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Abstract: Evidence shows time-of-day of energy intake are associated with health outcomes; however,
studies of time-of-day energy patterns and their health implication are still lacking in the Asian
population. This study aims to examine the time-of-day energy intake pattern of Chinese adults
and to examine its associations with nutrient intakes, diet quality, and insulin resistance. Dietary
data from three 24-h recalls collected during the 2015 China Health and Nutrition Survey (CHNS)
were analyzed (n = 8726, aged ≥ 18 years). Time-of-day energy intake patterns were determined by
latent class analysis (LCA). General Linear Models and Multilevel Mixed-effects Logistic Regression
Models were applied to investigate the associations between latent time-of-day energy intake patterns,
energy-adjusted nutrient intakes, diet quality score, and insulin resistance. Three time-of-day energy
intake patterns were identified. Participants in the “Evening dominant pattern” were younger, had
higher proportions of alcohol drinkers and current smokers. The “Evening dominant pattern” was
associated with higher daily energy intake and a higher percentage of energy from fat (%) (p < 0.001),
as well as higher insulin resistance risk (OR = 1.21; 95% CI: 1.05, 1.40), after adjusting for multivariate
covariates. The highest diet quality score was observed in participants with “Noon dominant pattern”
(p < 0.001). A higher proportion of energy in the later of the day was associated with insulin resistance
in free-living individuals.

Keywords: energy intake; latent class analysis; diet quality; insulin resistance

1. Introduction

There is a gradual trend in recent years toward meal timing to understand the rela-
tionships between diet and health outcomes. It is well known that the circadian rhythms of
the human body generated by the central clock located in the suprachiasmatic nucleus reg-
ulate several physiological responses, including food absorption and nutrition metabolism.
Besides, food intake also fine-tunes local peripheral clocks located in the gut, liver, and
pancreas, etc. [1–3]. A mismatch between the circadian timing system and food intake
might contribute to poor cardiometabolic health [4].

Epidemiologic evidence suggests that breakfast skipping [5,6], late dinner [7,8], and
high energy intake at night [9,10] have been linked to various indicators of cardiometabolic
diseases. However, most studies focused on isolated eating occasions, rather than the full
spectrum of eating occasions, or the time-of-day or temporal eating pattern. Accordingly,
recent analyses of the Australian National Nutrition and Physical Activity Survey (NNPAS)
identified distinct temporal eating patterns by latent class analysis [3] and further examined
the associations of latent temporal eating patterns with nutrient intake, diet quality, and
measures of adiposity [11] and hypertension [12]. These studies provide novel approaches
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to assess variation in the timing of eating occasions over the day and their potential
association with cardiometabolic factors. Yet, the question of whether there is a specific
time-of-day pattern of energy distribution in a day that is more beneficial or detrimental to
health remains unclear. Although studies [2,13,14] applying kernel k-Means Clustering
with an appropriate distance metric to NHANES data based on energy contribution, time
of dietary intake, and a number of intake occasions have identified different temporal
dietary patterns in the adult U.S. population 20 years and older, the cluster techniques used
in this study allocated subjects to clusters based on pre-determined cluster number and no
statistical tests were available in determining the optimal number of clusters. Moreover,
evidence regarding time-of-day energy intake patterns and their dietary profiles and health
implications is still lacking in the Asian population.

Insulin resistance is a major contributing factor in the pathogenesis of type 2 diabetes
mellitus (T2DM). Besides traditional approaches in the prevention and treatment of insulin
resistance, such as physical activity, food intake, and medication, circadian factors includ-
ing meal timing also regulate insulin secretion [15]. Evidence from a randomized crossover
trial [16] showed that circadian misalignment caused by shift work led to insulin resistance
in skeletal muscle. Observational studies showed that greater energy intake and carbo-
hydrate consumption earlier in the day were associated with higher insulin sensitivity in
individuals without diabetes [17]. However, it is unknown whether a specific time-of-day
energy intake pattern is related to insulin resistance in a free-living and healthy population.

This study aimed to (1) examine the time-of-day energy intake patterns in the Chinese
adult population; (2) to evaluate the sociodemographic and eating pattern profile by time-
of-day energy intake patterns; (3) to evaluate the nutrient intakes and diet quality by
time-of-day energy intake patterns; and (4) to examine the association between time-of-day
energy intake patterns and insulin resistance.

2. Materials and Methods
2.1. Study Population

The present study used data from the China Health and Nutrition Survey (CHNS).
Initiating in 1989, CHNS is an ongoing multipurpose longitudinal survey with the aim to
capture social, economic, and demographic changes that occurred in China, and to unfold
how these social and economic changes in China affect nutrition status and health-related
outcomes across the life cycle [18]. The CHNS has been completed in 11 rounds (1989,
1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011, 2015, 2018). The original survey in 1989 used
a multistage, random cluster design in eight provinces to select a stratified probability
sample. Further details regarding the CHNS are provided in the previous article [18].

This study used data from the CHNS 2015 round. The 2015 round included 7200
households within 360 communities (60 urban neighborhoods, 60 suburban neighborhoods,
60 towns, and 180 villages) across 15 diverse provinces (Heilongjiang, Liaoning, Shandong,
Henan, Hubei, Hunan, Jiangsu, Guizhou, Guangxi, Shanxi, Yunnan, Zhejiang, Chongqing,
Shanghai, and Beijing). The number of adult participants (age ≥ 18 years) was 17,193. After
excluding participants who were, during the period of gestation or lactation (n = 218), di-
agnosed with hypertension, diabetes, myocardial infarction, apoplexy, or cancer (n = 3134),
with missing important laboratory measurements (n = 4454), with missing demographic
or lifestyle information (n = 527), with missing data on diet (60), and with extreme daily
energy intake (higher than 5000 kcal/day or lower than 500 kcal/day) (n = 74); a total of
8726 participants were included in the analysis (Figure 1).
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Figure 1. Flow chart of the included study population from the China Health and Nutrition Survey (CHNS) 2015. SBP,
systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, plasma total triglycerides; HDL_C,
high-density lipoprotein cholesterol; LDL_C, low-density lipoprotein cholesterol; BMI, body mass index.

2.2. Dietary Assessment

In the CHNS, dietary data were collected during three consecutive 24 h recalls (two
weekdays and 1 weekend). Information on types and amounts of food, beverages con-
sumed at each eating occasion (EO) during the previous 24 h were collected. There were
six pre-defined EOs response options in the CHNS 24 h recall: breakfast, lunch, dinner,
morning snack, afternoon snack, and evening snack, from which participants self-reported
the type of each EO during the day. Energy intake at each EO was calculated by the
China Food Composition and was averaged across the three days of recall to obtain mean
estimates of energy intakes.

2.3. Definition of Meals and Snacks and Calculation of Proportion of Energy Intake from Meals,
Snacks, and EOs

In the present study, breakfast, lunch, and dinner were classified as Meals. Morning
snacks, afternoon snacks, and evening snacks were classified as Snacks. The proportions of
energy intake from Meals and Snacks were calculated. Because energy intake from Snacks
was relatively small in our sample (mean Snacks %EI = 3.0%, Supplementary Materials
Table S1), in this study, we further combined breakfast and morning snack as the Morning
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EO, combined lunch and afternoon snack as the Noon EO, and combined dinner and
evening snack as the Evening EO. The proportions of energy intake from Morning EO,
Noon EO, and Evening EO were calculated and further categorized as: proportion of total
energy intake = 0%; proportion of total energy intake <33.3%; proportion of total energy
intake ≥33.3%.

2.4. Time-of-Day Energy Intake Patterns

Time-of-day energy intake patterns were determined using latent class analysis (LCA).
Latent classes of time-of-day energy intake patterns were identified based on the catego-
rization of proportion of total energy intake from Morning EO, Noon EO, and Evening EO.

2.5. Diet Quality

Overall diet quality was assessed by using the China Dietary Guidelines Index for
Chinese adults (CDGI (2019)-A) according to Chinese Dietary Guidelines 2016. The CDGI
(2019)-A has been described in detail previously [19]. Briefly, CDGI (2019)-A score is the
sum of thirteen food-related components and one nutrient-related component, each scored
5 or 10 points, reflecting compliance for meeting the Chinese Dietary Guidelines 2016. The
total score range is 0–110, with higher scores indicating better diet quality.

2.6. Blood Biochemical Measurements and Insulin Resistance Assessment

Overnight fasting blood samples were collected by trained nurses and an array of
biochemical indexes were measured in a national lab in Beijing with strict quality con-
trol. Fasting plasma glucose concentration was measured by glucose oxidase-phenol and
aminophenazone (GOD-PAP, Randox Laboratories Ltd., London, UK) method. Fasting
insulin concentration was measured by ECL (Roche, Ltd., Basel, Switzerland). Plasma total
triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL_C),
and low-density lipoprotein cholesterol (LDL_C) were measured by cholesterol oxidase-
phenol and aminophenazone (CHOD-PAP, Kyowa Medex Co., Ltd., Tokyo, Japan) method.
Insulin resistance was assessed by the homeostasis model (HOMA-IR) as [fasting glucose
(mmol/L) × fasting insulin (µU/mL)]/22.5 [20].

2.7. Anthropometric Measurements

Height, body weight, waist circumference (WC), and blood pressure (BP) were mea-
sured by trained health staff following standardized procedures. Height was measured
to the nearest 0.1 cm using height tape (model 206, SECA). Body weight was measured
to the nearest 0.1 kg using a body fat meter (BC601, Tanita). Body mass index (BMI) was
calculated as weight (kg)/height (m)2. WC was measured in centimeters at the midway
between the lowest rib margin and the top of the iliac crest using a SECA tape measure. BP
was measured at least three times using a standard mercury sphygmomanometer after the
participant resting for at least five minutes in a seated position. Systolic blood pressure
(SBP) was measured at the first appearance of a pulse sound (Korotkoff phase 1) and dias-
tolic blood pressure (DBP) was measured at the appearance of the pulse sound (Korotkoff
phase 5). Mean BP of three measurements was used for analysis.

2.8. Covariates

Educational level was categorized into very low (completed primary school), low
(completed middle school), medium (completed high school), and high (completed col-
lege). Geographic region was categorized as city, suburban, town or county, and rural
village. Total physical activity including occupational, household chore, leisure time, and
transportation activities was calculated into a metabolic equivalent of task (MET) per week
based on the Compendium of Physical Activities [21]. Physical activity was categorized
into low, middle, and high according to the tertiles of the total MET hours per week. Sleep
duration was categorized into less than 6 h, 6–8 h, and more than 8 h. Smoking status was
classified as non-smoker, ex-smoker, and current smoker. Alcohol drinking was classified
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into five groups: non-drinker, drink less than 1 time/month, drink 1–2 times/month, drink
1–4 times/week, and drink every day. Two household-level covariates are considered:
Per capita household income in 2015 was calculated and categorized into low, medium,
and high. Community urbanicity index was calculated based on 12 multidimensional
components including physical, social, cultural, and economic environment of the commu-
nity [22]. Moreover, BMI, WC, SBP, DBP, TG, TC, HDL_C, LDL_C were also considered as
potential confounders.

2.9. Statistical Analysis
2.9.1. Latent Classes of Time-of-Day Energy Intake Patterns

Latent Class Analysis (LCA) was carried out to identify distinct time-of-day energy
intake patterns for adults. LCA is a method in the family of statistical approaches called
finite mixture modeling, allowing identification of unobserved heterogeneity in multiple
categorical response variables [23]. For this study, multiple categorical variables indicating
whether or not an EO providing no energy intake, 0~33.3% or ≥33.3% of the total energy
intake had occurred within Morning EO, Noon EO, and Evening EO were generated as
the input variables for the LCA. A model with two latent classes was firstly tested and
additional classes were added until the optimal number of latent classes was identified.
The optimal latent class model was determined using information criteria-based metrics
including the Akaile information criterion (AIC), Bayesian information criterion (BIC),
adjusted Bayesian information criterion (aBIC), where smaller values indicate better model
fit. Besides, the Lo-Mendell-Rubin Likelihood Ratio test (LMR-LRT) and the Bootstrap
Likelihood ratio test (BS-LRT) were used to test whether the inclusion of an additional
profile contributed to a significantly better-fitting model (p < 0.05 was set as the α level
for nested model-fit testing). To ensure convergence on global maxima through several
replications of the best log-likelihood for each model, 10,000 random sets of starting values
with 50 final-stage optimizations were used. LCA was performed in SAS 9.4 (SAS Institute,
Inc., Cary, NC, USA).

2.9.2. Associations between Latent Classes and Sociodemographic Characteristics,
Lifestyles, Eating Pattern Profiles, and Cardiometabolic Factors

Descriptive statistics for sociodemographic characteristics, lifestyles, eating pattern
profiles, and cardiometabolic factors are presented. For continuous variables with normal
distribution, means ± standard deviation was used. For continuous variables with non-
normal distribution, median and interquartile ranges (IQR) were used. For categorical
variables, number (percentages) was used. Comparison of variables across latent classes
was also conducted. For continuous variables with normal distribution, the F test was
used to determine differences among latent classes with Bonferroni correction to account
for multiple testing. For continuous variables with non-normal distribution, Kruskal-
Wallis test was used. For categorical variables, Chi-square test was used. All analyses
were conducted in SAS 9.4 (SAS Institute, Inc., Cary, NC, USA). p < 0.05 was considered
statistically significant.

2.9.3. Associations between Latent Classes and Energy-Adjusted Nutrient Intakes and Diet
Quality Score

General Linear Models were applied to investigate the association between latent
time-of-day energy intake patterns and energy-adjusted nutrient intakes and CDGI (2019)-
A score. Nutrient residual model was used for energy adjustment. General Linear Models
were controlled for covariates including age, gender, education level, geographic region,
smoking, alcohol drinking, physical activity, household per capita income, urbanicity index,
and total energy intake. Models were checked for multicollinearity and appropriate model
fit by using regression diagnostics. All analyses were conducted in SAS 9.4 (SAS Institute,
Inc., Cary, NC, USA). p < 0.05 was considered statistically significant.
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2.9.4. Associations between Latent Classes and Insulin Resistance

A Multilevel Mixed-effects Logistic Regression Model was constructed to estimate
the association between latent time-of-day energy intake patterns and insulin resistance
estimated by HOMA-IR, taking household as the second level and individual as the first
level. The upper quartile of HOMA-IR in the whole participants (HOMA-IR ≥ 2.0) was
taken as the cut-off point to judge insulin resistance. Four models were conducted. Model
1 adjusted for no covariates. Model 2 adjusted for age (continuous), gender (categorical),
an education level (categorical), geographic region (categorical), per capita household
income (categorical), urbanicity index (continuous), physical activity (categorical), smoking
(categorical), alcohol drinking (categorical), and sleep duration (categorical). Model 3 addi-
tionally adjusted for total energy intake, and CDGI (2019)-A score. Model 4 additionally
adjusted for BMI, SBP, DBP, TC, TG, and HDL_C. All analyses were conducted in SAS 9.4
(SAS Institute, Inc., Cary, NC, USA). p < 0.05 was considered statistically significant.

3. Results
3.1. Basic Characteristics of Participants

The mean (SD) age was 50.36 (14.22) years. The numbers (percentage) of male and
female participants were 3913 (44.84%) and 4813 (55.16%), respectively. Most of the par-
ticipants completed middle school (34.44%), living in rural village (46.38%), had medium
(35.38%) or heavy (38.07%) physical activity, had normal sleep duration (79.89%), were
non-smoker (74.17%) and non-alcohol drinker (71.90%). Most of the households had low
per capita household income (58.69%) (Table S1).

3.2. Latent Classes of Time-of-Day Energy Intake Patterns

Table 1 presents model fit statistics for LCA models estimating between one and four
latent classes. Because of negative degrees of freedom in five-class solution, the five-class
model was not identified, therefore, only one to four latent class models were estimated. As
the number of estimated classes increased, the AIC, BIC, and aBIC generally decreased, with
dramatic declines occurred at the three-class solution. All entropy remained consistently
above 0.90. All the LMR-LRT indicated that the k-class model fit the data significantly
better than the (k-1)-class solution (p < 0.001). Taken together, based on model fit tests, the
goal of parsimony, and the rule of interpretability, the three-class solution was identified as
the best description of latent time-of-day energy intake pattern in the present study.

Table 1. Model fit statistics for latent class analysis of time-of-day energy intake patterns 1.

Model Fit Statistics 1 Class 2 Classes 3 Classes 4 Classes

AIC 36,053.953 33,478.537 31,640.972 31,402.251
BIC 36,096.397 33,570.743 31,782.453 31,593.250

adjusted BIC 36,077.330 33,529.431 31,718.896 31,507.449
LMR-LRT NA <0.001 <0.001 <0.001

BS-LRT NA <0.001 <0.001 <0.001
Entropy NA 1.000 0.997 0.992

1 AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; BS, Bootstrap; LMR, Lo-Mendell-Rubin;
LRT, likelihood ratio test. NA, model fit statistic is not available.

The time-of-day energy intake patterns were described in Figure 2. Class labels were
based on distinct features of high or low conditional probability for proportion of total
energy intake of ≥33.3% across three EOs of the day. The first pattern was labeled “Evening
dominant pattern” (56.00%) as the probability of consuming ≥33.3% of total energy intake
was relatively higher at the Evening EO than those of the Morning EO and Noon EO. The
second pattern labeled “Noon dominant pattern” (28.41%) was characterized by higher
conditional probabilities of consuming ≥33.3% of total energy intake at Noon EO than
those of Morning EO and Evening EO. The third pattern labeled “Morning dominant
pattern” (15.59%) was characterized by higher conditional probabilities of consuming
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≥33.3% of total energy intake at Morning EO than those of Noon EO and Evening EO.
Conditional probability of proportion of energy intake across EOs in a day for each pattern
was in Figure S1.
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3.3. Sociodemographic Characteristics, Lifestyles, and Cardiometabolic Risk Factors of
Latent Classes

Table 2 presents the sociodemographic characteristics and cardiometabolic risk factors
by latent time-of-day energy intake patterns. Compared with other patterns, participants
in the “Evening dominant pattern” were relatively younger, had a higher proportion of
males, and had more alcohol drinkers and current smokers (p < 0.001). Besides, participants
in this pattern had a higher level of TC, TG, LDL_C, insulin, and HOMA-IR (p < 0.05).
Participants in the “Morning dominant pattern” were older, with a lower educational level,
had a higher proportion of people living in a rural area, and lower per capita household
income and lower urbanicity score (p < 0.001).

Table 2. Sociodemographic characteristics, lifestyles, and cardiometabolic risk factors by latent classes.

Variables “Evening Dominant
Pattern” (n = 4887)

“Noon Dominant
Pattern” (n = 2479)

“Morning Dominant
Pattern” (n = 1360) p-Value

Age (year, mean (SD)) 49.27 (14.03) 51.22 (14.31) 52.72 (14.33) <0.001
Gender (n, %)

Man 2279 (46.63) 1042 (42.03) 592 (43.53) <0.001
Woman 2608 (53.37) 1437 (57.97) 768 (56.47)

Education level (n, %)
Primary school 1301 (26.62) 749 (30.21) 460 (33.82) <0.001
Middle school 1780 (36.42) 779 (31.42) 446 (32.79)
High school 1109 (22.69) 567 (22.87) 294 (21.62)

College and above 697 (14.26) 384 (15.49) 160 (11.76)
Geographic region (n, %)

City 918 (18.78) 545 (21.98) 247 (18.16) <0.001
Suburban 946 (19.36) 382 (15.41) 165 (12.13)
County 832 (17.02) 437 (17.63) 207 (15.22)

Rural village 2191 (44.83) 1115 (44.98) 741 (54.49)
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Table 2. Cont.

Variables “Evening Dominant
Pattern” (n = 4887)

“Noon Dominant
Pattern” (n = 2479)

“Morning Dominant
Pattern” (n = 1360) p-Value

Physical activity (n, %)
Low 1253 (25.64) 677 (27.31) 387 (28.46) 0.077

Middle 1744 (35.69) 894 (36.06) 449 (33.01)
High 1890 (38.67) 908 (36.63) 524 (38.53)

Sleep duration (n, %)
6–8 h 3940 (80.62) 1968 (79.39) 1063 (78.16) 0.063
<6 h 110 (2.25) 77 (3.11) 33 (2.43)
>8 h 837 (17.13) 434 (17.51) 264 (19.41)

Smoking (n, %)
Nonsmoker 3536 (72.36) 1918 (77.37) 1018 (74.85) <0.001
Ex-smoker 111 (2.27) 46 (1.86) 32 (2.35)

Current smoker 1240 (25.37) 515 (20.77) 310 (22.79)
Alcohol drinking (n, %)

Nondrinker 3414 (69.86) 1845 (74.43) 1015 (74.63) <0.001
Drink ≤1 time/month 273 (5.59) 128 (5.16) 59 (4.34)

Drink 1–2 times/month 355 (7.26) 139 (5.61) 66 (4.85)
Drink 1–4 times/week 459 (9.39) 221 (8.91) 112 (8.24)

Drink everyday 386 (7.90) 146 (5.89) 108 (7.94)
Per capita household income (n, %)

Low 2925 (59.85) 1455 (58.69) 872 (64.12) 0.007
Medium 1828 (37.41) 959 (38.68) 465 (34.19)

High 134 (2.74) 65 (2.62) 23 (1.69)
Urbanicity score (mean (SD)) 72.70 (17.06) 71.29 (18.23) 69.58 (17.80) <0.001

BMI (mg/kg2, mean (SD)) 23.70 (3.57) 23.94 (3.74) 23.79 (3.53) 0.029
SBP (mmHg, mean (SD)) 123.84 (16.50) 124.30 (17.45) 125.03 (17.23) 0.063
DBP (mmHg, mean (SD)) 79.57 (10.38) 79.56 (10.26) 80.13 (10.30) 0.179
TC (mmol/L, mean (SD)) 4.94 (1.06) 4.84 (1.06) 4.82 (0.97) <0.001

TG (log mmol/L, mean (SD)) 1 0.18 (0.59) 0.13 (0.57) 0.17 (0.55) 0.010
LDL_C (mmol/L, mean (SD)) 3.12 (0.89) 3.06 (0.92) 3.04 (0.85) 0.002
HDL_C (mmol/L, mean (SD)) 1.29 (0.33) 1.28 (0.34) 1.29 (0.32) 0.866

Glucose (log mmol/L, mean (SD)) 1 1.65 (0.18) 1.65 (0.18) 1.65 (0.19) 0.637
Insulin (log µU/mL, mean (SD)) 1 1.79 (0.64) 1.74 (0.62) 1.74 (0.66) 0.003

HOMA-IR (log mean (SD)) 1 0.32 (0.71) 0.28 (0.69) 0.27 (0.72) 0.018
1 Log-transformation was conducted to improve normality. SD, standard deviation; BMI, body mass index; SBP, systolic blood pressure;
DBP, diastolic blood pressure; TC, total cholesterol; TG, plasma total triglycerides; HDL_C, high-density lipoprotein cholesterol; LDL_C,
low-density lipoprotein cholesterol; HOMA-IR, insulin resistance assessed by homeostasis model.

3.4. Eating Pattern Profile of Latent Classes

Table 3 presents the eating pattern profiles by latent time-of-day energy intake patterns.
The “Evening dominant pattern” had the lowest median energy intake proportion from
Morning EO (22.64%), the “Noon dominant pattern” had the lowest median energy intake
proportion from Evening EO (28.55%), and the “Morning dominant pattern” had the
lowest median energy intake proportion from Noon EO (27.52%), among all the patterns
(p < 0.001).

Table 3. Eating pattern profile by latent classes 1.

Eating Pattern Profile
“Evening Dominant

Pattern”
(n = 4887)

“Noon Dominant
Pattern”

(n = 2479)

“Morning Dominant
Pattern”

(n = 1360)
p-Value 2

EI from Morning EO (%) 3 22.64 (17.75, 27.04) 30.25 (25.25, 34.39) 39.39 (36.27, 44.08) <0.001
EI from Noon EO (%) 36.60 (32.33, 40.95) 42.02 (37.92, 46.79) 27.52 (22.69, 30.43) <0.001

EI from Evening EO (%) 40.49 (36.96, 45.05) 28.55 (24.59, 31.09) 33.63 (29.75, 38.16) <0.001
1 Values are median (P25, P75). 2 Kruskal-Wallis test comparison among latent classes (p < 0.05). 3 EI, energy intake.
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3.5. Daily Energy, Energy-Adjusted Nutrient Intakes, and Diet Quality Score of Latent Classes

Table 4 presents the daily energy, energy-adjusted nutrient intakes, and diet quality
score by latent time-of-day energy intake patterns. After adjustment for multiple covariates,
participants in the “Evening dominant pattern” consumed the highest daily energy intake,
had the highest proportion of energy provided by total fat (%), and the highest proportion of
energy provided by protein (%) (p < 0.001). Participants in the “Morning dominant pattern”
had the highest proportion of energy provided by carbohydrates (%), and consumed the
highest fiber, among all patterns (p < 0.001). The highest Diet Quality Score was observed
in participants with “Noon dominant pattern” (p < 0.001).

Table 4. Daily energy, energy-adjusted nutrient intakes, and diet quality score by latent classes.

Variables
“Evening Dominant

Pattern”
(n = 4887)

“Noon Dominant
Pattern”

(n = 2479)

“Morning Dominant
Pattern”

(n = 1360)
p-Value

Energy and Nutrient Intakes 1

Energy, kcal 2094.63 (10.06) a 1997.50 (14.10) b 1895.06 (19.07) c <0.001
Carbohydrate, g 241.16 (0.99) c 257.52 (1.39) b 271.70 (1.88) a <0.001

Carbohydrate, EI% 48.04 (0.17) c 51.32 (0.24) b 53.48 (0.33) a <0.001
Total fat, g 84.82 (0.44) a 79.70 (0.61) b 74.34 (0.83) c <0.001

Total fat, EI% 37.29 (0.17) a 34.96 (0.24) b 33.29 (0.32) c <0.001
Protein, g 70.16 (0.27) a 66.90 (0.38) b 65.00 (0.51) c <0.001

Protein, EI% 14.02 (0.05) a 13.35 (0.07) b 12.88 (0.10) c <0.001
Fiber, g 12.46 (0.11) b 12.55 (0.16) a,b 13.15 (0.21) a 0.016

Vitamin C, mg 93.00 (2.20) a 82.33 (3.09) b 81.70 (4.19) b 0.005
Calcium, mg 375.88 (2.76) 369.57 (3.86) 369.50 (5.24) 0.323

Iron, mg 22.14 (0.14) 22.40 (0.19) 21.87 (0.26) 0.255
Zinc, mg 11.02 (0.04) a 10.41 (0.06) b 10.46 (0.07) b <0.001

Sodium, mg 4659.45 (100.10) 4835.83 (140.18) 5083.83 (190.06) 0.129
Potassium, mg 1711.98 (8.87) a 1664.58 (12.42) b 1658.83 (16.85) b 0.001

Phosphorus, mg 966.00 (3.19) 959.28 (4.47) 961.88 (6.06) 0.461
Diet Quality Score 2

CDGI (2019)-A score 50.93 (0.14) b 51.72 (0.20) a 50.67 (0.27) b <0.001
1 Values are means (standard error) adjusted for age, gender, education level, geographic region, smoking, alcohol drinking, physical
activity, household per capita income, urbanicity index, and total energy intake. Different superscript letters indicate significant t-test
pairwise comparisons of the mean, with adjustment for multiple comparisons, between latent classes (p < 0.05). Nutrient intakes were
adjusted for total energy intake by the nutrient residual model. Different superscript letters indicate significant t-test pairwise comparisons,
with adjustment for multiple comparisons, between latent classes (p < 0.05). 2 CDGI (2019)-A, China Dietary Guidelines Index for Chinese
adults according to Chinese Dietary Guidelines 2016. Means (standard error) adjusted for age, gender, education level, geographic region,
smoking, alcohol drinking, physical activity, household per capita income, urbanicity index, and total energy intake. Different superscript
letters (a, b, c) indicate significant t-test pairwise comparisons, with adjustment for multiple comparisons, between latent classes (p < 0.0167).
a, b, c represent latent classes with the highest, medium, respectively, lowest mean values.

3.6. Association between Latent Classes and Insulin Resistance

Table 5 presents the association between time-of-day energy intake patterns and
insulin resistance (HOMA_IR ≥ 2.0). After adjusting for multi-covariates, the “Evening
dominant pattern” was found to be inversely associated with insulin resistance (OR = 1.21;
95% CI = 1.05, 1.40), compared with the “Noon dominant pattern”.
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Table 5. Association between time-of-day energy intake patterns and insulin resistance (OR, 95%
CI) 1.

Models “Noon Dominant
Pattern” (n = 2479)

“Evening Dominant
Pattern” (n = 4887)

“Morning Dominant
Pattern” (n = 1360)

Model 1 1 1.16(1.02–1.32) * 1.01(0.85–1.20)
Model 2 1 1.15(1.01–1.31) * 1.05(0.88–1.25)
Model 3 1 1.14(1.00–1.30) * 1.05(0.88–1.26)
Model 4 1 1.21(1.05–1.40) * 1.08(0.89–1.31)

1 A Multilevel Mixed-effects Logistic Regression Model was constructed to estimate the association between
latent time-of-day energy intake patterns and insulin resistance (binary, HOMA-IR ≥ 2.0 as the cutoff), taking
household as the second level and individual as the first level. Model 1 adjusted for no covariates. Model 2
adjusted for age (continuous), gender (categorical), education level (categorical), geographic region (categorical),
per capita household income (categorical), urbanicity index (continuous), physical activity (categorical), smoking
(categorical), alcohol drinking (categorical), and sleep duration (categorical). Model 3 additionally adjusted for
total energy intake, and CDGI (2019)-A score. Model 4 additionally adjusted for BMI, SBP, DBP, TC, TG, HDL_C. *
p < 0.05.

4. Discussion

Few studies have examined time-of-day eating patterns across the day. To the best of
our knowledge, studies within this regard have not been conducted in the Asian population.
Using LCA, the present study identified three time-of-day energy intake patterns, “Morning
dominant pattern”, “Noon dominant pattern”, and “Evening dominant pattern”, based on
the proportion of total energy intake within different EOs in a Chinese adult population
aged 18 years and older. Participants in the “Evening dominant pattern” were younger,
had higher proportions of alcohol drinker and current smoker, consumed higher total
energy intake and higher percentage of energy from fat (%), but lower percentage of energy
from carbohydrate (%). The “Evening dominant pattern” was associated with higher
insulin resistance risk after adjusting for multivariate covariates, compared with the “Noon
dominant pattern”.

Time-of-day eating patterns can be captured by different statistical approaches de-
pending on the dimension of the eating event that is intended to be examined [3]. The
present study is aimed to find out if there is a certain kind of time-of-day pattern of en-
ergy distribution in a day that is related to health. Therefore, LCA was used to identify
time-of-day energy intake patterns based on the proportions of energy intake at EOs across
the day. Results showed that three latent time-of-day energy intake patterns presented
in this Chinese population sample. The “Evening dominant pattern” comprised 56% of
participants, demonstrating more than half of the participants had their largest energy
intake in the Evening EO, including dinner and evening snacks. The second-largest pattern
was the “Noon dominant pattern”, including 28.41% of participants. Participants in this
pattern had their largest energy intake in the Noon EO, including lunch and afternoon
snacks. The smallest pattern was the “Morning dominant pattern”, with only 15.59%
of participants.

The distribution of time-of-day eating patterns found in this study was different from
those identified in other populations. Among the few studies [2,3] examining time-of-day
or temporal eating patterns, Eicher-Miller et al. [2] identified temporal eating patterns
based on energy contribution, time of dietary intake, and number of intake occasions by
using kernel k-means cluster analysis in the U.S. adult population, where four temporal
dietary patterns existed. Most population (41%) belonged to the first pattern characterized
by similar proportions of energy at three evenly spaced eating occasions throughout the
day. The second pattern including 28% of the population represented the group having
a late evening meal as the main meal of the day, while the third pattern including 22%
of the population represented the group with mid-day as the main meal, and the fourth
pattern including 9% of the population represented the group with sometime during noon
to the evening as the main meal. The different distribution of time-of-day eating patterns
among the U.S. and Chinese populations might contribute to different methodology used
in studies, and also to sociocultural habits or beliefs related to eating behavior in different
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countries. Sociocultural and socio-economic factors that influence the time-of-day energy
intake patterns need to be further studied.

The present study showed significant differences among time-of-day energy intake
patterns by sociodemographic characteristics and eating pattern profiles. In the “Evening
dominant pattern”, there were more males, more alcohol drinkers, and current smokers.
On the contrary, there were fewer alcohol drinkers and current smokers in the “Noon
dominant pattern”. It is of note that, the “Morning dominant pattern” featured lower
education level, lower per capita household income, higher percentage of alcohol drinker
and rural villagers in this study, which was rarely reported in previous studies.

The previous study has shown that increasing percentage of energy consumed after
5 pm or in the evening was associated with higher total energy intake [24], higher alcohol
intake, and lower mean percent energy from carbohydrates [25]. In line with these findings,
the present study found “Evening dominant pattern” had the highest daily energy intake
and the lowest energy from carbohydrate. In view of diet quality, the present study showed
the “Noon dominant pattern” had significantly higher CDGI (2019)-A score compared with
the other two patterns. Different from the present study, Eicher-Miller [2] showed that
the temporal dietary pattern characterized by similar proportions of energy intake during
three evenly spaced eating occasions had the highest mean total Healthy Eating Index-2005
score, while the cluster characterized by mid-day (from 10:00 a.m. to 3:00 p.m.) as the
largest meal in Eicher-Miller’s study had lower mean total Healthy Eating Index-2005
score. The reason may be that the relative frequency for energy intake in the morning
was dramatically lower in the “mid-day pattern” in Eicher-Miller’s study, which may
lead to imbalanced dietary intake and lower diet quality in this pattern. In comparison,
participants in the “Noon dominant pattern” in the present study followed a healthier
eating pattern, with medians of energy intake proportion from Morning EO, Noon EO, and
Evening EO being 30.25%, 42.02%, and 28.55%, respectively. It is reasonable to speculate
participants in this pattern may be more health-conscious and may be more willing to
follow dietary recommendations.

Epidemiological studies suggest meal timing or time of energy intake has a relation-
ship with obesity [10,14,26,27], blood pressure [12,28,29], and type 2 diabetes [10,30], but
study examining time-of-day patterns of energy intake in relation to insulin resistance is
lacking. The “Evening dominant pattern” observed in the present study was associated
with higher insulin resistance risk, compared with the “Noon dominant pattern”, after
adjusting for sociodemographic, lifestyle, and other cardiometabolic risk factors. This
finding was consistent with literature reporting a positive association between energy
intake at dinner and insulin resistance. In a small randomized crossover study in six
healthy volunteers [31], insulin resistance was higher in the group consuming 60% of total
energy in the evening than in the morning. In another weight loss intervention study [32]
in 93 obese/overweight women, insulin resistance decreased in the group consuming
large breakfast (~700 kcal, 50%) and small dinner (~200 kcal, 14%) compared to the group
consuming small breakfast (~200 kcal, 14%) and large dinner (~700 kcal, 50%). Another
experimental study showed an association between a decrease in HOMA-IR and high
caloric at breakfast vs dinner in lean women with polycystic ovary syndrome [33]. A
6-year prospective cohort study showed consuming more caloric intake at dinner had a
2-fold higher incidence of diabetes at follow-up [10]. One recent cross-sectional study [17]
showed that a greater proportion of energy intake in the morning was positively related to
insulin sensitivity estimated by Matsuda Index. Contrary to our anticipation, no negative
relationship was observed between the “Morning dominant pattern” and insulin resistance
in the present study. One of the possible explanations might be that the probability of
consuming ≥33.3% of total energy intake at Evening EO for this pattern (33.63%) was
higher than that for the reference “Noon dominant pattern” (28.55%), which might offset
the negative association between higher energy intake in the Morning EO and insulin
resistance in the “Morning dominant pattern” compared to the “Noon dominant pattern”.
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Circadian misalignment might explain the observed positive relationship between
“Evening dominant pattern” and insulin resistance. The glucose tolerance and insulin
resistance were not only robustly regulated by the central clock in the hypothalamic
suprachiasmatic nucleus (SCN) but also clocks in different tissues and organs that are
involved in the control of glucose metabolism. Evidence from human experimental stud-
ies [34–36] has demonstrated a diurnal pattern of insulin sensitivity and glucose tolerance
in healthy individuals, with a higher level in the morning than in the evening. Food
intake is an effective zeitgeber to regulate various peripheral body clocks and metabolic
rhythms [37]. Inappropriate food intake occasion that leads to misalignment between
eating behavior and tissue clock rhythms, or between central and peripheral clock rhythms,
can result in circadian disruption and the development of insulin resistance [15].

Strengths of this study include using LCA as a novel approach to derive time-of-
day eating patterns on the basis of the proportion of energy intake within three major
EOs during the day. This person-centered approach classified participants into discrete
subgroups who show similarity in energy distribution across the day. The proportion of
energy intake at each EO was categorized into three categories: no energy intake, 0–33.3%
energy intake, and ≥33.3% energy intake, which facilitated the identification of the largest
energy intake EO across the day. Besides, the present study conducted careful screening
and exclusion of participants who were diagnosed with hypertension, diabetes, myocardial
infarction, apoplexy, or cancer, in case that these diseases would change eating behavior so
that the actual relation would be hidden. Furthermore, the relationship between time-of-
day energy intake and insulin resistance was confirmed by adjusting the physical activity,
sleep duration, total energy intake, diet quality as well as cardiometabolic risk factors.

Some limitations of this study should be considered. First, LCA is a data-driven
method, the time-of-day patterns derived from this study may not be generalized to other
populations, and the accuracy of patterns identified by this method largely relies on the
accuracy of self-reported dietary recall, which is prone to bias. Besides, because of the
explanatory nature of LCA, the time-of-day energy intake patterns identified in the present
study should not be viewed as indisputable. Second, meals and snacks were classified
based on participant’s self-identification and time of meals and snacks was not collected
in this survey so that no objective measure of EO was applied. Moreover, the day-to-day
variation of meal pattern was not considered and seasonality bias could not be ruled out in
the present study. Third, the excluded participants due to missing data have significant
differences in variables of age, gender, and physical activity with the remaining analytical
sample, indicating generalization of our results to the whole survey population should be
cautious. Fourth, although we adjusted for as many covariates as possible, the possibility
of other confounders unable to be included in our study could not be ruled out, such as
chronotype. Lastly, causality cannot be determined and potential reverse causality bias
may exist in this cross-sectional analysis.

Further studies should encompass more circadian variables in the stage of data col-
lection, apply objective and universal meal timing definition for the sake of comparison
between studies. What is more, novel statistical methods should be exploited to capture
day-to-day variation and longitudinal change in time-of-day eating patterns and their
relationships with health outcomes.

5. Conclusions

In conclusion, three distinct time-of-day energy intake patterns, “Morning dominant
pattern”, “Noon dominant pattern”, and “Evening dominant pattern”, were identified in
a Chinese adult population using LCA. Participants in the “Evening dominant pattern”
were younger, had higher proportions of alcohol drinkers and current smokers, consumed
higher daily energy intake, higher percentage of energy from fat (%), and lower percentage
of energy from carbohydrate (%). Participants in the “Noon dominant pattern” had the
highest diet quality score. The “Evening dominant pattern” was associated with higher
insulin resistance risk after adjusting for multivariate covariates. Future research should
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consider more objective eating time definition, and day-to-day variation and longitudinal
analysis of time-of-day eating pattern are warranted.
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