distinct from the typical
epitope recognized by murine antibodies to this region. Under-
standing the molecular mode of recognition of the unique epitope
targeted by 1C19 is likely of high clinical relevance, as previously
identified conventional antibodies that target the FL region en-
hance disease in vivo (25). Moreover, we note that 1C19 was iso-
lated from a person exposed to a secondary DENV infection (Ta-
ble 2), indicating that broadly cross-neutralizing antibodies may
be a consequence of repeat exposures to DENV. Indeed, people
exposed to secondary DENV infections have polyclonal serum
antibodies that broadly cross-neutralize different DENV sero-
types.

The correlates of immunity to DENV infection are not com-
pletely understood. We tested the neutralization potency of this
panel of MAbs in two cell lines and at two temperatures. Overall,
neutralizing potency varied considerably between antibody clones
in our panel, with EC50s ranging from �10 �g/ml to 0.01 �g/ml.
We also observed considerable variability in potency for particular
cross-reactive MAbs when tested against viruses from different
serotypes or when tested at various temperatures or different cell
lines. Many of the MAbs bound to similar epitopes (i.e., their
epitopes mapped to the same critical residues), and yet they ex-
hibited EC50 values that differed by several orders of magnitude.
These data show that comparative studies of the potency of anti-
bodies must consider the conditions of the assays used. The rea-
sons for detecting differing activities of these MAbs under various
conditions remain unclear but could involve differences in bind-
ing affinity, the presence of additional interacting residues that
were not detected by our mapping efforts, differences in the ac-
cessibility of epitopes as displayed on the surface of virion parti-
cles, or differences in the angle of binding of the MAbs.

Target epitopes of potently cross-neutralizing antibodies such
as 1C19, generated by humans to natural infection, are the best
tools that we have for understanding the determinants of human
protection. These sites could be the focus of future vaccine design.
Epitope mapping for this large panel of MAbs was achieved
through several independent means, with consensus of the find-
ings in the assays using different approaches. Most of our MAbs
mapped to the conserved DII-FL (residues 97 to 111), with aa 101,
107, 108, and 111 being the most frequently identified as critical
for binding. Critical residues were found in both the FL and bc
loop (aa 93 to 97) for MAb 2J21. 1C19, the most broadly potent
MAb in our panel, mapped exclusively to the bc loop, without
identification of residues within the nearby FL.

With the information provided here and published previously
(15, 19), one could develop two distinct but compatible strategies
for the rational design of DENV vaccines or antibody therapeu-
tics. One strategy would be to induce high titers of serotype-
specific antibodies that target the hinge region between DI and
DII. In this case, four antigenic preparations could be developed,
with each designed to induce potent protection for one serotype
without generation of potentially dangerous, cross-reactive, and
nonneutralizing antibodies; we have designated this approach a
“four by one” strategy. A second strategy would be to focus on
cross-neutralizing epitopes that induce potently inhibitory anti-
bodies to viruses of all four serotypes using a single immunogen,
an approach that we have termed a “one by four” strategy. In this
case, antigenic preparations would be developed to induce 1C19-

FIG 3 The prophylactic efficacy of 1N5 and 1C19 against DENV1 and
DENV2 in AG129 mice. The prophylactic efficacy of serotype cross-reactive
MAbs 1N5 and 1C19 was tested in vivo against DENV1 or DENV2. Mice were
administered MAb 1N5 or 1C19 or IgG1 isotype control by an intraperitoneal
route 24 h prior to a sublethal intravenous challenge with DENV. (A) Treat-
ment (100 �g) with antibody and 5 � 106 PFU inoculation with DENV1 strain
WestPac-74. (B) Twenty- or 50-�g treatment with antibody, as indicated, and
103 PFU inoculation with DENV2 strain D2S10. Viremia was determined
3 days postinoculation. Mice receiving MAb 1N5 or 1C19 exhibited signifi-
cantly decreased viremia compared to control mice. *, P � 0.05 as determined
by the Wilcoxon-Mann-Whitney test.
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like antibodies through vaccination, targeting this cross-
protective epitope. Eliciting 1C19-like antibodies is attractive,
since this is the most broad and potent MAb reported to date that
reacts with all four serotypes of DENV and exhibits neutralizing
activity. An added benefit of such antibodies is that they might
displace other FL-specific antibodies made following previous in-
fection that might otherwise promote disease enhancement. One
could even consider a pentavalent strategy combining the “four by
one” and “one by four” strategies by including four separate type-
specific hinge region immunogens and one antigen designed to
recapitulate the cross-reactive domain II bc loop epitope.

This work also raises the possibility that typically FL-specific
MAbs may block the 1C19 site and therefore act as “blocking”
MAbs that actively prevent the development of a more potent
immune response focused on the domain II bc loop epitope rec-
ognized by 1C19. This phenomenon might be especially relevant if
there are many more FL-specific MAbs circulating and/or these
are higher affinity than those focused on the 1C19 epitope. It
might be possible in future to test whether such MAbs block 1C19-
like antibodies by immunizing experimental animals with an E
protein that lacked the FL, with the hypothesis that such a protein
might induce a high frequency of 1C19-type MAbs.

MATERIALS AND METHODS
Human subjects and peripheral blood cell isolation. We identified sub-
jects who had acquired DENV infection naturally by screening volunteers
with suspected exposure during past travel to, or residence in, regions in
which DENV is endemic, as indicated in Table 1. Returned traveler sub-
jects were confirmed to have had DENV infection by testing their serum
for the presence of antibodies that neutralized each of the DENV sero-
types. Cases in subjects enrolled in the Pediatric Dengue Cohort Study in
Nicaragua were confirmed by RT-PCR, virus isolation, and serology in
paired acute and convalescent samples. Peripheral blood mononuclear
cells (PBMCs) were isolated by density gradient separation on Ficoll.
PBMCs also were obtained from subjects who received the live attenuated
rDEN1�30 vaccine 28 days following a second vaccine dose (7 months
after first dose) after informed consent (35, 36). The cells were cryopre-
served and stored in liquid nitrogen until study. The protocol for recruit-
ing and collecting blood samples from subjects was approved by the In-
stitutional Review Boards of the University of North Carolina at Chapel
Hill and the Vanderbilt University Medical Center, Johns Hopkins Uni-
versity, the National Institutes of Health, the University of California,
Berkeley, or the Nicaraguan Ministry of Health.

Viruses and recombinant proteins. DENV1 WestPac-74, DENV2
S-16803, DENV3 CH-53489, and DENV4 TVP-376 (mistakenly desig-
nated with the phlebovirus strain name TVP-360 in some publications in
the field) virus strains, provided by Robert Putnak (Walter Reed Army
Institute of Research, Silver Spring, MD), were used in the present study
for both binding enzyme-linked immunosorbent assay (ELISA) and neu-
tralization assays. For the virus capture ELISA, supernatant that contained
DENV particles was prepared in C6/36 Aedes albopictus cells grown in
complete minimal essential medium (MEM) (Gibco; catalog no. 51985-
034).

Recombinant proteins representing fragments of DENV E or prM
protein were used to determine antigens and domains recognized by hu-
man MAbs. Recombinant DENV proteins were constructed using se-
quences of the above strains. Sequence optimization, gene synthesis, and
molecular cloning of all recombinant DENV protein constructs for ex-
pression in baculovirus were performed by GenScript USA Inc. Protein
production and purification were described previously (36). The proto-
cols for generating and purifying WNV E proteins and mutants (QUAD
and W101R) were described previously (32, 37).

Cells. Vero cells (American Type Culture Collection; CCL-81) were
maintained in Dulbecco’s modified Eagle’s medium (DMEM). The
U937�DC-SIGN cell line (33, 38) was maintained in RPMI 1640 (In-
vitrogen) supplemented with 50 �M beta-mercaptoethanol. This human
monocyte lymphoma cell line was derived from U937 cells but also ex-
presses ectopically dendritic cell-specific intercellular adhesion molecule-
3-grabbing nonintegrin (DC-SIGN). All media used also were supple-
mented with 5% fetal bovine serum (FBS), 100 U/ml penicillin,
100 mg/ml streptomycin, 0.1 mM nonessential amino acids (Invitrogen),
and 2 mM glutamine, and all cells were incubated in the presence of 5%
CO2 at 37°C, unless otherwise specified. The 5% FBS was reduced to 2% to
make infection medium for each cell line.

Generation of human hybridomas. Cryopreserved PBMC samples
were thawed rapidly in a 37°C water bath and washed prior to transfor-
mation with Epstein-Barr virus as described previously (15). Cultures
were incubated at 37°C with 5% CO2 for 10 days, prior to screening for
antigen-specific cell lines with ELISA. Cells from wells with supernatants
reacting in DENV-specific ELISA then were expanded prior to screening
by flow cytometric neutralization assay and cytofusion with HMMA2.5
nonsecreting myeloma cells, as previously described (13). Following cyto-
fusion, hybridomas were selected by growth in hypoxanthine-
aminopterin-thymidine (HAT) medium containing ouabain and biolog-
ically cloned.

Human MAb production and purification. Wells containing hybrid-
omas producing DENV-specific antibodies were cloned by three rounds
of limiting dilution plating or by use of a ClonePix device (Molecular
Devices) per manufacturer’s recommendations. Once clonality was
achieved, each hybridoma was expanded until 50% confluent in 75-cm2

flasks. For antibody expression, the cells in 75-cm2 flasks were collected
with a cell scraper; the hybridomas were washed in serum-free medium
(Gibco Hybridoma-SFM from Invitrogen; catalog no. 12045084) and split
equally among four 225-cm2 flasks (Corning; catalog no. 431082) con-
taining 250 ml serum-free medium. Flasks were incubated for 21 days
before medium was clarified by centrifugation and 0.2-�m sterile filtered.
Antibodies were purified from clarified medium by protein G chromatog-
raphy (GE Life Sciences; protein G HP columns).

Murine MAbs to DENV or WNV E protein. We used purified IgG for
six previously isolated WNV-specific murine MAbs that cross-reacted
with DENV (clones WNV E18, WNV E28, WNV E60, WNV E86, WNV
E106, and WNV E119) (33) and two DENV-specific murine MAbs (clones
DV2-29 and DV2-52) (33) for mapping studies.

Virus and recombinant protein ELISA. For virus capture ELISA, pu-
rified mouse MAb 4G2, prepared in carbonate binding buffer, was used to
coat ELISA plates (Nunc; catalog no. 242757) and incubated at 4°C over-
night. After blocking for 1 h, plates were washed five times with
phosphate-buffered saline (PBS) and 50 �l of DENV-containing culture
supernatant from infected C6/36 cell culture monolayers was added.
Plates then were washed 10 times with PBS, and 5 �l of purified human
monoclonal antibody (1 �g/�l) was added into 25 �l/well of blocking
buffer. Plates were incubated at room temperature for 1 h prior to washing
five times with PBS. Secondary antibody (goat anti-human Fc; Meridian
Life Science; catalog no. W99008A) was applied at a 1:5,000 dilution in
blocking solution using 25 �l/well, and plates again were incubated at
room temperature for 1 h. Following five washes with PBS, phosphatase
substrate solution (1-mg/ml phosphatase substrate in 1 M Tris amino-
methane) (Sigma; catalog no. S0942) was added at 25 �l/well, and plates
were incubated at room temperature for 2 h before reading the optical
density at 405 nm on a Bio-Tek plate reader.

For recombinant protein capture ELISA using E protein constructs,
purified mouse anti-Strep-tag II MAb (StrepMAB-Immo, IBA 2-1517-
001) prepared in carbonate binding buffer was used to coat ELISA plates
(Nunc; catalog no. 242757) and incubated at 4°C overnight. After block-
ing for 1 h, plates were washed five times with PBS and 50 �l of recombi-
nant protein construct containing culture supernatant (cultured in insect
cells) was added. Plates then were washed 10 times with PBS, and 5 �l of
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purified human monoclonal antibody (1 �g/�l) was added into 25 �l/well
of block. All other steps were performed the same as described above for
the virus capture ELISA.

Competition assays. An Octet Red instrument was used for all com-
petition studies. For recombinant E protein competitions, purified mouse
anti-Strep-tag II MAb (StrepMAB-Immo, IBA 2-1517-001) was loaded
onto anti-mouse IgG Fc Capture tips (ForteBio; catalog no. 18-5088).
Recombinant E protein from DENV2, generated previously (36), was
added. After a wash step, the first anti-dengue virus MAb was added.
Without washing, the second antibody was then added and binding was
assessed. For competition assays using crude virion, purified biotinylated
mouse anti-dengue virus prM MAb 2H2 was loaded onto streptavidin tips
(ForteBio; catalog no. 18-5019). Crude DENV1 WestPac-74 was prepared
by centrifuging 250 ml of sterile filtered supernatant from infected C6/36
cell culture monolayers at 10,000 RPM for 12 h. The pellet containing
crude virion particles was then suspended in 5 ml PBS and used for cap-
ture to MAb 2H2 on biosensor tips. After a washing step, the first anti-
dengue virus MAb was added, followed immediately by the second to
assess binding interference. The antibodies were judged to compete for
the same site if maximum binding of the second antibody was reduced to
�25% of its binding in the absence of the first antibody. No competition
was achieved if maximum binding of the second antibody was �75% of its
binding in the absence of the first antibody.

DENV Western blotting. Crude DENV, prepared as described for
competition assays, was loaded into a 4 to 12% SDS-PAGE gel run under
denaturing nonreducing conditions. After transfer, nitrocellulose mem-
brane was then probed with the purified human MAb in question (diluted
1:1,000) for 1 h at 37°C. The membrane was washed with 3� PBST and
incubated with goat anti-human Fc-alkaline phosphatase (AP) secondary
antibody (Meridian Life Science; catalog no. W99008A) for 1 h at 37°C
prior to washing and development using 5-bromo-4-chloro-3-indolyl-
phosphate–nitroblue tetrazolium (BCIP-NBT) chromogenic substrate
(Invitrogen; catalog no. WP20001).

Neutralization assay. The neutralizing potency of MAbs was mea-
sured using a flow cytometry-based neutralization assay with the U937
human monocytic cell line stably transfected with DC-SIGN or on Vero
cells, as previously described (38, 39).

Temperature-dependent in vitro neutralization assays. Focus re-
duction neutralization titer (FRNT) assays were performed with the dif-
ferent DENV strains and MAbs on Vero cells. Purified MAbs were mixed
with 100 focus-forming units (FFU) of different DENV strains (DENV2,
NGC; DENV4, 1036) for 1 h at 37 or 40°C. Subsequently, virus-MAb
mixtures were added to Vero cell culture monolayers for 1 h, and then a
1% carboxymethyl cellulose overlay was added. Two days later, the over-
lays were removed, and monolayers were fixed with 1% paraformalde-
hyde (PFA) (10 min at room temperature), permeabilized with 0.1% sa-
ponin in PBS, and incubated with the cross-reactive mouse WNV E60
MAb (200 ng/ml) (39). Following several washes, wells were incubated
with horseradish peroxidase-conjugated anti-mouse IgG antibody (Sig-
ma; 250 ng/ml in saponin buffer) for 1 h at room temperature. Wells were
washed, and infectious foci were visualized with TrueBlue substrate (KPL)
after a 10-minute incubation at room temperature. Wells were rinsed with
water and dried prior to analysis with a Biospot counter (Cellular Tech-
nology) using immunocapture software. Neutralization (% reduction in
spot numbers in samples preincubated with Ab compared to wells with
virus preincubation with medium alone) was calculated.

ADE assays. The ability of antibodies to enhance DENV infection was
measured using parent U937 cells that lacked expression of DC-SIGN. In
the absence of the virus attachment factor, these Fc-� receptor-bearing
cells are susceptible to infection only in the presence of DENV-specific
antibodies. The assay was performed as described in detail previously
(15). ADE activity was expressed as the percent increase of infected cells in
the DENV-specific antibody-treated sample compared to the sample
treated with a control antibody.

Shotgun mutagenesis epitope mapping. DENV3 (strain CH53489)
and DENV4 (341750 strain) prM/E expression constructs were subjected
to high-throughput mutagenesis (shotgun mutagenesis) to generate com-
prehensive mutation libraries. Point mutations were introduced into the
DENV3 prM/E polyprotein (strain CH53489) by PCR using a Diversity
mutagenesis kit (Clontech Laboratories, Inc., Mountain View, CA) or
into the DENV4 prM/E polyprotein using primers designed to mutate
each residue to alanine (alanine codons were mutated to serine). In total,
1,400 DENV3 and 660 DENV4 mutants were generated (�97% coverage
of each serotype prM/E ectodomain), their sequences were confirmed,
and they were arrayed into 384-well plates (one mutation per well). Each
of the anti-DENV antibodies was screened on the full DENV4 mutation
library containing Ala substitutions at each position, a consolidated
DENV4 library containing a subset of the most relevant E protein muta-
tions, or, as needed, a DENV3 mutation library containing random sub-
stitutions at each position. The secondary DENV3 screen was conducted
for 9 of the MAbs (1M4, 5M22, 1M7, 2C7, 1N5, 1C19, 1C18, 1K16, and
1N8). Each E protein mutant was individually transfected into human
HEK-293T cells and allowed to express for 22 h. Cells were fixed in 4%
paraformaldehyde (Electron Microscopy Sciences), and permeabilized
with 0.1% (wt/vol) saponin (Sigma-Aldrich) in PBS plus calcium and
magnesium (PBS��). Cells were stained with purified MAbs (0.1 to
0.6 �g/ml) diluted in 10% normal goat serum (NGS) (Sigma)-0.1% w/v
saponin, pH 9. The optimal primary antibody concentration was deter-
mined for each antibody using an independent immunofluorescence
titration curve against wild-type prM/E to ensure that signals were within
the linear range of detection and that signal exceeded background by at
least 5-fold. Antibodies were detected using 3.75 �g/ml Alexa Fluor 488-
conjugated secondary antibody (Jackson ImmunoResearch Laboratories)
in 10% NGS-0.1% saponin. Cells were washed three times with PBS��-
0.1% saponin followed by 2 washes in PBS. Mean cellular fluorescence was
detected using the Intellicyt high-throughput flow cytometer (HTFC; In-
tellicyt). Antibody reactivity against each mutant E protein clone was
calculated relative to wild-type E protein reactivity by subtracting the
signal from mock-transfected controls and normalizing to the signal from
wild-type E protein-transfected controls for the serotype tested. Muta-
tions within critical clones were identified as critical to the MAb epitope if
they did not support reactivity of the test MAb but did support reactivity
of other antibodies. This counterscreen strategy facilitates the exclusion of
E protein mutants that are misfolded or have an expression defect. Critical
amino acids required for antibody binding were visualized on the DENV
E protein crystal structure (40) (PDB identifier 1UZG).

Epitope mapping with WNV chimeras. For quantification of the E
protein specificity of anti-DENV MAbs, plates were coated with 10 �g/ml
of recombinant E proteins produced in Escherichia coli (wild type, the
W101R mutant, or an E-quadruple mutant [T76R M77E W101R L107R])
as described previously (32, 37). Equivalent site density was confirmed by
measuring reactivity with a humanized E16 MAb, which recognizes a
distinct epitope on the domain III lateral ridge (DIII-LR). Endpoint titers
were defined as 3 standard deviations above the background optical den-
sity at 450 nm as determined by regression analysis using the Prism pro-
gram (GraphPad software).

Epitope mapping with Saccharomyces cerevisiae yeast display li-
brary variants. Yeast cells displaying wild-type or mutant DI-DII of
DENV2 E proteins on their surface were described previously (33). Yeasts
were immunostained with 50 �l of monoclonal antibody solution (2 �g/
ml) on ice. After 30 min, yeasts were washed three times with PBS con-
taining 1 mg/ml of bovine serum albumin (BSA). Yeasts then were incu-
bated with a goat anti-mouse secondary antibody conjugated to Alexa
Fluor 647 (Molecular Probes) for another 30 min. After fixation in 1%
paraformaldehyde (PFA) in PBS, yeasts were analyzed on a Becton-
Dickinson BD-FACSArray flow cytometer. Values shown in the data ta-
bles were obtained by dividing the total fluorescence product (percent
positive population � mean linear fluorescence intensity) of a mutant for
each individual antibody by the total fluorescence product of the same
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mutant stained with a control antibody (DV2-51) (non-FL binding) �
100.

Murine studies of the protective effect of human MAb 1C19 or 1N5
treatment on viremia after challenge. The murine studies were carried
out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health.
All procedures were approved and conducted according to UC Berkeley
Animal Care and Use Committee guidelines (protocol R252-1013B). All
viruses used in the animal studies were propagated in C6/36 cells as pre-
viously described (41) and concentrated by centrifugation using 100,000-
molecular-weight-cutoff (MWCO) Amicon filters (Millipore). Titration
of animal inoculation stocks was performed using a plaque assay on baby
hamster kidney cells (BHK21, clone 15) as described previously (42). All
procedures were approved and conducted according to UC Berkeley An-
imal Care and Use Committee guidelines. AG129 mice (129/Sv mice de-
ficient in both alpha/beta and gamma interferon receptors) (43) were
administered 20, 50, or 100 �g of MAb 1N5 or 1C19 or 50 �g of an isotype
control (IgG1) intraperitoneally (i.p.) in a total volume of 200 �l, 24 h
prior to DENV inoculation. A sublethal dose of DENV1 strain
WestPac-74 (5 � 106 PFU) or 103 PFU of DENV2 strain D2S10 was ad-
ministered intravenously (i.v.) in a total volume of 100 �l. On the third
day after virus inoculation, mice were euthanized and serum was obtained
from whole blood by centrifugation and stored at �80°C prior to analysis.
The viral load in serum was determined by quantitative reverse
transcription-PCR (RT-PCR). RNA was extracted from 20 �l of serum
using the QIAamp viral RNA minikit (Qiagen), per the manufacturer’s
instructions. The ABI Prism Sequence Detection System 7300 was used to
perform quantitative RT-PCR (qRT-PCR). Viral copy number was deter-
mined using previously published primers and probe sequences (44) and
the Verso 1-Step qRT-PCR kit as follows: 2 �l RNA sample, 1� 1-step
qPCR mix, 1 �M forward and reverse DENV1 or -2 primers, 0.1 �M
DENV1 or -2 probe, and Verso enzyme mix (1� final reaction volume).
The cycling parameters were as follows: 1 cycle of reverse transcription
(30 min at 50°C), 1 cycle of Thermo-Start activation (12.5 min at 95°C),
and 40 cycles of denaturation (15 s at 95°C) and annealing-extension
(1 min at 60°C). Serum viral load was determined according to the fol-
lowing equation: genome equivalents (GE)/ml � (mean quantity/2 �l)
(RNA extraction elution volume/volume of serum per RNA extraction)
(1,000 �l/1 ml). Each DENV1 or -2 plate was run using a 10-point stan-
dard curve. The limit of detection (LOD) was based on the lowest DENV1
standard detection limit. Statistical analysis was performed using Stata
software (Stata statistical software, release 12; StataCorp LP, College Sta-
tion, TX, 2011) and a two-tailed Wilcoxon rank-sum test.
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