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Drug discovery attrition rates, particularly at advanced clinical trial stages, are high because
of unexpected adverse drug reactions (ADR) elicited by novel drug candidates. Predicting
undesirable ADRs produced by the modulation of certain protein targets would contribute
to developing safer drugs, thereby reducing economic losses associated with high attrition
rates. As opposed to the more traditional drug-centric approach, we propose a target-
centric approach to predict associations between protein targets and ADRs. The
implementation of the predictor is based on a machine learning classifier that
integrates a set of eight independent network-based features. These include a network
diffusion-based score, identification of protein modules based on network clustering
algorithms, functional similarity among proteins, network distance to proteins that are
part of safety panels used in preclinical drug development, set of network descriptors in the
form of degree and betweenness centrality measurements, and conservation. This diverse
set of descriptors were used to generate predictors based on different machine learning
classifiers ranging from specific models for individual ADR to higher levels of abstraction as
per MEDDRA hierarchy such as system organ class. The results obtained from the different
machine-learning classifiers, namely, support vector machine, random forest, and neural
network were further analyzed as a meta-predictor exploiting three different voting
systems, namely, jury vote, consensus vote, and red flag, obtaining different models
for each of the ADRs in analysis. The level of accuracy of the predictors justifies the
identification of problematic protein targets both at the level of individual ADR as well as a
set of related ADRs grouped in common system organ classes. As an example, the
prediction of ventricular tachycardia achieved an accuracy and precision of 0.83 and 0.90,
respectively, and aMatthew correlation coefficient of 0.70. We believe that this approach is
a good complement to the existing methodologies devised to foresee potential liabilities in
preclinical drug discovery. The method is available through the DocTOR utility at GitHub
(https://github.com/cristian931/DocTOR).
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1 INTRODUCTION

Protein–protein interactions are central to all aspects of cell
biology, including processes linked to diseases. The
phenomenal technological development in recent years allowed
the comprehensive charting of the protein–protein interactions
that take place in human cells, the interactome [(Gavin et al.,
2011; Xing et al., 2016; Xiang et al., 2021)]. Indeed, high-quality
and high-coverage protein interaction maps are now available for
a number of model organisms, including humans (Kotlyar et al.,
2022). Such resources present a number of opportunities to the
pharmaceutical industry, which can exploit this information to,
for instance, identify plausible therapeutic targets from which to
develop or repurpose drugs [as in the most recent case of COVID-
19 drug race (Sahoo et al., 2021; Gysi et al., 2021)]. At the same
time, these recent advances have also led to increased efforts to fill
the gap of toxicology or safety information for drug’s targets. This
problem has always crippled the development of novel drugs,
increasing the attrition of the latter entering clinical trials due to
the severity of adverse drug reactions (ADRs) associated with
unforeseen toxicity, directly increasing the cost of research
(Seyhan, 2019).

Currently, several drug-centered approaches exist that can be
used to reduce the risk of ADRs associated with novel drugs
(Basile et al., 2019), such as the use of animal models (Bailey et al.,
2014) and in vitro toxicology research (Madorran et al., 2020).
However, these approaches involve high maintenance costs and
ethical limitations and are not always transferable to human
biology (Singh and Seed, 2021). Many in silico approaches have
also proved to be useful in estimating the toxicity of drug
candidates, exploiting features such as composition, structure,
and binding affinity [(Lo et al., 2018), (Bender et al., 2007)]. These
methods include various examples of machine learning (ML) and
deep learning (Dara et al., 2022). Contributing to these efforts, we
recently described the T-ARDIS database (Galletti et al., 2021).
T-ARDIS is a curated collection of relationships between proteins
and ADRs. The associations are statistically assessed and derive
from existing resources of drug-target and drug-ADR association
(Galletti et al., 2021). Since T-ARDIS provides a direct link
between proteins and ADRs, the question arose of whether
this information can be exploited to predict potential ADR
linked to proteins. Therefore, the major driver of this project
was to develop a target-centric approach to predict whether the
targeting of a given protein target is likely to result in ADR using
the curated information to train machine-learning classifiers.

To that end, different machine-learning classifiers were
assessed including support vector machine (SVM), random
forest (RF), and neural networks (NN). Highly significant
associations between proteins and ADRs were extracted from
T-ARDIS and characterized using 8 different features. These
include the following: 1) the network diffusion-based score
from GUILDify (Aguirre-Plans et al., 2019); 2) several
network-based clustering algorithms [(Cao et al., 2014),
(Blondel et al., 2008)]; 3) a functional similarity index; 4)
network distance to proteins that are part of safety panels
used in preclinical drug development; and 5) network
descriptors in the form of degree and betweenness centrality

measurements and conservation. All of the measurements use
network-based information in some way and hence incorporate
aspects that are intrinsic not only to the protein but also to the
network. As a result, the proteins are framed within the
interactome, and the potential impact of changes on
neighboring proteins is assessed.

According to the MEDDRA nomenclature (Chang et al.,
2017), specific models were built for each individual ADR, as
well as clusters of ADRs within the same system organ class
(SOC), allowing the analysis to be extended to a more general
anatomical or physiological system. Besides the datasets derived
from T-ARDIS to train and test the models, we also benchmarked
our prediction in independent datasets including manually
curated dataset compiled from literature [(Huang et al., 2018),
(Mizutani et al., 2012), (Smit et al., 2021), (Kuhn et al., 2013)—
Supplementary Table S2], including a dataset submitted to the
critical assessment of massive data analysis competition (Aguirre-
Plans et al., 2021). Finally, as three different machine-learning
predictions were developed, we also explored the accuracy of a
meta-predictor that combines the predictions of each individual
classifier. Three different meta-predictors were assessed based on
the way the predictions were combined: 1) jury vote, 2) consensus,
and 3) red flag. While jury vote and consensus scoring function are
similar and seek to promote associations with high scores, red flag
takes into account the divergent opinion.

The proposed method achieves a high level of reliability. For
example, taking into account the undesirable effect of atrial
fibrillation, the resulting model scored high in accuracy (0.88),
precision (0.87), recall (0.85), andMatthew correlation coefficient
(MCC) (0.77) for both the SVM and RF approaches. The neural
network gives slightly lower results with 0.66 accuracy, 0.71
precision, and an MCC of 0.34. The obtained meta-predictors
achieved similar results in jury voting and consensus methods
with accuracy 0.89, precision 0.89, recall 0.88, and MCC 0.78. To
be noted, the reliability of the model is closely related to the
biological complexity and tissue specificity of various ADRs. The
dataset employed in this study as well as the models, meta-
predictors, and accessory scripts are available at https://github.
com/cristian931/DocTOR. Upon installing the application, users
will be able to upload a list of proteins in order to assess their
relationship with the studied ADR.

2 MATERIALS AND METHODS

2.1 Datasets
2.1.1 Training Set
The set used to train and cross-validate the models was derived
from T-ARDIS (Galletti et al., 2021). T-ARDIS is a database that
compiles statistically significant relationships between proteins
and ADRs. As described in original publication, T-ARDIS
undergoes a series of filtering and quality control steps to
ensure a reliable and significant relationship between the ADR
and the protein targets. Depending on the source of ADRs
associations used to derive target ADRs relationships, two
groups were defined: relationships derived from self-reporting
databases FAERS (Kumar, 2018) and MEDEFFECT
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(Re3data.Org, 2014); and relationships derived from curated
databases SIDER (Kuhn et al., 2015) and OFFSIDES (Tatonetti
et al., 2012). Both groups have been used to obtain the training set
used in this work. For the self-reporting dataset, T-ARDIS
currently contains about 17k paired protein–ADR interactions,
including 3k adverse reactions and 300 Uniprot ids. The smaller
curated dataset contains approximately 3,000 pairwise
associations for 537 adverse events and 200 proteins. From the
initial list of approximately 500 ADRs, only the 84 that were best
characterized in terms of number of proteins associated and that
covered the entire range of SOC classes, as defined by MEDDRA
(Chang et al., 2017), were considered, i.e., included at least 5
numbers of ADR per SOC.

2.1.2 Independent Test Datasets
For external validation, we employed five different independent
datasets sourced from literature containing protein–ADR
relationships from Kuhn et al. (2013)—Supplementary Table
S2, Smit et al. (2021), Mizutani et al. (2012) the ADReCs-Target
database (Huang et al., 2018), and the DisGeNet Drug-induced
Liver Injury dataset (Piñero et al., 2019). In particular, the latter
contains a specific subset of liver injuries caused by drugs
composed by 12 different MEDDRA-defined events ranging
from “Acute hepatic failure” to “Non-Alcoholic Steatohepatitis.”

More than 600 distinct adverse events and 428 proteins were
retrieved, resulting in a total of 15 k interactions. Then, the 84
selected ADR were extracted, resulting in 188 associated proteins.
The independent and the training dataset are totally independent
in the sense that they do not share proteins between them on each
particular ADR.

2.2 Protein Network
The protein network, or interactome, used in this study, was
integrated using BIANA (Garcia-Garcia et al., 2010) and
GUILDifyv2 (Aguirre-Plans et al., 2019). The original BIANA
network includes interactomic information from IntAct (Kerrien
et al., 2006), DIP (Wong et al., 2015), HPRD (Keshava Prasad
et al., 2008), BioGrid (Stark et al., 2006), MPACT (Güldener et al.,
2006), and MINT (Ceol et al., 2009) databases. The most recent
version composed of 13,090 proteins (or nodes) and 320,337
interactions (or edges) has been used in this work.

2.3 Features
2.3.1 GUILDify Score
GUILDify is a web server of network diffusion-based algorithms
used for a wide range of network medicine applications (Aguirre-
Plans et al., 2019). The message-passing algorithms of GUILDify
(Guney and Oliva, 2012) transmit a signal from a group of
proteins associated with a phenotype or drug (known as seeds)
to the rest of the network nodes and score them depending on
how fast the message reaches them, taking into account several
network properties. Originally, GUILDify had been developed to
prioritize gene–disease relationships and identify disease modules
(Aguirre-Plans et al., 2019), but it was recently used to identify
disease co-morbidities and drug repurposing options (Aguirre-
Plans et al., 2019; Artigas et al., 2020). In this study, GUILDify
was used as a feature to predict protein–ADR associations. Upon

expansion, a GUILD score was assigned to each protein in the
interactome based on the ADR’s linked protein used as the seed.
The higher the score, the more likely that an association exists
between the protein and the set of seeds used to expand.

2.3.2 Degree and Betweenness Centrality
Degree and betweenness centrality are two network analysis
measures. Degree centrality is the number of edges connected
to a node, while betweenness centrality is the number of times a
node acts as a bridge along the shortest path between two other
nodes. Both measures define how relevant a given node is inside a
network and, in terms of the interactome, how much a protein
tends to be part of a cascade of signals and participate in the same
biological process. Degree and betweenness centrality values were
computed using NetworkX (Ceol et al., 2009).

2.3.3 Clustering-Based Algorithms
Another interpretation of the “guilt-by-association” principle is
the definition of “disease module,” i.e., a neighborhood of a
molecular network whose components are jointly associated
with one or several diseases or risk factors (Choobdar et al.,
2019). As shown, disease modules can be used to identify protein/
genes associated with given diseases (Goh and Choi, 2012). In the
context of ADRs, the assumption is that proteins linked to the
same ADRs would cluster in local regions of the interactome,
forming ADR modules (Guney, 2017).

To identify these modules, two different clustering algorithms
were used. First, the K1 clustering algorithm is based on the so-
called diffusion state distance (DSD) metric (Cao et al., 2014).
The DSD metric is used to define a pairwise distance matrix
between all nodes, on which a spectral clustering algorithm is
applied. In parallel, dense bipartite subgraphs are identified using
standard graph techniques. Finally, results are merged into a
single set of non-overlapping 858 clusters. The second clustering
method is based on the work by Lefebvre and col ((Blondel et al.,
2008)), which is based on modularity optimization, assigning,
and removing recursively the nodes to the modules found, each
time evaluating the loss or gain of modularity. We applied this
method to the interactome, retrieving 46 modules. Together with
clustering approaches mentioned above, we compute for each
node the “clustering coefficient” using the NetworkX utility (Ceol
et al., 2009).

2.3.4 Function Conservation Index
A new feature included in the newer version of GUILDify is the
identification of enriched Gene Ontology (GO) functions
among top ranking proteins using Fisher’s exact test
(Aguirre-Plans et al., 2019). The function conservation
index, which takes advantage of this resource, considers the
functional similarity between a protein and GUILDify’s
enriched GO terms. In a nutshell, this value is the result of
a Hamming distance between two binary vectors that represent
the presence or absence of a specific GO term. The shorter the
distance, the higher the similarity between the given protein
and the enriched functions identified from a set of
protein–ADRs. The scale represents the ratio where a 1
would indicate full overlap of functions.
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2.3.5 Shortest Path to Very Important Targets
Targets and pathways that are now well established as
contributors to clinical ADRs are included in safety panels,
which constitute the minimal lists of targets that qualify for
early hazard detection, off-target risk assessment, and
mitigation. (Bowes et al., 2012a). Here, we considered the
Safety Screen Tier 1 panel of EuroFins Discovery based on the
work by Whitebread and co (Bowes et al., 2012b). This panel is
composed of 48 proteins that we call Very Important Targets
(VITs). We positioned the VITs in the interactome and calculated
the shortest path distance of each one of the proteins considered
in our training set to any VITs using NetworkX (Ceol et al., 2009).
Of the overall distribution of shortest path distances to VITs of
any given protein, the value of the first quartile was considered.
This value represents the relative position of the given protein
with respect to the VITs panel.

2.4 Model Construction
2.4.1 Positive and Negative Sets
The positive set, i.e., proteins related to a given ADR, for each of
the 84 ADRs considered were extracted from the T-ARDIS
database (Galletti et al., 2021). For the purpose of training and
since the number of positive cases per ADR was generally low, the
positive set was augmented using the definition of close
connectivity as follows. The DIAMOnD score (Drozdetskiy
et al., 2015) was computed for the subnetworks associated
with the ADR’s associated proteins extracted from T-ARDIS.
In doing so, we ranked the most immediate neighboring proteins
and selected those with a DIAMOnD score over a certain
threshold to conform to the positive set. Also, multiple
DIAMOnD threshold scores have been tested to obtain the
best result during the training phase, namely, at 0.6, 0.7, 0.8,
and 0.9. Likely, the negative sets were specific to each of the ADRs
under consideration by randomly selecting proteins with a
DIAMOnD score below the given positive threshold. During
the training and testing phase, different ratios of positive and
negative cases were tested to account for class imbalance. Indeed,
besides using a balanced training set, i.e., equal number of positive
and negative cases, to train and test the models, different ratios
including 1:1.5, 1:3, and 1:5 (positives:negatives) were also
considered. Thus, in the end, for each one of the 84 ADRs, 12
different models have been obtained by the combination of
positive and negative thresholds as well as imbalance ratios
resulting in 1,008 trained models.

2.4.2 Features Vectorization and Model Construction
and Training
The approach to predict protein–ADR associations is described
below. In a nutshell, the approach is network-based, i.e., relies on
a network-based set of 8 metrics computed for each protein that
were used as inputs to machine-learning classifiers. Three
different types of classifiers were used: SVM with nonlinear
kernel (radial basis function—RBF), RF, and NN. The
different ML classifiers were implemented in python3.9 using
the following libraries. SVM and RF classifiers were implemented
using the Scikit-learn package (Pedregosa et al., 2011), while NN

made use of the Keras and Tensorflow packages (Abadi
et al.,2015; Gaulton et al., 2017). Specific models were trained
and tested for each of the 84 ADR as well as models at SOC,
i.e., grouping ADRs belonging to the same SOC. A schematic
representation of the overall process is depicted in Figure 1.

Each protein in a given ADR is represented by an 8-
dimensional vector composed by the features described above
(or see Figure 1) that is used as an input to the classifier together
with the labels (positive/negative) in supervised learning. Note
that balanced and unbalanced sets were used, and thus, 4 specific
models were built for each ADR depending on the set used. The
training involved the optimization of a set of parameters using a
grid-search approach and validated with an internal stratified
five-fold cross-validation approach using the Scikit-learn python
package. In the case of SVM classifiers, the grid search included
the gamma and C parameters; for the RF, the maximum number
of features and the depth for each tree; lastly, for the basic model
architecture of NN, an SGD optimizer function was combined
with a relu activation function (for the first layer) and then with a
simple sigmoid activation function. A grid search was used to
optimize the learning rate, number of epochs, number of hidden
layers, and neurons, the same as it was for the other ML
algorithms. Finally, in the case of ML classifiers derived for
SOC, i.e., groups of ADRs, the training and testing was done
in the same way after merging all the elements in each individual
ADR. The training dataset, including the ML classifiers for
individual ADRs and SOCs, can be obtained from https://
github.com/cristian931/DocTOR together with the relative
parameters of the best model for each ADR (Supplementary
Material—NN_parameters.tsv, RF_parameters.tsv, SVM_
parameters.tsv).

2.5 Assessing Performance of Models
The performance of models was assessed using four widely
used statistical descriptors, namely, the accuracy (ACC),
precision (PREC), recall (REC), and MCC calculated using
the Scikit-learn python package (Pedregosa et al., 2011). In
addition, the scores of AUPRC have been computed and
compared to the NPV and PPV values available in the
Supplementary Material S1.

2.6 Combining Predictions: Voting Systems
Three different voting systems were envisaged to integrate the
prediction of individual classifiers: a jury vote, a consensus score,
and a red-flag schema. Both jury votes and consensus seek to
maximize similar predictions, while the red-flag prioritizes
outliers. Jury voting is simply the count of prediction
outcomes. Classifiers are binary and thus will predict whether
a given protein is or is not causing a given ADRs. Each method
exhibits a vote, and the most voted option is selected. The
consensus score c is more granular, namely instead of a yes/no
the posterior probability p of each classifier is used. Therefore, the
consensus score can rank proteins within the same class, e.g.,
predicted to be related to a given ADR. Finally, the red-flag
schema simply accepts as a final prediction the one which is not
common among the different classifiers.
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c � ∑ 3
i�1 pipclass(i); i � [SVM,RF,NN]; class ∈ [−1,+1] 1

3 RESULTS

3.1 Individual Features
Eight different variables were considered as input features of the
classifiers. These include the GUILDify scores, network topology

(degree and betweenness centrality values), a function
conservation score, module imputations, and distances to
proteins belonging to safety panels. In Figure 2, the
distribution of the different features for the positive and
negative sets is shown. As mentioned in the Methods section,
the positive cases (negative cases were selected randomly) were
extracted from the T-ARDIS database (Galletti et al., 2021), both
for the self-reporting and curated sets. The data shown in
Figure 2 derives from the self-reporting set of T-ARDIS. The

FIGURE 1 | Schematic depiction of feature extraction, training, and testing procedures. (A) indicates the process of extraction of training dataset from T-ARDIS
(Galletti et al., 2021). (B) indicates the process of network expansion of targets extracted in (A) using GUILDify (Aguirre-Plans et al., 2019). (C) summarizes the process of
computation of different input features. (D) Represents the development of machine-learning classifiers. Finally, (E) illustrates the development of the meta-predictors
together with the testing of the classifiers and consensus functions on the independent dataset.
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equivalent information for the curated set is shown in
Supplementary Figure S1; Supplementary Material S1.
Likewise, equivalent information, as in Figures 3, 4, is
presented in the Supplementary Material S1.

In the case of GUILDify scores, a high overlap is found, but
nonetheless, the positive sets demonstrate higher scores and a
distribution slightly skewed toward high values (Figure 2A). The
analysis of centrality-based features also indicates a substantial
overlap between positive and negative sets, although positive sets
present amore skewed distribution toward higher values particularly

in the case of betweenness values (Figures 2B,C). A similar situation
is presented when a quantifying function analysis as distance to
enriched function(s) of the set (Figure 2D); the proteins in the
negative set tend to demonstrate larger distances, i.e., no shared
functions with theGUILDify enrichedGO terms, respect to those on
the positive set. In fact, the largest number of proteins with a value of
1.0 correspond to the proteins in the positive set and, conversely,
those with lower values, i.e., no shared GO terms, tend to be proteins
in the negative set. However, it is fair to say that the overlap is
very high.

FIGURE 2 |Distribution plots of 8 different input variables used by classifiers. The values of the positive and negative sets are shown in blue and red, respectively, in
(A–G) and shows the distribution of GUILDify scores, centrality values, betweenness values, function score, % of clusters K1, % of clusters LN, and clustering coefficient
values respectively. (H) presents the box-plots and a violin representation of the distribution of the shortest path values on the negative (orange) and positive (blue) sets.
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The tendency of functionally and disease-related proteins to be
close (i.e., shorter distances) in the interactome was also
considered as a feature for the prediction. As described in the
Methods section, this aspect was studied by applying clustering
algorithms to identify modules in the entire interactome where
the proteins associated with the same or similar ADRs are
grouped. Next, if the number of modules required to represent
a given collection of proteins in an ADR is small, it is likely that
the proteins will share modules. Similarly, a large number of
modules indicate that the proteins do not share the same cluster.
The K1 algorithm (Cao et al., 2014) identified 1,170 different
clusters, many of them composed of 3 proteins, the least amount
for defining a module (Figure 2E). As shown, proteins in the
positive set present a lower number of clusters, meaning that
proteins associated with ADRs tend to belong to a limited group
of clusters, rather than being scattered through the interactome.
Similarly, the Louvain-Newman method (Blondel et al., 2008),

which grouped the whole interactome into only 95 distinct
clusters, allowing the analysis of bigger modules, demonstrated
a similar distribution as K1, i.e., the positive set is drawn toward
lower values (Figure 2F). Finally, in the case of the Clustering
Coefficient Analysis (Figure 2G), in this case, both negative and
positive sets share the same distribution of values. Therefore, this
feature does not seem to provide a clear distinction between
positive and negative cases on the ADR.

The final metric considered as an input variable was the
distance of given proteins to the so-called VITs (see Methods).
The distance was computed in the form of the shortest path
(i.e., lowest number of links) to any given protein belonging to the
panel, taking the value of the first quartile upon computing all the
distances all vs. all (protein in the given ADR and proteins in the
panel). Once again, the distribution of values is different
depending if the proteins are part of the positive or negative
sets (Figure 2H). While the most common distance is 2.0, only

FIGURE 4 | Box- and violin plots for accuracy (ACC), precision (PREC), recall (REC), receiver operating area under curve (ROC AUC), and Matthew correlation
coefficient (MCC). Distribution of accuracy, precision, recall, and ROC AUC values for individual classifiers: NN (green), RF (blue), and SVM (orange) as well as meta-
predictions: consensus (cyan), jury vote (magenta), and red flag (red).

FIGURE 3 | Box- and violin plots of the cross-validation AUC results for the three different classifiers. The different box-plots show the distribution of the mean AUC
values for the best models developed for each ADR using the three different classifiers: SVM (orange), random forest (blue), and neural networks (green).

Frontiers in Bioinformatics | www.frontiersin.org July 2022 | Volume 2 | Article 9066447

Galletti et al. Prediction of ADRs

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


the proteins in the positive set would demonstrate values smaller
than 2, therefore showing that proteins in the positive set are
closer to proteins considered critical as per pharmacological
profiling.

3.2 Training and Cross-Validation
The input features described above represent the input variables
to the different classifiers explored in this work. Three different
machine-learning methods were used: NN, SVM, and RF. In
order to define the best parameter values, each classifier was
trained and validated on a 5-fold cross-validation and grid-search
approach.

It is important to mention that specific classifiers were
developed for each ADRs. The classifiers are not generic
predictors of the likelihood of a protein to elicit an ADR,
any, but to elicit a particular ADR, e.g., diarrhoea. Therefore,
the predictions are tailored to the specific ADR (84 considered
in this study) and, therefore, present unique characteristics.
Next, Figure 3 presents the distribution of mean area under
the ROC curve (AUC) calculated for the training and testing as
described (for details on individual classifiers and ADRs refer
to the Supplementary Material S1—Supporting information
7 “cv scores. zip”). In general RF classifiers appear to
demonstrate higher performance with mean AUC values
around 0.85. Also, RF presents a more bell-shaped
distribution of values when compared to SVM and RF. On
the other hand, SVM and NN demonstrate a comparable
performance, with a median AUC around 0.75, although
the first quartile in SVM is slightly better than in NN (0.72
vs. 0.68).

Overall RF appeared to demonstrate the best performance
under training conditions, but in some cases, the performance of
the different classifiers was lower for particular ADRs,
highlighting the complexity and heterogeneity of this
biological problem. For instance, in the case of the ADR
malnutrition, RF achieved the best performance with an
accuracy, precision, recall, and MCC values of 0.95, 0.92, 1.00,
and 0.91, respectively. However, in the case of the ADR febrile
neutropenia, NN was by far the best predictor with an accuracy,
precision, recall, and MCC values of 0.80, 0.87, 0.70, and 0.77,
respectively, against an almost random prediction by SVM and
RF (MCC ~0.0). Finally, SVM outperformed the other two ML
approaches in other cases, such as Nasal Congestion, with an
accuracy of 0.90, a precision of 0.83, a recall of 1, and a MCC of
0.81, while RF and NN barely reached values of 0.70 (see
Supplementary Material S1 for detailed information of
individual performances across all ADR studied).

3.3 Testing on Independent Set
For independent testing purposes, we relied on proteins associated
with the same ADRs retrieved from external sources, as described in
the Methods section. This testing set is formed of 188 different
proteins associated with 84 ADRs. Also, the training and the
testing set do not overlap, meaning none of the 188 proteins
present in the test set were present in the training set. The
proteins associated with each one of the 84 ADRs are predicted
using the respective model, and then, the performance score is
computed based on the results (Figure 4).

Very large differences were not found between the
different classifiers. They appear to perform at a

FIGURE 5 | Evaluation of ADR-protein association predictions of the different classifiers at SOCs level. Accuracy, precision, recall, and ROC AUC values for
predictions at SOCs for both individual classifiers (SVM, RF, and NN) and voting (jury vote, consensus, and red flag).
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comparable level in terms of accuracy, precision, and AUC,
although RF appeared to achieve a higher performance
particularly in the case of sensitivity with the highest value
for the 3rd quartile of the distribution. In terms of MCC,
values are distributed mainly above 0 values with the median
values around 0.25, thus indicating non-random predictions
(Figure 4).

3.4 Combining Predictors
Since three different classifiers were developed for each ADR, the
possibility exists of combining the predictions using consensus
scoring functions. Three different approaches were used as
described in Methods. In terms of accuracy, precision, recall,
and AUC, the values increased when compared to individual
predictors in the jury vote and consensus voting systems
(Figure 4). There was not only an improvement but also a
general shift toward higher values as distributions were skewed
toward higher values. The exception was the red-flag consensus
that resulted in a worsening of predictions. As described in the
Methods section, the red-flag method was devised to identify
singular predictions.

A similar pattern is observed in the case of MCC values
(Figure 4). The distribution of MCC values for jury vote and
consensus voting systems were skewed toward higher values
when compared with individual predictors. Thus, the quality
of the prediction improved when combining individual
predictors. As shown in the of accuracy, precision, and
recall, red-flag consensus decreased resulted in worse MCC
values distributing between 0 (random prediction) and
negative (inverse) values. Therefore, it is a better strategy to
accept the most common prediction rather than any singular
predictor.

3.5 Predicting at SOC Level
The models presented in the previous sections were ADR-
specific. However, we also wanted to develop more generalist
predictive models that at the same time preserve the biological
and medical meaning. For this purpose, we grouped the
different ADRs into specific SOCs as per MEDDRA
classification (Chang et al., 2017). The MedDRA SOC is
defined as the highest level of the MedDRA terminology,
distinguished by anatomical or physiological system,
aetiology (disease origin), or purpose. Also, most of these
describe disorders of a specific part of the body. As
explained in the T-ARDIS manuscript (Galletti et al., 2021),
not every SOC is present in the database due the fact that some
MEDDRA reported ADRs are very general or not specific to
body parts, tissues, or underlying human biology (Ietswaart
et al., 2020). Specifically, in this study, the 84 ADRs considered
were grouped into 18 different SOCs with an average number
of 5 ADRs per SOC. At a single classifier level, a large
variability of predictions was found in terms of accuracy,
precision, sensitivity, and MCC (Figure 5). Predictions were
highly accurate in the cases of “pregnancy, puerperium, and
perinatal conditions” compared to those in the case of immune
or nervous disorders. In general, combining predictors resulted
in improved predictions, with the exception of red-flag voting,

particularly in terms of recall. However, sensitivity values were
generally low when compared to those achieved by predictors
working at ADR level (Figure 4). This fact highlights the
difficulty of predicting at a higher level of abstraction rather
than at individual ADR level.

In terms of MCC values, a similar situation can be observed
(Figure 5). There was an improvement of predictions when
combining individual prediction in a jury vote or consensus
voting, such in the case of respiratory, thoracic, and
mediastinal disorders going from a MCC of 0.75 of the best
predictor to 0.81 when combining.

4 DISCUSSION

In this work, we set to develop an approach to predict the
potential liability of proteins in the context of adverse
reactions when targeted for therapeutic purposes. By
analyzing the human interactome, a range of network-based
metrics were derived to characterize the proteins under study.
This range of heterogeneous measurements was then fed into
three machine-learning classifiers that were in turn combined
using three different voting approaches. The prediction
models both at individual ADRs and SOCs level provided a
reasonable performance that justified its use as a tool to foresee
potential liabilities of proteins. We looked at 84 different ADR
in total, being able to create reliable models for each of them.

4.1 Classifiers Performances
The variables used in the predictions were of eight
accounting for different aspects of the proteins under
study. As shown in Figure 3, the level of discrimination
among positive and negative cases varies with GUILDify
scores and K1 clustering analyses among the top performers
and degree centrality and clustering coefficient analyses as
fewer discriminating features. This reflects the small world
nature of the human interactome (Zhang and Zhang, 2009).
As shown in the results, the performance of the different
classifiers varied, with RF being the overall best performed
predictor under training conditions, although in particular,
ADRs, SVM, and NN were superior. This observation
prompted us to develop a voting system to combine the
individual predictors in a meta-predictor fashion. As shown
in Figures 4, 5, combining the methods resulted in better
predictions with the exception of the red-flag consensus.
Both the jury vote and consensus voting systems followed the
same principle, i.e., to boost coincident predictions among
classifiers. In fact, the level of performance of jury vote and
consensus voting systems are comparable (Figures 4, 5), but
critically, the consensus voting system provides further
granularity to the predictions that allows a finer ranking.
Indeed; however, for instance, a jury vote will place a given
protein in a class, e.g., +1; the two methods will agree that the
given protein might be linked to a given ADR, and the
consensus scoring function, however, will provide a
quantitative measure that can allow the ranking of
proteins within the same class. This aspect is pivotal in
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order to establish a degree of confidence in the predictions of
the DocTOR application (see below). Finally, as mentioned,
the red-flag voting system resulted in worse predictions
overall. The idea in itself seems counter-intuitive,
i.e., promoting the marginal view. However, a few cases
are found where this strategy was successful such in the
cases of nocturia, neutropenia, or ischaemia ADR (see
Supplementary Figure S1. tsv or Supplementary Figure
S2. tsv). Furthermore, the red-flag approach serves as a
failsafe in the event of an unknown prediction, such as in
the instance of the DocTOR utility (explained below), or
while two ML approaches, while agreeing, report low
probabilities in their respective predictions.

The other aspect to consider in this work was the nature of
the predictions. In theory, one of the major achievements of
protein–ADR predictions would be determining if targeting a
protein would result in an unwanted adverse response,
i.e., ADR. However, this is a very difficult question to turn
into a predictive model, as the types of ADR are very diverse,
and we might end up considering any protein susceptible to
causing an ADR to a certain extent. This is the reason why the
predictive models were ADR-specific, so that the prediction is
not whether a protein might cause an undesired reaction, but
what type of adverse reaction. However, grouping ADRs into
common SOCs is possible. In doing so, individual ADRs are
abstracted into a higher entity, and, thus, more generalist
prediction models can be developed, i.e., a model to predict
whether the targeting of a given protein can be associated to a
specific SOC perturbation. As shown in Figures 5, 6,
predicting at this level resulted in some SOCs
demonstrating better prediction performances than others.
SOCs with more defined affected tissues/organs tended to
demonstrate better predictions that include more systemic
representations. For instance, comparing predictions on the
respiratory, thoracic, and mediastinal disorders vs. immune
system disorders resulted in the former achieving better
performances (accuracy: 0.90 vs. 0.54; precision: 0.93 vs.
0.87; recall: 0.87 vs. 0.10; MCC: 0.81 vs. 0.16). Finally,
researchers also found that better performance at SOCs
related to cases with models already predicted successfully
at the individual ADRs included in the particular SOC.

4.2 Difficult to Predict Adverse Drug
Reactions
On the other hand, given the complexity of the biological
problem, some ADR results are harder to predict. In
particular, the worst results have been obtained in 17
different ADRs which obtained a negative or equal to 0
MCC (random predictions). These includes Hyper-
coagulation, Ichthyosis, Coordination abnormal, Biliary
cirrhosis, Acute hepatic failure, Hyper-ammonaemia,
Azoospermia, Diplegia, Glucose tolerance impaired,
Haemorrhagic diathesis, Hypoacusis, Ophthalmoplegia,
Renal tubular acidosis, Hepatic failure, Coagulopathy, and
Ischaemia. Target on these ADRs included common genes

(Supplementary Figure S6. tsv), such as TP53, 5HT1A, ACE,
members of the CALM family, LEP, and IL8. In particular,
these genes have been already annotated in T-ARDIS as
targets with the highest number of associated ADRs
(Galletti et al., 2021), thus partially explaining prediction’s
inaccuracy.

4.3 The DocTOR Utility
The predictive models and accessory scripts to carry out the
predictions as well as all the datasets employed in this study
are available at the Direct fOreCast Target On Reaction
(DocTOR) application available at https://github.com/
cristian931/DocTOR. The application allows users to
upload a list of proteins in the form of UNIPROT
identification codes and a list of ADRs of interest (from
the available models), in order to study the potential
relationship between the two. The program will assign a
positive or negative class to the protein output and a
probability associated to the given class for all three
different classifiers (SVM, NN, and RF) and voting systems
(jury vote, consensus, and red flag). Users can, therefore,
consider all this information when analyzing the
prediction results. Also, the application lends itself to
being easily updated, allowing the user to add new models
for new ADR on request or retrain existing models when new
protein targets are discovered to be associated with certain
ADRs and/or given new releases of the T-ARDIS database.

5 CONCLUSION

Predicting associations between protein targets and ADR is
desirable, particularly in preclinical drug development, in
order to identify early in the process potential liabilities and
toxicity-related aspects linked to proteins. In this study, we
addressed this problem from an interactome-centric point of
view. Next, we collected a range of protein features, including
their topology characteristic in the human interactome, the
spatial position related to specific in vitro validated ADR-
related hotspots and their function associations. Also, we
trained three different machine-learning approaches to
construct models for 84 different ADRs, including a
specific DILI related subset and 20 different SOCs using
the various features. The models were optimized via grid-
search and 5-fold cross-validations, and the results were
tested in an independent dataset. The analysis of the
performance of the models both under training and
independent testing validated its use as a prospective
computational tool, to assess the liability of proteins both
at the level of specific ADR type and SOC. Finally, we
provided access to the data, models, and predictive tools
through a dedicated GitHub repository for the use of the
scientific community. Researchers will be able to use the
DocTOR utility in combination with in vitro investigations
to assess the potential association between protein target
modulation and the onset of ADR, reducing research time.
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