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CXCR4  C-X-C chemokine receptor type 4
kB1  Kalata B1
cGAMP  Cyclic 2’,30’ -GMP-AMP
BPI  Bactericidal/permeability-increasing 

protein
TL  Temporin L
CoVs  Coronaviruses
HD5  Human defensin 5
PEG  Polyethylene glycol
HPG  Hyperbranched polyglycerol

Introduction

Antimicrobial peptides (AMPs) are naturally occurring 
molecules that are part of the innate immunity of virtually 
all organisms. Their broad-spectrum activity against bacte-
ria, fungi and viruses plays a critical role in defense against 
invading microorganisms (Ageitos et al. 2017). The main 
mechanisms of action of AMPs for bacterial inhibition are 
divided into four main categories (Lei et al. 2019; Li et al. 
2022; Luo Y et al. 2021; Patel et al. 2017) (Fig. 1). Compared 
to conventional antibiotics, AMPs are small, amphiphilic 
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Abstract
Antimicrobial peptides (AMPs) have broad-spectrum antimicrobial activity, enabling them to rapidly detect and eliminate 
targets. In addition, many AMPs are natural peptides, making them promising candidates for therapeutic drugs. This 
review discusses the basic properties and mechanisms of action of AMPs, highlighting their ability to disrupt microbial 
membranes and modulate host immune responses. It also reviews the current state of research into using AMPs against 
various viral infections, focusing on their therapeutic potential against viruses that contribute to the global health crisis. 
Despite promising developments, therapies based on AMPs still face challenges such as stability, toxicity, and produc-
tion costs. In this text, we will discuss these challenges and the latest technological advances aimed at overcoming them. 
The	 combination	 of	 nanotechnology	 and	 bioengineering	 approaches	 offers	 new	ways	 to	 enhance	 the	 delivery,	 efficacy,	
and safety of AMPs. We emphasize the importance of further research to fully exploit the potential of AMPs in antiviral 
therapy, advocating a multifaceted approach that includes optimizing clinical use and exploring synergies with existing 
antiviral drugs.
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and	 cationic,	 and	 exert	 their	 antimicrobial	 effects	 by	 dis-
rupting microbial membranes, making microorganisms less 
likely to develop resistance, unlike antibiotics that target cel-
lular activity (e.g., synthesis of proteins, DNA, or cell walls) 
(Pimchan et al. 2023; Saini et al. 2022). Currently, the main 
focus of AMPs research is on antimicrobial activity against 
a wide range of bacteria, fungi, and viruses, exploring their 
potential as alternatives to antibiotics in response to rising 
antibiotic resistance (Arasu et al. 2023).

The exploration of AMPs in antiviral therapy is urgent 
due to the global challenges posed by infections with mul-
tiple	 viral	 variants.	 Viruses	 such	 as	 Human	 immunodefi-
ciency	virus	 (HIV),	 influenza	and	coronaviruses	have	had	
a	significant	impact	on	global	public	health,	economy	and	
society. In particular, the COVID-19 pandemic has high-
lighted the urgent need for multifunctional antiviral drugs 
capable of prevention and treatment of emerging viral threats 

(Kolanthai et al. 2022). Although vaccination is the most 
effective	method	of	prevention	of	viral	infections,	the	evo-
lution	of	epidemics	and	differences	between	available	vac-
cines	can	limit	its	effectiveness	(Wang	et	al.	2022). AMPs 
offer	a	promising	alternative	due	to	their	unique	mechanism	
of action, which includes direct neutralization of viruses and 
modulation of host immune responses. Exploring AMPs in 
an antiviral context is not only critical to address current 
treatment gaps, but also to prevent future viral outbreaks.

Based on recent advances in AMPs research, this review 
aims to elucidate the potential of antimicrobial peptide 
antivirals, with a particular focus on their use against HIV, 
influenza	 viruses	 and	 coronaviruses,	 and	 to	 highlight	 the	
exploitation	 of	 the	 direct	 antiviral	 effects	 of	 AMPs	 and	
their immunomodulatory properties. Through this focused 
exploration, we contribute to ongoing innovative antiviral 

Fig. 1 Main mechanism of action of AMPs for bacterial inhibition 
Once bound to the membrane, AMPs can form pores or translocate 
across the membrane to release or translocate major intracellular 
components, leading to bacterial cell death, modes of action include 
concave cylinder, ring pore, and carpet modes. Some antimicrobial 
peptides	exert	antimicrobial	effects	by	affecting	the	synthesis	of	cell	

wall components and disrupting cell wall structure. Some antimicro-
bial peptides enter cells by direct penetration or endocytosis, and exert 
antimicrobial	 effects	 by	 targeting	 the	 nucleus,	 organelles,	 proteins	
present in fungi or intracellular proteins. Alternatively, they block 
nucleic acid synthesis, protein synthesis or enzyme activity to exert 
antimicrobial	effects
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strategies and advocate for the integration of AMPs into the 
wider antiviral disease repertoire.

Basic properties and mechanism of action of 
AMPs

AMPs are short chains of amino acids, typically 10 to 50 
units, with a net positive charge of at least + 2 (usually 
between + 3 and + 5) and are amphiphilic. AMPs exhibit 
diverse functions on host cells, resulting in a wide range 
of antimicrobial activities (Liu et al. 2023). As of January 
2024, the Antimicrobial Peptide Database (APD) contains 
3940 peptides (Fig. 2).	AMPs	have	been	classified	in	a	vari-
ety	of	ways,	based	on	structure,	including	(i)	α-helical,	(ii)	
β-sheets	(at	least	two),	(iii)	αβ,	and	(iv)	non-αβ	(Bin	Hafeez	
et al. 2021). Based on amino acid composition and struc-
tural	 features,	 they	 can	 be	 classified	 into	 four	 subclasses,	
including	(i)	linear	peptides	forming	an	α	-helix	and	lacking	
cysteine residues segments (e.g., aspergillus and housewife 
AMPs, etc.), (ii) peptides containing cysteine residues with 
internal	disulfide	bridges	 (e.g.,	 defensin	and	drosomycin),	
(iii) peptides with an overrepresentation of proline resi-
dues (e.g., apidaecin, drosocin and lebocin), (iv) peptides 
with an overrepresentation of glycine residues (e.g., attacin 
and gloverin) (Li et al. 2024). The existence of AMPs and 
their	role	in	innate	immunity,	the	host’s	first	line	of	defense	
against pathogens, provides an opportunity to use them as a 
class of antibiotics (Talapko et al. 2022).

The	 antimicrobial	 effects	 of	AMPs	 are	 mainly	 due	 to	
their capacity to disrupt bacterial cell membranes. This 
interaction is facilitated by the electrostatic attraction 
between positively charged AMPs and negatively charged 
components of the bacterial membrane, such as lipopoly-
saccharides in Gram-negative bacteria and lipoteichoic acid 
in Gram-positive bacteria (Chakraborty et al. 2022). Sev-
eral models have been proposed to explain the membrane 
cleavage mechanism of the antimicrobial action of AMPs. 
The barrel-stave model emphasizes the ability of the pep-
tide	to	insert	and	diffuse	laterally	through	the	lipid	bilayer,	
arranging itself into a helix and forming a barrel-like chan-
nel across the membrane. The toroidal-pore model reveals 
that peptide molecules rotate and insert into the membrane 
bilayer, causing rapid changes in membrane conformation 
and generating ring pores. However, the carpet model elab-
orates that peptides parallel to the membrane surface form 
a “carpet” that, at certain peptide concentrations, disrupts 
the membrane bilayer structure in a detergent-like manner, 
leading to micelle formation (Wu et al. 2018). These modes 
of action distinguish AMPs from conventional antibiotics 
and	 offer	 a	 potential	 solution	 to	 the	 growing	 problem	 of	
antibiotic resistance by reducing the likelihood of resistance 
developing due to physical disruption of cell membranes 
(Zhang et al. 2022).

Recent studies have shown that AMPs have the ability to 
link the innate and adaptive immune systems and regulate 
the	magnitude	of	the	immune	response	to	ward	off	infection,	
modulate	inflammation,	and	influence	immune	homeostasis,	
including leukocyte recruitment, chemotactic stimulation, 

Fig. 2	 Classification	of	antimicrobial	peptides	according	to	function	The	APD3	database	is	a	manually	organized	collection	of	3146	AMPs	from	
six living communities containing a total of 3940 peptides based on a set of data collection criteria
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resistance and the negative impact of antibiotics on the host 
microbiota.

The mechanism of action by which AMPs exert antiviral 
activity may be (i) blocking of the early steps of viral entry 
through surface carbohydrate interactions; (ii) blocking of 
viral adsorption or penetration of host cells through interac-
tions	with	specific	cellular	 receptors	 (Fig.	3); (iii) interac-
tion and inactivation of viral envelope glycoproteins; (iv) 
modulation of host cell antiviral responses; (v) blocking of 
the intracellular expression of viral genes and/or production 
of viral proteins (Feng et al. 2020; Gudima et al. 2023; Lee 
et al. 2022; Luo et al. 2021). It was found that disruption of 
the viral vesicle membrane by AMPs such as LL-37, MXB-
5, and MXB-9 can directly inactivate HSV-1 extracellularly, 
preventing binding to and infection of host cells (Diamond 
et al. 2021). StPIP1 triggers the plant defense response 
against potato Y virus (PVY) by inducing the production of 
ROS, and the expression of defense-related genes (Combest 
et al. 2021).	Magainin	exhibits	an	effective	virocidal	effect	
against viruses belonging to the Herpesviridae family all 
showed	effective	virucidal	effects,	probably	 through	 inter-
action with viral capsid components and subsequent disrup-
tion of capsid integrity (Dean et al. 2010). This multifaceted 
approach to antiviral activity makes AMPs promising candi-
dates for the development of broad-spectrum antiviral thera-
peutics capable of addressing existing and emerging viral 
threats (Urmi et al. 2024).

pro-	 and	 anti-inflammatory	 cytokine	 induction,	 endotoxin	
neutralization,	and	activation	and	differentiation	of	immune	
cell lineages (Luo Y et al. 2021; Pinkenburg et al. 2016). 
Cathelicidins are potent microbicidal molecules for the 
control	 of	 bacterial	 infections,	 and	 exert	 different	 degrees	
of immunomodulatory functions by stimulating neutrophil 
chemotaxis, inducing reactive oxygen species production, 
and promoting the formation of extracellular traps in neu-
trophils (Dlozi et al. 2022; Xie et al. 2020). In addition, it 
can also increase the expression of TLR4 in LAD2 mast 
cells to increase the ability of mast cells to detect pathogens, 
or	promote	the	differentiation	of	monocytes	to	macrophages	
with	a	pro-inflammatory	phenotype,	decrease	the	secretion	
of interleukin-10 (IL-10) and increase the secretion of inter-
leukin-12	 (IL-12)	 in	macrophages	with	 an	 anti-inflamma-
tory phenotype (Duarte-Mata et al. 2023). IDR-1002 limits 
the	release	of	pro-inflammatory	cytokines	and	has	a	better	
preventive	effect	against	Pseudomonas	aeruginosa-induced	
toxicity,	 but	does	not	 affect	 the	number	of	bacteria	 in	 the	
alginate model (Wuerth et al. 2017). Similarly, BCCY-1 does 
not	have	direct	 antibacterial	 effects	 in	vitro,	but	promotes	
monocyte/macrophage recruitment to the site of infection 
and protects mice from pathogen-induced lethal infections 
(Cai et al. 2021).	These	immunomodulatory	effects	prompt	
the host immune system to respond to microbial infections, 
thereby limiting the potential development of antimicrobial 

Fig. 3 Main mechanism of action 
of antimicrobial peptides (AMPs) 
to inhibit viruses The mecha-
nism of action of AMPs covers 
almost all stages of the entire 
viral life cycle: viral particle 
inhibition; adsorption; viral entry; 
endosomal escape; viral capsid 
deconjugation; transcription and 
translation of the viral genome, 
and release of mature viral 
particles
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assessed	 by	 cell	 viability	 assays,	 demonstrated	 significant	
anti-HIV-1 activity, however, further mechanisms for inhib-
iting viral entry have not been well characterized (Sukma-
rini 2022).

Recent studies and case reports have highlighted the 
therapeutic	potential	of	anti-HIV	antibodies,	showing	effi-
cacy in both in vitro and in vivo models. PAC-113 has com-
pleted Phase II clinical trials to determine the optimal dose 
of PAC-113 for oral mouthwash for oral candidiasis in HIV 
carriers (Greber et al. 2017). Sifuvirtide is currently under-
going Phase III clinical trials. Two clinical studies are evalu-
ating	the	efficacy	of	the	drug	when	administered	at	20	mg	
once daily, compared to 90 mg of enfuvirtide administered 
twice daily (Cao et al. 2017; Freitas et al. 2022). Clinical 
trials and experimental therapies are currently investigat-
ing	the	safety,	effectiveness,	and	optimal	administration	of	
AMP-based	 treatments.	 Preliminary	 findings	 indicate	 that	
they hold promise as a component of a combination therapy 
regimen (Madanchi et al. 2020).	These	 advances	 confirm	
the	role	of	AMPs	in	the	fight	against	HIV	and	pave	the	way	
for future research to harness their therapeutic potential, 
offering	 hope	 for	more	 effective	 and	 comprehensive	HIV	
treatment strategies. However, the therapeutic potential of 
AMPs in the treatment of HIV still needs to be further con-
firmed	by	clinical	trials.

AMPs in anti-influenza virus therapy

Influenza	viruses	 are	 a	 leading	cause	of	 respiratory	 infec-
tions	globally,	resulting	in	significant	morbidity	and	mortal-
ity annually. These RNA viruses have high mutation rates 
and can evade the immune system, leading to seasonal epi-
demics and occasional pandemics with severe public health 
consequences (Hutchinson 2018). Vaccination has reduced 
the number of people with the disease and slowed the spread 
of the virus. However, the genetic instability of the virus 
complicates vaccine development and antiviral therapy (Ye 
et al. 2020).

Efforts	have	been	made	 to	develop	new	antiviral	drugs	
against	influenza	A	virus	(IAV),	as	many	of	the	current	drugs	
used for treatment, including neuraminidase inhibitors and 
adamantanes,	do	not	effectively	minimize	the	risk	of	adverse	
effects	(De	Clercq	2013). AMPs have shown considerable 
promise as novel antiviral drugs. The mechanisms of action 
of antiviral drugs involve direct interaction with the virus, 
which can disrupt the viral envelope or capsid. Addition-
ally, these drugs can modulate the host immune response to 
enhance	 antiviral	 defense.	 For	 instance,	 Flufirvitide	 inter-
feres with viral invasion and modulates the immune system 
by	 activating	 the	 production	 of	 anti-inflammatory	 cyto-
kines and chemokines, increasing neutrophil activity, and 

AMPs in anti-HIV therapy

Human	 immunodeficiency	 virus	 (HIV)	 remains	 a	 major	
global health challenge, with the pandemic concentrated in 
sub-Saharan Africa, where approximately 26 million peo-
ple are infected (Okano et al. 2020). The pathogenic pro-
cess involves rapid viral replication and weakening of the 
host immune system, primarily through destruction of host 
CD4 + immune cells. The compromised immune system, 
due to depletion of key immune cells, leads to increased 
morbidity	 and	may	 increase	 the	 risk	 of	 death	 in	 affected	
hosts (Dlozi et al. 2022).	 Despite	 significant	 advances	 in	
antiretroviral therapy (ART), issues of resistance, side 
effects,	 and	accessibility	continue	 to	complicate	 treatment	
efforts	 (Parikh	 et	 al.	 2017). To address these challenges, 
AMPs have emerged as potential drug candidates due to 
novel mechanisms of action and low drug resistance (Brakel 
et al. 2023), aiming to complement existing treatments and 
address unmet medical needs in HIV management.

AMPs exhibit a range of inhibitory mechanisms against 
HIV that span the viral life cycle, from entry to replication 
to eventual release from the host cell (Lee et al. 2022). A cat-
ionic 18-amino acid peptide, which crosses cell membranes 
into	the	cytoplasm	and	nucleus,	acts	and	affects	the	produc-
tion and maturation phases of HIV-1 virus, inhibiting the 
production of both HIV-1 strains in human cell lines (Samu-
els et al. 2017). GRFT blocks the binding of CD4-dependent 
glycoprotein (gp) 120 to receptor-expressing cells and binds 
to viral capsid glycoproteins (e.g., gp120, gp41, and gp160) 
in a glycosylation-dependent manner. (e.g., gp120, gp41, 
and gp160) to prevent HIV entry into the cell, blocking its 
interaction with CD4 receptors, CCR5-tropic, and CXCR4 
on the host cell surface (Lee 2019; Pimchan et al. 2023). 
Alternatively, by interfering with the fusion process between 
the virus and the host cell membrane, which is a key step 
in antiviral resistance. Kalata B1 was found to inhibit HIV 
infection by rapidly covering a small surface area of the 
viral membrane (Nawae et al. 2017). Certain AMPs can also 
inhibit HIV replication by targeting viral reverse transcrip-
tases or integrases, which are required for the integration of 
viral	DNA	into	the	host	genome.	For	example,	α-defensins,	
in addition to this, can inactivate the virus by direct inacti-
vation, emphasizing the existence of at least a dual mecha-
nism for this peptide in its anti-HIV activity (Madanchi et 
al. 2020).	 Surprisingly,	 LL-37	 delivers	 specifically	 bound	
cGAMP to target cells, and the transferred cGAMP activates 
a robust interferon response and host antiviral immunity in a 
STING-dependent manner (Wei et al. 2022). These mecha-
nisms highlight the potential for AMPs to act at multiple 
stages of the HIV life cycle, providing a multifaceted ther-
apeutic approach that could reduce the likelihood of drug 
resistance development. Stellettapeptines antiviral activity, 
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research is needed as a supplement or alternative to conven-
tional antiviral therapy.

AMPs in anti-coronaviral therapy

Coronaviruses are encapsidated positive-sense RNA viruses 
that	have	been	identified	as	important	pathogens	in	humans	
and animals, causing diseases ranging from the common 
cold to severe respiratory syndrome (Wang et al. 2020). 
Notably, three major outbreaks caused by coronaviruses 
have occurred in the 21st century: SARS (Severe Acute 
Respiratory Syndrome) in 2003, MERS (Middle East Respi-
ratory Syndrome) in 2012, and the ongoing global pandemic 
caused by SARS-CoV-2 (COVID-19) that began in 2019. 
These viruses bind their S-glycoprotein (S1 & S2) to the 
cellular receptor, which leads to cell penetration and disas-
sembly of the viral capsid, releasing the viral RNA genome 
(Loffredo	et	al.	2024; Millet et al. 2016; Solanki et al. 2021). 
Studies have shown that mutations altering the SARS-
CoV-2	 antigenic	 phenotype	 are	 circulating	 and	 affecting	
immune recognition to some extent, which, together with 
their potential for cross-species transmission, poses a major 
challenge	to	the	development	of	effective	vaccines	and	ther-
apies, highlighting the urgent need for innovative therapeu-
tic strategies (Harvey et al. 2021).

Currently,	 there	 is	 no	 specific	 antiviral	 drug	 or	 univer-
sal vaccine against coronaviruses internationally (Tang et 
al. 2020), and AMPs are potential therapies against coro-
naviruses due to their broad-spectrum antiviral properties 
and	mechanisms	of	action	 that	are	different	 from	those	of	
traditional antiviral drugs. It has been shown that AMPs can 
disrupt the viral envelope and interfere with the entry of 
coronaviruses into host cells (Huan et al. 2020). A lipopep-
tide, EK1C4, was the most potent fusion inhibitor against 
SARS-CoV-2 S-protein-mediated membrane fusion and 
pseudoviral	infection,	with	greater	therapeutic	efficacy	than	
the	original	EK1	peptide,	a	finding	that	was	validated	in	a	
mouse model (Rani et al. 2022; Xia et al. 2020). Alterna-
tively, some peptides have been found to have a dual func-
tion of directly targeting the virus while also modulating the 
immune	response	 to	 reduce	 inflammation	and	 lung	 injury.	
Defensins, in addition to inhibiting viral infection during 
SARS-CoV-2	entry	into	the	cell,	also	exhibit	anti-inflamma-
tory activity, recruiting and activating T cells and myeloid 
lineage cells such as monocytes and dendritic cells (Xu et 
al. 2021). HD5 is associated with angiotensin Converting 
enzyme 2 (ACE2) ligand-binding domain (LBD), thereby 
reducing viral load into the cell, activating adaptive immune 
antigen-presenting phagocytes, and interfering with the 
nuclear enzymes that prevent viral cell replication (Solanki 
et al. 2021). In addition to this, lactoferrin also prevents 

enhancing phagocytosis by macrophages (Skalickova et al. 
2015). Esculentin-1GN and urumins, which bind to hem-
agglutinins	on	 the	surface	of	 influenza	viruses	and	 inhibit	
the ability of the virus to attach and enter host cells (Suk-
marini 2022; Vineeth Kumar et al. 2018; Yang et al. 2021). 
In addition, when combined with existing antiviral agents, 
they can induce a protective immune response, produce 
antiviral	 cytokines,	 and	 inhibit	 the	 production	 of	 inflam-
matory mediators, which can help to control viral transmis-
sion and infection, e.g., Temporin G and alloferon (Appiah 
et al. 2024; De Angelis et al. 2021). It was demonstrated 
that LL-37 interacts with the viral capsid to form oligo-
mers,	leading	to	the	production	of	a	fibrillar	super	molecu-
lar structure that exhibits a circular pore model, where the 
peptide further assembles into a transmembrane pore and 
leads to destabilization of the viral membrane or improves 
the	therapeutic	efficacy	in	IAV	infected	mice	by	inhibiting	
viral	replication	and	decreasing	the	production	of	inflamma-
tory cytokines (Mousavi Maleki et al. 2021). Preliminary 
evidence suggests that caerin 1 inhibits HIV transmission 
in vitro and inhibits the transfer of viral particles from den-
dritic cells to T-cells with low toxicity to T-cells and cervi-
cal epithelial cell lines (Rollins-Smith et al. 2020). These 
multifaceted	 effects	make	AMPs	 attractive	 candidates	 for	
the	development	of	new	influenza	therapies	that	may	be	less	
susceptible	to	drug	resistance	and	more	effective	against	dif-
ferent viral subtypes (Hsieh et al. 2016).

Research	on	the	use	of	AMPs	in	anti-influenza	virus	ther-
apy has been advancing, with several case studies and clini-
cal trials highlighting their potential. A 27 aa peptide from 
the N-terminal part of human bactericidal/permeability-
increasing protein (BPI) interferes with the viral envelope 
and inhibits the infectivity of several IAV strains (H1N1, 
H3N2, and H5N1), in contrast to the homologous mouse 
BPI peptide, which showed no activity against IAV (Pinken-
burg et al. 2016). TL was screened as the best candidate 
peptide, and TL derivatives and their analogs exhibited sig-
nificant	inhibitory	activity	against	herpesviruses,	paramyxo-
viruses,	 influenza	 viruses,	 and	 coronaviruses,	 including	
SARS-CoV-2.	significant	inhibitory	activity.	In	addition,	the	
lower	cytotoxicity	and	better	antiviral	effects	were	further	
demonstrated	by	lipidation	modifications	that	promoted	the	
insertion of the peptide in lipid membranes and/or induced 
self-organizing micelles (Zannella et al. 2022). In animal 
models	infected	with	influenza	strains,	specific	AMPs	were	
efficacious	 in	 reducing	viral	 load	 and	 improving	 survival.	
Lactoferrin	was	found	to	be	anti-inflammatory	and	attenuate	
intestinal damage, thereby modulating the immune response 
induced	 by	 influenza	 infection,	 as	 demonstrated	 by	 stud-
ies in H5N1-infected mice (Huang et al. 2023). While the 
results of these studies are encouraging, progress in clini-
cal trials is still in the early stages and, therefore, in-depth 
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accessibility and feasibility as therapeutic agents, only a few 
candidate	peptides	have	shown	efficacy	in	clinical	trials	so	
far (Sultana et al. 2021; You et al. 2023). These challenges 
require continued research to optimize the stability, safety, 
and	cost-effectiveness	of	AMPs	to	ensure	that	they	can	be	a	
viable option for antiviral therapy.

The application of nanotechnology shows great promise 
in enhancing the delivery and stability of AMPs (Guerra et 
al. 2024). Nano-formulations of AMPs may include, but are 
not limited to, liposomes, micelles, polymeric nanoparticles 
or lipid nanoparticles or lipid-polymer nanoparticles, which 
can be used to minimize toxicity and improve therapeu-
tic	efficacy	by	packaging	peptides,	protecting	AMPs	from	
enzymatic degradation, improving their bioavailability, and 
facilitating targeted delivery to the site of infection (Faya et 
al. 2020; Tang et al. 2021). A small number of studies have 
examined the nanoparticle encapsulation and therapeutic 
activity of AMPs. Nisin: CMC nanoparticles prolonged 
the antimicrobial activity of nisin and inhibited S. aureus 
proliferation. In addition, this inhibition was achieved with 
only a tenfold lower concentration of nisin than currently 
used (Çelen et al. 2023). Formulating liposomes by thin 
film	hydration	has	the	potential	to	carry	cargo	for	intracel-
lular delivery, which could be used to enhance the activity 
and permeability of AMPs, thereby improving the treat-
ment of bacterial infections. Covalent attachment of AMPs 
to polyethylene glycol (PEG) or hyperbranched polyglyc-
erol (HPG) polymers increased the antimicrobial activity of 
73-derived peptides 2-8-fold, and all derivatives eradicated 
preformed S. aureus	biofilms	 (Kumar	et	al.	2019). DJK-5 
peptide loaded into hyaluronic acid (HA)-based octenylsuc-
cinic anhydride-crosslinked nanogels (OSA-HA) retained 
DJK-5 antimicrobial activity when the peptide-loaded 
nanogels were tested against Pseudomonas aeruginosa 
(PA) infection-induced abscesses in mice by subcutaneous 
administration. This resulted in a 4-fold reduction in cyto-
toxicity compared to the commercially available peptide, a 
finding	that	supports	the	use	of	nanogels	as	a	delivery	system	
to improve the safety of AMPs (Cesaro et al. 2023). Using 
nanomaterials not only prevents degradation of AMPs, but 
also improves their therapeutic and pharmacokinetic prop-
erties, resulting in inhibiting bacterial growth and treating 
bacterial infections. It also opens up new avenues for the 
integration of existing antiviral therapeutic regimens.

Looking ahead, research on AMPs is likely to focus on 
improving their clinical activity and fully exploiting their 
antiviral therapeutic potential, which is challenging to 
develop	effective	and	safe	antiviral	drugs	that	do	not	damage	
host cells (Mousavi Maleki et al. 2023).	This	includes	efforts	
to better understand the mechanism of action of AMPs, to 
identify	synergistic	effects	with	other	antiviral	agents,	and	
to	 further	 investigate	 their	 immunomodulatory	 effects.	As	

viral entry into host cells via ACE2 (Kell et al. 2020). Sur-
prisingly, the antiviral activity of plitidepsin was achieved 
by inhibiting a known target, eEF1A, which is an important 
host factor for viral replication, thus the peptide shows great 
potential	for	drug	repurposing	in	the	fight	against	COVID-
19 (Vishvakarma et al. 2022; White et al. 2021). AMPs 
may	synergize	with	other	drugs	to	fight	viral	infection	and	
transmission	more	 efficiently.	 Bioactive	 forms	 of	 vitamin	
D and many other compounds induce the expression of 
LL-37, which directly binds to the S1 structural domain 
of SARS-CoV-2 and masks the angiotensin-converting 
enzyme 2 (ACE2) receptor, thereby limiting SARS-CoV-2 
infection (Aloul et al. 2022). The versatility and potency of 
AMPs against various components of the coronavirus life 
cycle demonstrates a novel approach to the development of 
screened antiviral drugs, highlights their potential as part of 
a broader antiviral strategy, and will be important in real-
izing the goal of approving broad-spectrum anti-coronaviral 
drugs for human use (Kilianski et al. 2014).

In response to the COVID-19 pandemic, research on 
the application of AMPs against coronaviruses (especially 
SARS-CoV-2)	 has	 been	 intensified.	 Early	 studies	 and	 in	
vitro	experiments	have	 identified	several	AMPs	with	anti-
SARS-CoV-2 activity that inhibit viral replication and 
reduce viral load (Heydari et al. 2021; Souza et al. 2020). 
These	 findings	 provide	 the	 basis	 for	 further	 studies	 and	
clinical	 trials	 to	 evaluate	 the	 efficacy,	 safety,	 and	 optimal	
delivery of AMPs-based therapies against SARS-CoV-2 and 
other coronaviruses, which not only contribute to our under-
standing of AMPs, but also open new avenues for the devel-
opment	of	effective	therapeutic	approaches	against	current	
and future coronavirus outbreaks.

Limitations and challenges of AMPs in 
antiviral therapy

Current antiviral research, usually based on biochemical 
principles, focuses primarily on targeting one virus at a 
time, with very limited coverage of target viruses. At the 
same time, single-virus and single-target strategies are ham-
pered by the ability of many viruses to mutate rapidly, and 
altering	viral	antigenic	specificity	can	easily	produce	escape	
mutants against single-target antiviruses, making broad-
spectrum antiviral strategies more suitable for dealing with 
the increasing diversity of highly pathogenic viruses (Zan-
nella et al. 2022). AMPs, on the other hand, have been pro-
gressively studied as part of innate immunity, with unique 
mechanisms of action and relatively low rates of resistance 
induction (Table 1). However, facing the drawbacks of low 
in vivo stability, toxicity to host cells, high production cost 
and low potency in biological systems, thus limiting their 
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pose	 a	 significant	 threat	 to	global	health,	 detailed	 investi-
gation of the antiviral capabilities of AMPs, optimization 
of their clinical use and integration into existing therapeu-
tic paradigms is critical. Continued research into AMPs is 
expected to yield novel antiviral therapeutic approaches that 
may	have	a	significant	impact	on	our	ability	to	more	effec-
tively manage and control viral infections in the future.
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research continues, AMPs are expected to become an inte-
gral part of the global strategy to combat viral diseases, 
offering	the	promise	of	more	effective	and	broader-spectrum	
antiviral therapy.

Conclusion

The development of AMPs as antiviral drugs is a promising 
frontier	in	the	fight	against	viral	diseases.	This	review	high-
lights	significant	advances	in	the	understanding	of	the	mech-
anism of action of AMPs, their application against a range of 
viruses	including	HIV,	influenza	viruses	and	coronaviruses,	
and technological advances aimed at overcoming existing 
challenges in their clinical application. The potential value 
of	AMPs	in	 the	antiviral	field	 lies	 in	 their	broad-spectrum	
activity, their ability to modulate the immune system and the 
innovative	strategies	being	developed	to	improve	their	effi-
cacy and safety. Therefore, the urgency of further research 
cannot be overemphasized. As viral pathogens continue to 

Table 1 Recent research on AMPs
AMPs Mechanisms Source References
P4 Inhibition of Escherichia coli growth and CRAC motifs associated with sterol inter-

actions in bacterial membranes
Synthetic (Koksharova 

et al. 2022)
PLNC8	αβ Targeting the viral vesicle membrane Lactobacillus 

plantarum
(Omer et al. 
2022)

Hylin-a1 Targeting the viral vesicle membrane Hypsiboas 
albopunctatus

(Chianese et 
al. 2023)

Esculentin-1GN Disruption	of	cell	membranes;	inhibition	of	LPS-induced	activation	of	inflamma-
tory response pathways

Hylarana guentheri (Zeng et al. 
2018)

Brevinin-2GHk Binds to ZIKV E protein and disrupts envelope integrity Pelophylax 
nigromaculatus

(Xiong et al. 
2021)

AR-23 Inhibition	of	viral	replication;	affecting	herpesvirus	adhesion	and	entry	processes	in	
host cells

Rana tagoi (Chianese et 
al. 2022)

Melittin Interacts with cell membranes and induces pore formation, disrupting membrane 
function and triggering cell lysis

Apis mellifera (Memariani 
et al. 2020)

Lactoferrin Interacts with bacterial and viral anionic surface components; enters host cell 
nucleus	and	inhibits	pro-inflammatory	cytokine	gene	synthesis

Various secretions 
of the human body

(Koksharova 
et al. 2022)

Brevilaterin B Increased permeability or even rupture of the cytoplasmic membrane, causing loss 
of intracellular material and cell death

Brevibacillus lat-
erosporus S62-9

(Liu et al. 
2020)

Polyphemusin-I Targeting bacterial cell membranes; enhancing macrophage antimicrobial pathways Horseshoe Crab (Amiss et al. 
2021)

Teixobactin Weak binding to Lipid II in the cell membrane, blocking cell wall biosynthesis E. coli (Shcherbak et 
al. 2023)

ACP5 Induces excessive ROS production, reduces mitochondrial membrane potential; 
disrupts cell membrane integrity

Synthetic (Zou et al. 
2024)

rLvCrustinVI Binds strongly to microbial polysaccharides LPS, PGN and Glu, penetrates the 
phospholipid bilayer of bacteria, and destroys their cell membranes

LvCrustinVI (Hu et al. 
2024)

ABP Low concentration inhibits MRSA growth; high concentration disrupts MRSA 
biofilm	formation

Chicken feathers (Alahyaribeik 
et al. 2024)

Reg4 Direct binding to Pseudomonas aeruginosa cell walls for bactericidal action; 
enhancement of phagocytosis by host alveolar macrophages

cDNA library of 
ulcerative colitis

(Wan et al. 
2024)

Oreoch-1 Interference with viral entry into host cells; direct interaction with viral envelope Nile tilapia (Nastri et al. 
2024)

NZX Targets cell membranes, leading to perforation and morphological changes, and 
binds to intracellular DNA

Plectasin mutant (Zheng et al. 
2024)
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